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Abstract

We have fabricated dye-sensitized solar cells with quasi-solid state electrolytes base on three
different polymer gel electrolytes. N-methyl-quinoline iodide, Oligomer polymer gel, and alkali metal
iodide polymer gel electrolyte were synthesized and used to substitute volatile liquid electrolytes. The
anode or working electrodes were made of transparent conducting oxide (TCO) glasses coated with
pure-anatase nanocrystalline TiO, film with absorption of standard N719 dye. The counter electrodes
were TCO glasses coated with platinum-nanoparticle films using chloroplatinic acid. The polymer
electrolytes show the mechanism of ionic conductivity is intermolecular ion hopping. The testes of
thermal stability and long-term stability of the cells were carried out at different temperatures and for
duration of 63 days, respectively. The conversion efficiencies of the solar cells were 4.5 %, 4.0 % and
2.08 % under incident light of 100 mA/em’ for N-methyl-quinoline iodide, Oligomer polymer, and
alkali metal iodide polymer gel electrolytes, respectively. The cells with quasi-solid state electrolytes
exhibited excellent thermal and long-term stabilities under irradiation of sunlight when compared
with the cells with liquid electrolytes. Among the prepared materials, the N-methyl-quinoline iodide

polymer electrolyte is materials of choice for dye-sensitized solar cells.

Keywords: polymer gel electrolytes, solid state polymer solar cells, nanocrystalline titania (TiO,),

thermal and long-term stability, renewable energy.
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Abstract. We have fabricated dve-sensitized solar cells (DSSCs) with quasi-solid state electrolytes
base on N-methyl-quinoline iodide and studied the performance and stability of the cells at different
temperatures. The quasi-solid state electrolytes were prepared from polymer gel electrolyte based
on N-methyl-quinoline iodide and iodine. Pure-anatase nanocrystalline TiO; films with absorption
of standard N719 dye were emploved as working electrodes. The maximum efficiency of the solar
cells was 4.5 % under incident light of 100 mW/cm®. The cells also showed excellent stability for
several months under irradiation of sunlight. The ionic conductivity of the electrolytes and the
performance of the cells at different temperatures were presented.

Introduction

The need of renewable energy with environmentally benign sources of production is a driving force
for the search of energy. Due to dramatically growing demand and global warming, the harnessing
of solar energy by converting sunlight to electricity using the photovoltaic properties of suitable
semiconductor materials is one of the most elegant methods. Fortunately, the earth gains gigantic
amount of energy from the sun about 3 x e year or 10,000 times more than that world
population currently uses. In other words, if solar cells with an efficiency of 10 % cover 0.1 % of
the earth’s surface, they will produce electricity enough for our present needs [1].
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DSSCs are the photovoliaic devices of choice because of their high efficiency. low production
cost. and environmentally friendly TiO2 semiconductor materials. In general, DSSCs consist of
three main components: a dye-covered nanocrystailine-TiO> layer on a transparent conducting
oxide glass (TCQ) substrate serving as working electrode, an iodide/triodide redox couple in liquid
electrolyte, and a platinum-coated TCO glass substrate serving as a counter electrode. A simple
energy diagram of DSSCs with electron-hole transfer process is shown in Fig.1. The use of volatile
liquid electrolyte causes serious problems such as evaporation and leakage that result in lowering
long-term stability. In addition, the liquid electrolytes make the manufacture of multi-cell modules
difficult since the cells must be connected electrically but separated chemically, preferably on a
single substrate [1]. To overcome theses problems, many research groups emphasise on the
replacement of liquid electrolyte with solid or quasi solid-state hole conductors [2-4]. Although
solid-state electrolytes solve some problems, the cells with solid-state electrolytes provide low
energy conversion due to low electron injection efficiency. Quasi-solid-state electrolytes or polymer
electrolytes with negligible vapour pressure have some advantages. They have high ionic
conductivity, long-term stability, and good contacting and filling properties with nanocrystalline
TiO, working electrode and counter electrode [5]. In this paper, we present the preparation and
performance of DSSCs with Quasi-solid State Electrolytes base on N-methyl-quinoline lodide.

Experimental

Titanium(IV) isopropoxide, Ti[OCH(CHs):]4 solution (Fluka) was used as received. TCO glass
substrates are F-doped SnO: thin films with 8 Q/sq were purchased from Solaronix SA,
Switzerland. Nanocrystalline TiO» thin flims were synthesized by sol-gel dip-coating method. The
procedure of synthesis for sol-gel is described elsewhere [6]. To fabricated working electrodes for
desensitized solar cells, we deposited TiO, on TCO glass substrates followed by sintering in air at
450 °C for 30 min. After cooling down to 80 °C, the films were immersed in ruthenium dye
sensitizer bis(tetrabutylammonium)-cr’s—di(thiocyanato)—N,N’-bis(4—carboxylato-4'—carboxy[ic acid-
2,2-bipyridine)ruthenium(Il) or N719 dye 0.4mM in acetonitrile for 24 hrs. Afterwards, the dye-
sensitized TiO, electrode was rinsed with ethanol and dried in air. Finally, the working electrodes
were dried in an oven and kept in oven at temperature of 80-90 °C. The crystal structures of the
resulting films were identified by X-ray diffraction (XRD) technique with X’Pert-MPD System. To
obtain platinized counter electrodes with platinum colloidal nanoparticies, we prepared platinized
counter electrodes using electrodeposition method.

N-methyl-quinoline iodide was synthesized by adding 20 ml of quinoline into 18 ml of methyl
iodide under vigorrous stiring at temperature of about 70-80 °C untill the resultant solution became
the solid at room temperature. The process took time about 18 hrs. The solid product was cleaned to
remove excess unreacted materials and residure and the kept in an oven at 50-60 °C for 24 hrs. The
polymer based on N-methyl-quinoline iodide was produced as following procedures. 0.6 M N-
methyl-quinoline iodide, 0.05 M iodine, and 0.05 M 4.tert-butylpyridine (TBP) were mixed with
organic solvents under stirfing to form a homogenous liguid electrolyte. This material will provide
charge carriers. Then, polymer host poly(acrylonitrileco-styrene) of 17 % wt was added into the
homogenous liguid electrolyte. The resultant was heated up to and maintaned at 80 °C in a closed
flask to dissolve the polymer host. Once the polymer host was completely dissolved, the heater was
turned off to cool down to room temperature. Finally, the polymer gel electrolyte was obtained.

Dye-sensitized nonocrystalline solar cells were assembled by following stapes. The prepared gel
electrolyte was pasted onto the surface of dry-covered TiO» working electrode. The platinized
counter electrode was pressed on top of the working electrode to form a DSSC. The cells have
active areas of 0.25 cm”. The current-voltage characteristic curves were measured with Keithley
2400 source meter. The Xenon arc lamp was used as an irradiation source and the intensity of the
incident light was100 mW/cm?. The current density was calculated based on the photocurrent and

the area of the cells.
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Figurel. lonic conductivity plot (left) and semi-log plot (right) of the polymer gel electrolyte.

The variation of ionic conduction as a function of temperature and semi-log plot are shown in Fig 3.
The variation of ionic conduction as a function of temperature is not linear, but semi-log plot of

1000

fn(cT'") and is linear. The temperature dependence of ionic conductivity may be expressed

by the modified Arrhenius equation which are called Vogel-Tammann-Fulcher equation (VTF)[7],

: E E
o(T) = o.7"? exp(-—= or, aT"% = -=2 +in(o )
(T) = o, p( RT) ( ) = (a,) (N

where o, is the pre-exponential factor, E, the activation energy for ionic migration within solid, R is

the molar gas constant, and T is the absolute temperature in Kelvin. The ionic conductivity
increases as temperature increases. Due to the fact that the plot fits with modified Arrhenius
equation, the mechanism of conductivity involves an intermolecular ion hoping as expected.
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The efficiency of polymer gel electrolyte of DSSC is shown in Fig 2. The highest efficiency of
4.5 % was obtained at operating temperature of 25 °C. When the operating temperature increased to
45 °C the efficiency slightly dropped to 3.9 %. The variations of short circuit current (dI,./dT)and

open circuit voltage (d¥,./dT) with respect to temperature are -0.05 mA/°C and -0.48 mV/°C,

respectively while(dl,, /dT)and (dV, [dT)of the cells with liquid electrolyte are 0.07 mA/°C [8]
from -2.0 to -2.8 mV/°C [9] and, respectively. The normalized efficiency with respect to

1 . = o
temperature of the cells with polymer electrolyte —(ﬂ)ls -0.66 % while —(—77) of silicon-based
n dl n ar

solar cells is -0.65 % [10]. This result shows that the performance of DSSCs with liquid electrolyte
is comparable with silicon-based solar cells. Based on the duration of 64 days of observation, the
long-term stability of DSSC with the polymer gel electrolyte is evidently superior to the DSSC with

liquid electrolyte as shown in Fig.3.

Summary

We have succeeded in making polymer gel electrolyte of DSSC based on base on N-methyl-
quinoline iodide with the efficiency of 4.5 %. The polymer gel electrolyte has ionic conductivity
and exhibits intermolecular ion hoping mechanism. Its long-term stability is better than the liquid
electrolyte and the effect of temperature on the power drop in the DSSCs with polymer gel
electrolyte is comparable with crystalline silicon solar cells.
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ABSTRACT

It is realized that the performance of solar cells decreases
as temperature increases. In this work, we present the
influence of temperature on the electrical parameters and
performance of dye-sensitized solar cells (DSSCs). The
cells consist of nanostructured-TiO, film working anodes
and sputtered-platinum  counter electrodes. TiO,
Nanocrystalline films were prepared by sol-gel dip-
coating method on transparent conducting oxide (TCO)
glass substrates. Ultra-thin platinum films were deposited
on TCO glass substrates by dc magnetron sputtering to
make the counter electrodes. The current (I) and voltage
(V) characteristics and the efficiency of the cells were
carried out as a function of temperature in the range of 20
— 70 °C. The open circuit voltage (V) and short circuit
(I..) of the cells decrease as temperature increases which
results in lowering the efficiency of the cells. The
temperature dependence of I, is very sensitive when
compared with conventional solar cells. .

KEY WORDS
Temperature dependence, dye-sensitized solar cells,
nanostructured TiO,, performance, renewable energy

1. Introduction

In recent years, the increase of oil price and realization of
the global warming have become continuously serious
throughout the world. To cope with the problems, many
efforts have been made to search for renewable and clean
sources of energy. The harnessing of solar energy to
convert sunlight to electricity using appropriate
photovoltaic materials is one of the most elegant methods.
Dye-sensitized solar cells (DSSCs) are potentially low
cost photovoltaic solar conversion devices. Since the
discovery of DSSCs in 1991 by M.Gritzel [1], the
research and development in the field of DSSCs have
been done extensively. To date DSSCs with efficiency
over 10 % have been reported [2]. Current research in this
field is concentrating on improving nanostructured TiO,
working electrodes, replacing volatile liquid electrolytes
with solid state electrolytes to enhance the lifetime of the
cells [3], and synthesising more effective sensitizers to
increase the efficiency of the cells.

In general, it is well recognized that the performance
of traditional solar cells such as Si and GaAs based solar
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cells decrease when temperature increases [4-6]. This
phenomenon is well understood [4]. Many reports on
efficiency of DSSCs were performed with 1 sun
illumination, but the temperature of the DSSCs during its
characterization was not specified. Moreover, only a few
papers reported temperature dependence on the
performance of DSSCs. The paper by M. Berginc et al.
[7] studied the effect of temperature on the performance
of DSSCs with P25 based on propyl-methyl-imidazotium
iodide electrolyte and found that when temperature
increases from 4.4 to 41.0 °C the current density increases
from 2 mA/em?® to 7 mA/cm® while the voltage decreases
slightly from 0.7 to 0.6 mV. The current decreases if the
temperature exceeds 41 °C. The cells gave maximum
efficiency of 2.6 % at 41.0 °C. Yet, P.J. Sebastian et al.
[8] have studied DSSCs with rutile-phase nanocrystalline
TiO, and found that at elevated temperatures the current
density decreases slightly from 3.4 to 3.3 mA, but the
voltage decreases from 0.77 to 0.67 V temperature
increases from 30 to 80 °C. The current density of
Sebastian’s group differs from Berginc’s group in that it
decreases. In this work, we present the effect of
temperature on the performance of dye-sensitized solar
cells using pure anatase-nanostructured TiO, films as
working electrodes at different temperatures ranging from
20 to 70°C.

2. Experimental

All chemicals employed were analytical grades of the best
available  purity.  Titanium  (IV)  isopropoxide,
Ti[OCH(CHs).]. solution was used as received. TCO
glass substrates are F-doped SnO; thin films with 10
Q/sq. Nanocrystalline TiO; thin flims were synthesized by
sol-gel dip-coating method. The procedure of synthesis
for sol-gel is described elsewhere [9]. To fabricated
working electrodes for DSSCs, we deposited TiO; on
TCO glass substrates followed by sintering in air at
temperature about 450°C for 30 min. The crystal
structures of the thin films were identified by X-ray
diffraction (XRD) technique with X’Pert-MPD System.
The thickness of TiO, films was increased by means of
consecutive dip-coating process. The calcined films were
immersed in standard N719 dye for 24 hr. Next, the dye-
sensitized TiO, electrodes were rinsed with ethanol and
dried in an oven at temperature of 80 °C. The counter



electrodes were prepared by following steps. TCO glass
substrates were first washed in a liquid detergent solution,
then rinsed in deionized water twice, and finally were
ultrasonically cleaned again in warm alcohol and acetone
mixture of 1:1 volume ratio about 80 °C for another 20
minutes and blown dry in nitrogen gas. Ultra-thin
platinum thin films were deposited by DC magnetron
sputtering on cleaned TCO glass substrates with thickness
about 50-100 nm. The films were annealed in air at
temperature about 450 °C.

For DSSC assembly and cell performance
measurement, we have used a standard method described
in the well-known literature [10] which is simple and
feasible. After the electrodes were dried and warm, a drop
of the liquid electrolyte (tetrapropy-lammoniun iodide)
was dropped onto the surface of the dye-sensitized TiO;
working electrode. Pt-coated TCO glass substrates serve
as counter electrodes were placed above the working
electrode. The two electrodes were clipped together and
were sealed with silicone to prevent the leak of the
electrolyte. The active areas of the samples are 0.25 cm®.
To measure [-V curve characteristics at different
temperatures, ~we  placed LakeShore  DT-470
semiconductor diode sensor under the cells. At low
temperature, we cooled the cells by placing near liquid
nitrogen and at high temperature; we heated the cells by
placing the cells over a hot plate. The current-voltage
characteristic curves were measured with Keithley 2400
source meter. The current density was calculated based on
the current and the area of the cells. The Pyranometer
Sensor (CM11, Kipp & Zonen, Netherlands) with
sensivity of 5.12 x 10° V/Wm™ was used to measure the
intensity of the light. 100 W Xenon arc lamp was used as
an irradiation source.

3. Results and Discussion
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Figure 1. XRD patterns of pure anataseTiO- thin films on
TCO glass substrate

Fig. 1 shows XRD pattern of the specimen TiQ, film. The
data analysis shows that TiO, film is a pure anatase phase.

The crystallite size was estimated by applying the
Scherrer’s equation to the full width at half maximum

(FWHM) of (101) peak,

0.9%
Bcosb

(1

o =

where d is the average crystallite size, M is the X-ray
wavelength, B s the broadening of the diffraction line
measured as the full width at half maximum intensity
(FWHM), and 8 is the corresponding diffraction angle.
The average of crystallite size is 10 nm in diameter. The
Scanning Electron Microscope (SEM) image shows the
film is composted of many spherical crystals of TiO, and
the size is bigger than that of obtained by XRD
calculation because nanoparticles of TiO, aggregate and
become clusters.

Figure 2. SEM image of TiO, film photoanode

We measured the cells which produced IV curves at
different temperatures shown in Fig. 3. The photovoltaic
parameters for the cells are summarized in Table 1. The
light-to-electricity conversion efficiency can be calculated
the following equations:

P
T] e output X]OO (2)
input
(.I~V) '
H= max XlOO (3)
input
(Jscxv c)
n = —=—==xFFx100 4)

input

where J,. is the short-circuit current density (mA/cm?),
V., is the open-circuit voltage (V), Pi, is the incident light
power (mW/cmz) and (IxV)ma is the product of the
current density and voltage in the I'V curve at the point of



maximum power out put. The incident light was sunlight
with the power of 100 mW/cm®,
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Figure 3. J-V curves of the DSSCs with different
temperatures

Table |
Photovoltaic data of the dye-sensitized solar cells with
different temperatures

T mAlem?) | V. (V) | FF | n(%) i
(S
3.60 0.50 0.66 | 1.20 75
4.75 0.52 0.68 | 1.68 65
5.60 0.55 0.69 | 2.13 50
6.00 0.58 0.70 | 243 40
7.00 0.64 070 | 2.46 25
7.75 0.65 0.68 | 3.43 20

The data show that the open circuit voltage (V) and
shot circuit (I} of the cells decrease as temperature
increases as shown in Table 1. The efficiency of the cells
decreases as temperature increases as shown in Fig 3 and
4. Our data are different from previous results reported by
M. Berginc et al. [7], but are likely similar to the results
published by P.J. Sebastian et al. [8]. The average rates of
change of V., and 1.  with -respect to

temperature,dV,_ /dT and dI_/dT are -2.36 and -0.07,
respectively.  The decreasing rate with respect to
temperature of the open voltage, dV , /dT , of the cells is

similar to the conventional solar cells, but the decreasing
rate with respect to temperature of the short
cirouit,d], /dT , is very large when compared with the
conventional solar cells [4-6]. These results differ from
the previous data [7-8] in that the variation of I in
temperature our data is very sensitive.
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function of temperature

4. Conclusion

We have successfully fabricated pure anatase TiO, films
on the top of TCO glass substrates and used TCO glass
substrates with ultra-thin platinum coating as counter
electrodes. As temperature increases form 20 °C to 75 °C,
the short circuit current and open voltage of the cells
decrease. The fill factors and performance of the cell also
decrease when temperature increases. These results are
different from previous reports by other groups. The
temperature dependence of V. dye-sensitized solar cells
with nanocrystalline anatase TiO, is similar to the
conventional solar cells, but the I, decreases significantly
as temperature increases when compared with
conventional solar cells.
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Abstract: A new configuration of dye-sensitized solar cells (DSSC) using Indium Tin Oxide (ITO)-coated stainless steel as counter
electrodes was proposed and investigated. The purposes of [TO-coated stainless steel replacement for ITO glass counter electrodes are
to dissipate heat from the cells and to reduce production cost. The working electrodes are made of natural dye absorbed-TiO,
nanocrystalline film on the top of transparent tin oxide (TCO) glass. The TiO, was prepared by sol-gel dip-coating method. The
counter electrodes are ITO-coated stainless steel with Pt coated particles on the top of ITO thin film. The ITO thin film was deposited
by DC magnetron sputtering. The ITO thin film on stainless steel can prevent corrosion of stainless steel counter electrodes. The
dye-sensitized solar cells exhibit high conversion efficiency of 2.74 %which is comparable to those of prepared by the traditional
method namely ITO glasses both working electrodes and counter electrodes.

Keywords: [TO-coated stainless steel. counter electrode, dye-sensitized solar cells, nanocrystalline titania (TiO;), renewable energy

1. INTRODUCTION

The need of renewable energy sources and environmentally
friendly energy is potential driving force for the search of new
sources of energy in the 21% century due to dramatically
growing demand and global warming. The harnessing of solar
energy to convert sunlight to electricity using appropriate
semiconductor materials is one of the cleverest methods.
Fortunately, the earth gains gigantic amount of energy from
the sun about 3 x 10%* J a year or 10.000 times more than that
world population currently uses. In other words, if solar cells
with an efficiency of 10 % cover 0.1 % of the earth’s surface,
they will produce electricity enough for our present needs [1].
Dye-sensitized solar celis (DSSC) are devices of choice
because their high efficiency, low production cost, and
environmentally friendly materials. In general, DSSCs are
composted of three main components: (1) a dye absorbing
nanocrystalline-TiO, layer on a TCO glass substrate as a
working electrode, (2) an iodide/triodide redox couple in an
organic solvent or polymer or solid as an electrolyte, and (3) a
platinum-coated TCO glass substrate as a counter electrode.
Stainless steel substrates were introduced in DSSCs by Kang
et al [2] as working electrodes. Our group presented DSSCs
using tainless steel sheet counter electrode with an efficiency
of 2.7 %. Yet, they could not resist corrosion. They become
rusted within months. However, the use of the TCO glass
counter electrode may be difficult to dissipate heat from the
cells resulting in lowering the cell performance. To transfer
heat out of the cells and to protect corrosion, we propose
DSSCs with a ITO-coated stainless steel with Pt catalyst as
counter electrodes.

2. METHODOLOGY

All chemicals employed were analytical grades of the best
available purity. Titanium (IV) isopropoxide, Ti[OCH(CHs)sls
solution was used as received. TCO glass substrates are
F-doped SnO;, thin films with 10 Q/sq. Nanocrystalline TiO,
thin flims were synthesized by sol-gel dip-coating method.
The procedure of synthesis for sol-ge! is described elsewhere [3].
To fabricated working electrodes for DSSCs, we deposited
TiO, on TCO glass substrates followed by sintering in air at
temperature of 450-500 °C for 30 min. The crystal structures
of the thin films were identified by X-ray diffraction (XRD)
technique with X’Pert-MPD System. TiO; layers on the
substrates could be thickened by means of consecutive

dip-coating process. The calcined films were immersed in
standard N3 dye for 24 hr. Next, the dye-sensitized TiO,
electrodes were rinsed with ethanol and dried in an oven at
temperature of 80 °C. The counter electrodes were prepared as
follows. Stainless steel substrates were first washed in a liquid
detergent solution, then rinsed in deionized water twice, and
finally were ultrasonically cleaned again in warm alcohol and
acetone mixture of 1:1 volume ratio about 80 °C for another
20 minutes and blown dry in nitrogen gas. ITO thin films were
deposited by DC magnetron sputtering on the stainless steel
foils of about 0.25 mm thickness. The films were annealed in
air at different temperatures ranging from 200 to 450 °C.
The resultant ITO-coated stainless steel were deposited Pt to
make a catalyst. Pt catalyst was deposited on ITO-coated
stainless steels by dropping of H,PtClg solution with repetition
of the heat treatment at 400 °C for 30 min.

For DSSC assembly and cell performance measurement, we
have used a standard method described in the well-known
literature [4] which is simple and feasible. After the electrodes
were dried, a drop of the liquid electrolyte
(tetrapropy-lammoniun iodide) was dropped onto the surface
of the dye-sensitized TiO, working electrode. 1TO coated
stainless steels with Pt catalyst serve as counter electrodes
were placed above the working electrode. The two electrodes
were clipped together and were sealed with silicone to prevent
the leak of the electrolyte.

3. RESULTS AND DISCUSSION

Fig. 1 shows XRD pattern of TiO; film. The data analysis
shows that TiO, film is a pure anatase phase. The crystallite
size was estimated by applying the Scherrer’s equation to the
full width at half maximum (FWHM) of (101) peak. The
average size is 10 nm in diameter. Fig. 2 shows XRD patterns
of ITO films on stainless steel at different annealing
temperatures. The lattice parameters of ITO as deposited is
slightly increased, but the impurity phases were not observed.
We further increased annealing temperatures to 450 °C, but
the structure of the films remains the same.

The efficiency of DSSCs in different types of counter
electrodes was reported in our previous work [5]. In this work,
we compare different DSSC counter electrodes: stainless steel,
stainless steel with Pt catalyst, TCO glass with Pt catalyst,
and ITO-coated stainless steel with Pt catalyst substrates as
counter electrodes.
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Fig. 1 XRD patterns of pure anataseTiO, thin films on TCO
glass substrate.
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Fig. 2 XRD patterns of ITO thin films on stainless steel with
different annealing temperatures.

We measured several cells which produced IV curves
resembling those in Figure 2. The photovoltaic parameters for
the cells are summarized in Table 1. The IV curves of the
best specimens with TiO, films with different counter
electrodes are shown in Figure 2. The light-to-electricity
conversion efficiency can be calculated the following
equations:

= E)%XIOO (1
(3xV)

n= mex % 100 @)
light

o)
n=———=2xFF.x100 (3)

light

where J,. is the short-circuit current density {mA/cmz), Mo i
the open-circuit voltage (V), P, is the incident light power
(mW/cm?) and (Jx¥),. is the product of the current density
and voltage in the IV curve at the point of maximum power
output. The incident light was sunlight with the power of
about 80 mW/cm®.

Table 1 Photovoltaic data of the dye-sensitized solar
cells with different counter electrodes

Type of Jie Ve EF n%
counter - {mA/cm?)
electrodes (mV)

ITC-coated SS 6.90 0.53 0.60 274
with Pt

catalyst

TCO glass 6.80 0.54 059 - 270
with Pt
catalyst

w/o coated SS 6.70 0.50 0.50  2.09
with Pt
catalyst

SS wlo Pt 5.90 0.49 0.49 173
catalvst

slaa il gy
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Fig. 3 JV curves of the DSSC with different counter
electrodes: stainless steel (SS), stainless steel with Pt catalyst
(w/o coated ITO), TCO glass with Pt catalyst (TCO glass), and
ITO-coated stainless steel with Pt catalyst (ITO-coated).
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The data show that the efficiency of the celis with a stainless
steel counter electrode is 1.73 % and the efficiency of the cell
with a Pt catalyst stainless steel counter electrode increases
slightly to be 2.09 %. This result means that the electron
transfer rate at the interface between the electrolyte and the
counter electrode increases because of the catalytic activity of
the platinum particles deposited on the surface of the stainless
steel. However, the efficiencies of the cells with stainless stee]
and Pt catalyst stainless steel counter electrodes are lower than
that of the cell with Pt catalyst TCO counter electrode yielding
2.70 %. The efficiency of DSSC with Pt catalyst ITO-coated
stainless steel is 2.74 %. This may result from the interface
between stainless steel and TiO, is improved by the thin layer
of ITO. The fill factors (FF) of the stainless steel and
platinum-coated stainless steel counter electrodes are 0.49 and
0.50 respectively which are not significantly different. Fill
factor gives important intrinsic information related to the cells
such as internal resistance. We also observed that ITO-coated
stainless steel can resist corrosion. When [TO-coated stainless
steel with Pt catalyst is used as counter electrodes, the internal
resistance of the cells is decreased which results in increasing
of the fill factors. Therefore, coating ITO on stainless steel can
reduce the resistance of interface between stainless steel and
semiconductor TiO; before coating platinum catalyst.

4, CONCLUSION

We have successfully fabricated pure anatase TiO, films on
the top of TCO glass substrates and used ITO-coated stainless
steel foil with Pt catalyst as a counter electrode. The
light-to-electricity conversion efficiencies of the best
specimens were2.84 %, 2.70%, 2.09%. and 1.73 % for Pt
catalyst ITO-coated stainless steel, TCO glass with Pt catalyst,
stainless steel with Pt catalyst, and stainiess steel counter
electrodes, respectively. The low efficiencies of the cells with
stainless steel derive from high internal resistance of the
interface between stainless steel and semiconductor materials,
TiO,. The cell with Pt catalyst stainless steel counter electrode
yields higher efficiency than stainiess counter electrode
without Pt catalyst because catalytic activity of platinum
particles is a crucial factor for performance of the
dye-sensitized solar cells. The cell made of ITO-coated
stainless steel electrode gives efficiency higher than the cell
made of without ITO-coated stainless steel electrode because
ITO film reduce internal resistance and improve the contact
between TiQ, and stainless steel.
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We propose the new configuration of dye-sensitized solar cells using a stainless steel (SS) foil as
counter electrodes. The working electrodes are composed of natural dye absorbing TiO; nano-film on
the top of transparent conducting oxide (TCQ) glass. The counter electrodes are made of platinum-
coated stainless steel. The dye-sensitized solar cells exhibit high conversion efficiency which is
comparable to those of prepared by the traditional method namely TCO glasses for both working

electrodes and counter electrodes.

1. INTRODUCTION

Due to dramatically growing demand and warming, the
need of renewable energy sources and eco-friendly
environment energy is considered a potential force for
power requirements for the 21 century. The harnessing of
solar energy to convert sunlight to electricity using
appropriate semiconductor materials is one of the cleverest
methods. Fortunately, the earth gains gigantic amount of
energy from the sun about 3x10% J a year or 10,000 times
more than that world population currently uses. In other
words, if solar cells with an efficiency of 10 % cover 0.1 %
of the earth’s surface, they will produce electricity enough
for our present needs [1]. Dye-sensitized solar cells are the
photovoltaic devices of choice because their high
efficiency, low production cost. and environmentally
friendly materials.

In general, dye-sensitized solar cells are composed of
three main components: a dye-absorbed nanocrystalline-
TiO; layer on a transparent conducting oxide glass (TCO)
substrate as working electrode, an iodide/triodide redox
couple in an organic solvent or polymer or solid as an
electrolyte, and a platinum-coated TCO glass substrate as a
counter electrode. To the best of our knowledge, no other
research groups used stainless steel as counter electrodes
except for working electrodes [2-3]. The use of TCO
counter electrodes makes cost of the cells expensive and
heavy. Furthermore, the use of the TCO glass counter
electrode may be difficult to dissipate heat from the cells
resulting in Jowering the cell performance. To transfer heat
out of the cells, we fabricate the dye-sensitized solar cells
with a platinum-coated stainless steel as a counter
electrode.

2. EXPERIMENT
Titanium(IV) isopropoxide, Ti[OCH(CHs);]; solution
was obtained from Fluka and used as received. TCO glass
substrates are F-doped SnO, thin films with 10 Q/sq were
purchased from Solaronix SA, Switzerland.
Nanocrystalline TiO, thin films were synthesized by sol-gel
dip-coating method. The procedure of synthesis is

ﬁCnnesponéing author. Tel.: + 66 9948 0419: fax: + 66 4528 838!
E-mail: udomt@hotmail.com

described elsewhere [4]. To fabricate working electrodes
for desensitized solar cells, we deposited TiO, on TCO
glass substrates followed by sintering in air at 450-500 °C
for 30 min. The crystal structures of the thin films were
identified by X-ray diffraction (XRD) technique with
X’Pert-MPD System. TiO, layers on the substrates could
be thickened by means of consecutive dip-coating process.
The calcined films were immersed in ruthenium dye, cis-
Ru(SCN),L, (L = 2.2' -bipyridyl-4,4'-dicarboxylate) for 12
hrs. Afterwards, the dve-sensitized TiO. electrode was
rinsed with ethano! and dried in air.

Stainless steel foils of about 0.25 mm thickness were
used as a counter electrode. The counter electrodes were
prepared as follows. Stainless steel substrates were first
washed in a liquid detergent solution for 20 minutes, then
rinsed in deionized water twice, and finally ultrasonically
cleaned again in warm alcoho! and acetone mixture of 1:1
volume ratio about 80 °C for another 20 minutes and blown
dry in nitrogen gas. Platinum was coated on stainless steels
by means of electrodepositing with chloroplatinic acid
(H;PtCly) as a source of platinum catalyst.

For dye-sensitized solar cell assembly and cell
performance measurement, we have used a standard
method described in the well-known literature [5] and
briefly described as follows. After the electrodes were
dried, a drop of the liquid electrolyte (tetrapropyl-
ammonium iodide) was dropped onto the surface of the
dye-sensitized Ti0O, working electrode. Pt-coated stainless
steel counter electrode was placed above the working
electrode, The two electrodes were clipped together and
were sealed with silicone to prevent the leak of the
electrolyte.

The photovoltaic test of the dye-sensitized TiO,
nanocrystalline solar cells with stainless steel counter
electrode was carried out by measuring current-voltage
characteristic curves under natural sunlight with the power of
about 80 mW/em”. The current-voltage characteristic curves
were measured with Keithley 2400 source meter. The
current density was calculated based on the current and the
area of the cells. The Pyranometer Sensor (CM11, Kipp &
Zonen, Netherlands) with sensitivity of 5.12x10® V/Wm?
was used to measure the intensity of the sunlight. The heat
dissipation from the cells was determined by the reduction
of the cell temperatures after blowing with an electric fan.

© 2009 Thai Physics Society
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FIGURE 1. XRD pattern of nanocrystalline TiO, thin film on
TCO glass substrate: A = Anatase TiO, and TCO = F:SnQ, thin
film glass substrate.

The temperature of the cells was measured by LakeShore
DT-470 silicon diode temperature sensors with 10 pA
current source. The sensor was attached at the counter
electrode of the cell. The wind speed was measured by
MicroPro Digital Anemometer.

3. RESULTS AND DISCUSSIONS

X-ray diffraction patterns of TiO, films deposited on
TCO glass substrates are shown in Fig. 1. The pattern of
calcined (400 °C) TiO, corresponds to pure anatase phase.
The crystallite size was estimated by applying the Scherrer
equation to the full width at half maximum (FWHM) of
(101) peak of anatase. The average size is 10 nm in
diameter.

We have reported the dye-sensitized solar cells with
TCO glass substrates as both electrodes in our previous
work [6]. In this work, we compare the dye-sensitized solar
cells with a stainless steel substrate as counter electrode.
We measured several cells which produced IV curves
resembling those in Fig. 2. The IV curves of the best
specimens with TiO, films with different counter electrodes
are shown in Fig. 2. The photovoltaic parameters for the
cells are summarized in Table 1. The light-to-electricity
conversion efficiency (7) can be calculated by the
following equations:
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where J. is the short-circuit current density (mA/cm?), Vg,
is the open-circuit voltage (V), P, is the incident light
power (mW/cm?) and (/) is the product of the current
density and voltage in the IV curve at the point of
maximum power output. The incident light was sunlight
with the power of about 80 mW/cm”.
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FIGURE 2. TV curves of the dye-sensitized solar cells fabricated
by using different substrates as counter electrodes. (a) TCO, (b)
Pt-cpated stainless steel and (c¢) stainless steel.

TABLE 1. Photovoltaic data of the dye-sensitized solar cells
with different counter electrodes measured at the cell
temperature of 30°C.

Counter I (mA/em® V. (V) FF n%
electrode
FEO) 6.80 0.54 0.59 2,70
SS Pt-coated 6.70 0.50 0.50 2.09
SS 5.90 0.49 0.49 1573

The sample marked counter electrode TCO stands for the
traditional dye-sensitized solar cells made of TCO glass
substrates for both working and counter electrodes. The
TCO counter electrodes are always coated with platinum-
catalyst. Our TCO counter electrodes were also coated with
platinum-catalyst. The SS Pt-coated sample represents the
sample made of platinum-coated stainless steel counter
electrode. And SS sample denotes the sample made of
stainless steel counter electrode without platinum catalyst.

The photovoltaic propertics of dye-sensitized with
different counter electrodes are shown in Table 1 and IV
curves are presented in Fig. 2. The data show that the
efficiency of the cells with a stainless steel counter
electrode is 1.73 % and the efficiency of the cell with a
platinum-coated stainless steel counter electrode increases
slightly to be 2.09 %. This result means that the electron
transfer rate at the interface between the electrolyte and the
counter electrode increases because of the catalytic activity
of the piatinum particles deposited on the surface of the
stainless steel. However, the efficiencies of the cells with
stainless steel and platinum-coated stainless steel counter
electrodes are lower than that of the cell with TCO counter
electrode yielding 2.70 %. The fill factors (FF) of the
stainless steel and platinum-coated stainless steel counter
electrodes are (.49 and 0.50 respectively which are not
significantly different. Fill factor gives important intrinsic
information related to the cells such as internal resistance.
When the stainless steel and platinum-coated stainless steel
are used as counter electrodes, the internal resistances of
the cells increase resulting in decreasing of the fill factors.
It is possible to reduce the resistance of interface between
stainless steel and semiconductor TiO, by vacuum
deposition of TCQ on a stainless steel foil before platinum-
coated.
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TABLE 2. Photovoltaic data of the dye-sensitized solar cells
with different counter electrodes when left in sunlight for 1
hour from 11.00-12.00 o’clock (T;) and then continuously
blown for 1 hour from 12.00-13.00 o’clock (Ty) and AT = T; -

i & i

Counter T 0 5 P Vi FF n%
Electrode

T=Zi a8 B0 o9 1%

IE0 T.=40 60 049 058 213

T.=50 60 047 047  L65

SR el T,=28 61 050 051 194

When the cells were left in the sunlight for 1 hour from
11.00-12.00 o’clock, we measured the cell temperature and
labeled as T:. Then, the cells were continuously blown for |
hour from 12.00-13.00 o’clock., we recorded as Tr. We
observed that the temperatures of the cells with TCO
counter electrode and platinum-coated stainless steel
electrode are reduced from 51 to 40 °C and 50 to 28 °C,
respectively as shown in Table 2. The differences of the
temperatures, A7 = T, - Ti, of TCO counter electrode and
platinum-coated stainless steel are 9 °C and 22 °C,
respectively. These data show that the platinum-coated
counter electrode can dissipate heat from the cell better
than TCO counter electrode. It was aiso found that
lowering cell temperature results in increasing the
efficiency of the cells.

It was observed that the stainless steel electrodes have
become rusted. Then, further development will be put to
overcome this obstacle by coating thin film of indium-tin-
oxide on stainless steel to protect oxidation before covering
with platinum catalyst.

4. CONCLUSIONS

We have successfully fabricated nanocrystalline TiO,
thin films on the top of TCO glass substrates and used
stainless steel foil as a counter electrode. The light-to-

electricity conversion efficiencies of the best specimens
were 2.70%, 2.09% and 1.73 % for TCQ, Platinum-coated
stainless steel, and stainless steel counter electrodes,
respectively. The low efficiencies of the cells with stainless
steel derive from high internal resistance of the interface
between stainless steel and semiconductor materials, TiO,.
The cell with platinum-coated stainless steel counter
electrode yields higher efficiency than stainless counter
electrode because catalytic activity of platinum particles is
a crucial factor for performance of the dye-sensitized solar
cells. Although the cell with platinum-coated counter
electrode slightly yields lower efficiency than the cells with
TCO counter electrode, it provides better heat dissipation
that results in enhancing the efficiency of the cell and
makes the efficiency comparable to that of the cell with
TCO counter electrode.
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