การศึกษาสมรรถนะการผลิตและคุณภาพซากของสูกรป่าที่ได้รับอาหารโปรตีน 2 ระดับในการเลี้ยงแบบปล่อย!ปลงและ!บบบขังคอก

A study on performance and carcass quality of wild boar using two levels of protein diet under free range and intensive management

> วัชรพงษ์ วัฒนกูล
> ถาวร สุกาพรม
> อินทร์ ศาลาง1ม
> ขนิษฐา ทุมมากรน์์
> วรพงษ์ สุริยจันทราทอง
> ธีระพล บันสิทธิ์
> เกรียงไกร โชประการ
> นิกาพรรณ สิงห์ทกงสา

- การศึกษเชสลล์พันโุศาสตร์ไนสุกรป่าของไทย Mitotic karyotype of Thai wild boar (Sus Scrufa vitattus)
- การศึกษาสมรรถนะการผลิตและคุณภาพซากขยงฮุกรป้าที่ได้รับอาหารโปรตีน 2 ระดับในการ เลี้ยงแบบปล่อยแปลงและแบบขังคอก
A study on performance and carcass quality of wild boar using two levels of protein diet under free range and intensive management
- การศึกษาพฤติกรรมสุกรป้าที่เลี้ยงแบบปล่อยแปลงและขังคอก

A study on behaviour of wild boar under free range and intensive management

> คณะเกษตรศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี

ทุนอุดหนุนเพื่อการวิจัย สำนักงบประมาณ ประจำปี 2543

ระหัสโครงการ 04102900-0003
ISBN 974-609-092-5

กิตติกรรมประกาศ

คณะผู้วิจัยขอขอบคุณภาควิชาวิทยาศาสตร์ชีวกาพ คณะวิทยาศาสตร์ และสำนักงานไรฝึก ทดลองและห้องปฏิบัติการกลาง คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี ที่ให้ความเอื้อเพื้อ สถานที่และให้ความอนุเคราะห์สารเคมีบางชนิดในการทำการทดลองในครั้งนี้ และ ขอขอบคุณ คุณมุกดา บุตรวงค์ นักศึกษาจุลชืววิทยา คุณประสิทธิ์ เสวิษุศว่ ทุุนสรรพสิทธิ แปลงแก้ว และ คุณสำราญ มูลโคตร นักศึกษาสาขาสัตวศาสตร์ คุณวีระพงษ์ บัวเขียว งานคอมพิวเตอร์คณะ เกษตรศาสตร์ ที่ช่วยเหสืองานในการคำเนินการทดลองและการจัดทำรายงานเป็นอย่างดี ตลอดจนผู้ ให้เงินทุนสนับสนุนการวิจัยครั้งนี้

คณะผู้จัดทำ
13 มีนาคม 2545

การศึกษาเซลล์พันธุศาสตร์ในสุกรป่าของไทย

Mitotic Karyotype of Thai Wild Boar (Sus scrofa vitattus)

ถาวร สุภาพรม ${ }^{1}$
ขนิษฐา ทุมมากรณ์ ${ }^{1}$
วัชรพงษ์ วัฒนกูล ${ }^{2}$
อิน ศาลางาม ${ }^{2}$

[^0]สารบัญตาราง 3
สารบัญกาพ3
บทคัดย่อ4
คำนำ 5
วิธีการทดลอง 6
ผลการทดลอง. 7
วิจารณ์และสรุปผล 14
เอกสารอ้างอิง 15

ตารางที่ 1 จำนวนโครโมโซมและดาริโอไทป์ของสุกรป่าไทย

สารบัญภาพ

ภาพที่ 1 สุกรป่าที่นำมาจากฟาร์มของเกษตรกรในเขต อ.เมือง จ.จันทบุรี.. 8
กาพที่ 2 somatic metaphase ของสุกรป่าไทยเพศเมีย ลูกศรชี้โครโมโซมคู่ที่ 10 ที่ตำแหน่งเซนโตร เมียร์ ไม่ติดสีย้อม (กำลังขยาย 5000 เท่า)
กาพที่ 3 somatic metaphase ของสุกรป่าไทยเพศผู้ ลูกศรชี้โครโมโซมคู่ที่ 10 ที่ตำเหน่งเซนโตรเมียร์ ไม่ติดสีย้อม (กำลังขยาย 5000 เท่า)
กาพที่ 4 Giemsa-stained karyotype ของสุกรป่าไทยเพศเมีย $(38, \mathrm{XX})$ ลูกศรชี้!สดง 1 ห้เท็นบริเวณ ตำเหน่งเซนโตรเมียร์ของโครโมโซมคู่ที่ 10 ที่ไม่ติดสีย้อม (กำลังขยาย 5000 เท่า)10

ภาพที่ 5 G -banded karyotype ของสุกรป่าไทยเพศเมีย $(38, \mathrm{XX})$ กำลังขยาย 5000 เท่า..................... 11
กาพที่ 6 Giemsa-stained karyotype ของสุกรป่าไทยเพศผู้ $(38, \mathrm{XY})$ ลูกศรชี้แสดงไห้เห็นบริวณ ตำ!!หน่งเซนโตรเมียร์ของโครโมโซมคู่ที่ 10 ที่ไม่ติดสีย้อม (กำลังขยาย 5000 เท่า).12

กาพที่ 7 G -banded karyotype ของสุกรป่าไทยเพศผู้(38,XY) ลูกศรชี้แสดงให้เห็นบริเ วแต่าแหน่ง เซนโตรเมียร์ของโครโมโซมคู่ที่ 10 ที่ไม่ติคสีย้อม (กำลังขยาย 5000 เท่า)13

การศึกษเชลล์พันธุศาสตร์ในสุกรป่าของไทย
 Mitotic Karyotype of Thai Wild Boar (Sus scrofa vitattus)

ถาวร สุกาพรม่ ขนิิษฐา ทุมมากรณ์ ${ }^{1}$, วัชรพงษ์ วัฒนกูล ${ }^{2}$ และ อิน ศาลางาม ${ }^{2}$

บทคัดย่ย

จากการศึกษาโครโมโซมและคาริโอไที่ไของสุกรป่าไทย (Sus scrofa vitatus) ที่จับมาจาก ฟาร์มของเกษตรกรในจังหวัดจันทบุรี โดยเตรียแโครโมาชแด้วยวิรีการเพาะลี้ยงงซลก์ลิมโฟไซต์ และย้อมแถบโครโมโซมเบบจี (G -banding) พบว่าสุกรป่าไทยมีจำนวนโคร โิโซมเท่ากับ 38 $(2 \mathrm{n}=38)$ รูปร่างของโครโมโชมไนคาริโอไทป์มี 3 แบบ คือ แบบเมตาเชนตริก (คู่ที่ $10-12$), สับเมตา เซนตริก (คู่ที่ 1-9) และ อโครเซนตริก (คู่ที่ $13-18$) ขนาดของโคร โมโซราในคาริโอไทป์ไแบ่งได้ 4 กลุ่ม คือ กลุ่ม A เป็นกลุ่มที่มีรูปร้างสับเมตาซนศติกขนาคาหญู่ (มี 1 คู่) กลุ่ม B เป็นกลุ่มที่มีรูปร่าง อโครเซนตริก (มี 6 ค่) กลุ่ม C เป็นกลุ่มที่มีรูปร่างสับพตดซซนตริกขนาดกลาง (มี 8 คู่ และ x chromosome) และกลุ่ม D เป็นกลุ่มที่มีรูปร่างเมตา ซนตริกขนาดเล็ก (มี 3 คู่ และ Y -chromosome) นอกจากนี้ยังพบว่าโครโมโซมคู่ที่ 10 บริเวณตํแหน่งซนโตรมียร์จะไม่ติดสีย้อม (gap) ซึ่งอาจใช้ โครโนโซมคู่นี้เป็นจุดสังเกต (marker) ในการศึกษาโครโมโซมของสุกรป่า จำนวนโครโมโซมและ คาริอไทป์ของสุกรป่าไทยมีลักษณะคล้าขคลึงกับสุกรป่าญู่ปุ่นและสุกรป่าออเชียตะวันออกเดียงไต้ มาก แต่มีความแตกต่างจากสุกร่่ายุโรปอย่าชชัดเจน
' หน่วยปฏิบิติการเซลล์พันธุศาสตร์ ภาควิชาวิทยาศาสตร์ชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี
${ }^{2}$ คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี

การศึกษเซลล์พันรูศสตร์นสุกรปไาของไทย

Mitotic Karyotype of Thai Wild Boar (Sus scrofa vitattus)

ถาวร สุกาพรม ${ }^{1}$,ขนิษฐา ทุมมากรณ์ ${ }^{1}$, วัชรพงษ์ วัฒนกูล ${ }^{2}$ และ อิน ศาลางาม ${ }^{2}$

คำนำ
สุกรหรือหมู นับเป็นสัตว์เศรษฐกิจที่มีความเหมาะสมในการนำมาใช้ศึกษาเซลล์พันธุศาสตร์ ของ livestock เพราะมีข้อดีหลายประการ เช่น มีจำนวนโครโมโซมไม่มากจนเกินไปเมื่อเทียบกับ สัตว์เลี้ยงชนิดอื่น (วัว : $2 \mathrm{n}=60$, ควาย : $2 \mathrm{n}=50$, แกะ : $2 \mathrm{n}=54$, แพะ : $2 \mathrm{n}=60$ หรือม้า $: 2 \mathrm{n}=64$) กา จำแนกเละตรวจสอบรูปร่างของโครโมโซมก็สามารถทำได้ง่าย ไม่ยุ่งยากหรือประสบปัญหา การ เพาะเลี้ยงเซลล์ลิมโฟไซต์ก็ให้ปริมาณเมตาเฟสสูง เพราะมีปริมาณเม็ดเลือดขาวสูงและจำนวนลูกไน แต่ละครอกก็มีเพียงพอไนการเก็บข้อมูลทางสถิติ ตลอดจนวงจรชีวิตก็ค่อนข้างสั้น

การศึกษาจำนวนโครโมโซมของสุกร เริ่มมีมาตั้งแตปี ค.ศ. 1913 โดย Wodsedalek แต่ผู้ที่ราย งานจำนวนโครโมโซมที่ถูกต้องของสุกร คือ Krallinger(1931) ซึ่งจำนวนโครโมโซมของสุกร เท่า กับ $38(2 \mathrm{n}=38)$ ต่อมาไนปี ค.ศ. 1962 มีนักวิจัย 2 กลุ่มได้ศึกษาจำนวนโครโมโซมของสุกรพันบุ่ (domestic swine) โดยคึกษาจากษซลล์ไขกระดูก พบว่า จำนวนโครโมโซมของสุกรพันธุ์มีจำนวนเท่า กับ $38(2 n=38)$ (Makino !!ละคณะ, 1962 ; Gimenez-Martin !!ละคณะ,1962) อีก 1 ปีต่อมา Stone リละ McConnell และคณะ นับเป็นกลุ่มบุคคลแรกที่ได้ศึกษาโครโมโซมของสุกรพันธุ์โดยใช้วิธีการเพาะ เลี้ยงเซลล์ลิมโฟไซต์ซึ่งโได้ผลตรงกับกลุ่มนักวิจัยท่านอื่นๆ คือจำนวนโครโมโซมของสุกรพันธุ์ทท่า กับ 38 (Stone, 1963 ; McConnell และคณะ,1963)

ในกรณีของสุกรป่า (Sus scrofa) McFee และคณะ(1966) และ Rary และคณะ(1968) นับ เป็นกลุ่มนักวิจัยกลุ่มแรกที่รายงานผลการศึกษาจำนวนโครโมโซมของสุกรป่ายุโรป (European wild pigs) โดยไช้สุกรป่าที่จับได้านเขตมลรัฐ Tennessee ซึ่งสุกรป่าที่นำมาจากประเทศเยอรมัน ตั้งแต่เมื่ล ปี ค.ศ. 1912 แต่มีสุกรป่าบางตัวได้หลุดเข้าไปในป่าของรัฐนี้ พบว่า สุกรป่าจำนวนร้อยละ 73 มี จำนวนโครโมโซมเท่ากับ $36(2 \mathrm{n}=36)$ อีกร้อยละ 27 มีจำนวนโครโมโซมเท่ากับ 37 และเสนอว่า 1น คาริโอไทป์ของสุกรพันธุ์จะไม่พบโครโมโซมรูปร่างสับเมตาเซนตริกที่มีขนาดอยู่ระหว่าง โครโมโซมรูปร่างสับเมตาเซนตริกที่มีขนาดใหญู่ที่สุดกับโครโมโซมสับเมตาเซนตริกที่มีขนาดใหญ่ ลำดับที่ 2 ทั้งกลุ่มวิจัยของ McFee และ Rary สรุปว่า เกิดปรากฎการณ์ที่เรียกว่า Robertsonian translocation หรือเกิด centric fusion ระหว่างโครโมโซมรูปร่างอโครเซนตริก 2 แท่งในสุกรพันโุ์ กลายเป็นโครโมโซมรูปร่างสับเมตาเซนตริกแท่งดังกล่าว ทำให้จำนวนโครโมโซมในสุกรป่าลดลง เหลือ $36(2 \mathrm{n}=36)$ กรณีดังกล่าวจึงเป็นข้อบ่งชี้ว่าสุกรป่ากับสุกรพันธุ์มีความเกี่ยวข้องและสัมพันธ์กัน อย่างไกล้ชิด ต่อมาทั้ง Gropp และคณะ(1969) และ Rittmannsperger(1971) ได้ยืนยันว่าจำนวน

โครโมโซมของสุกรป่ายุโรปเท่ากับ $36(2 \mathrm{n}=36)$ และมีปรากฎการณ์ Robertsonian translocation เกิด ขึ้นจริง ทำให้สุกรป่าและสุกรพันธุ์มีจำนวนโครโมโซมแตกต่างกัน อีก 2 ปีต่อมา Gustavsson และ คณะ(1973) ได้ใช้เทคนิคการย้อมแถบโครโมโซมพิสูจน์ว่าโครโมโซมอโครเซน ตริกคู่ที่ 15 และคู่ที่ 17 เกิด centric fusion หรือ Robertsonian translocation กลายเป็นโครโมโซมรูปร่างสับเมตาเซนตริก คู่ที่ 2 ในสุกรป่า Muramoto และคณะ(1965) ได้ศึกษาจำนวนโครโมโซมสุกรป่าญี่ปุ่น (Sus vittatus leucomystax) พบว่ามีจำนวนโครโมโซมเท่ากับ 38 และ Gramek(1972) ได้ศึกษาโครโมโซมของ สุกรป่าเอเชียตะวันออกเฉียงใต้ (Sus scrofa vitattus) พบว่ามีจำนวนโครโมโซมเท่ากับ 38 เช่นเดียว กัน

ส่วนสุกรป่าไทย ยังไม่มีรายงานการย้อมแถบโครโมโซมแพื่อศึกษาจำนวนโครโมกซซมเละ คาริโอไทป์ ดังนั้นการวิจัยครั้งนี้มีวัตถุประสงค์เพื่อศึกษาจำนวนโครโนโซมและคาริโอไทป์มาตร ฐานของสุกรป่าไทยที่นำมาจากฟาร์มของเกษตรกรสุรศักดิ์ วุติเกตุ ต.ท่าช้าง อ.เมือง 0. จันทบุรี เพื่อ เป็นข้อมูลพื้นฐานทางพันธุศาสตร์ที่จะสามารถนำไปประยุกต์าช้ในการเพาะเลี้ยงและขยายพันธุ์สุกร ป่าเพื่อการค้าไห้ถูกต้องตามหลักวิชาการต่อไป

วิธีการทดลอง

การเตรียมโครโมโซมของสุกรป่าจะใช้เทคนิคการเพาะเลี่ยงเซลล์ลิมโฟไซต์ (Lymphocyte culture) จาก!ลือดโดยคณะผู้วิจัยได้ดัดแปลงตามวิธีของ Hammerun (1971) ซึ่งมีขั้นตอนดังนี้

1. การเก็บตัวอย่างเลือด : เจาะและดูดตัวอย่างเลือดของโุกรป่าจากเส้นเลือดดำที่ไบหูหรือ โคนหาง จำนวน $1-2 \mathrm{ml}$ ด้วย!บ็มและกระบอกฉีดยาที่เคลือบด้วยสารป้องกันการแข็งตัวของเลือด (heparin) กลับกระบอกดีดยาไปมาให้เลือดผสมกับสารป้องกันการแข็งตัวของเลือด ในการวิจัยครั้ง นี้ใช้สุกรป่าจำนวน 10 ตัว แยกเป็นเพศเมีย 5 ตัวและเพศผู้ 5 ตัว
2. การเพาะเลี้ยง : ตัวอย่างเลือดในข้อ 1 นำมาเพาะเลี้ยงในน้ำยาเพาะเลี้ยงเซลล์ที่มีส่วนผสม ของสารต่างาดังนี้

น้ำยาเพาะเลี้ยง\|ซลล์ชนิด RPMI 1640	4 ml
ซีรัม (fetal calf serum)	1 ml
สารกระตุ้นการแบ่งเซลล์ (phytohaemagglutinin)	0.1 ml
ยาปฏิชีวนะ (penicillin-streptomycin)	0.3 ml
ตัวอย่างเลือด	$0.8-1 \mathrm{ml}$

ผสมน้ำยาเพาะเลี้ยงเลี้ยงและตัวอย่างเลือดให้เข้ากันอย่างทั่วถึงเบาๆ จากนั้นนำเข้าตู้บ่มเซลล์ ที่อุณหภูมิ $37^{\circ} \mathrm{C}$ ปริมา $\mathrm{CO}_{2} 5 \%$ และความชื้นสัมพันธ์ 95% เพาะเลี้ยงนาน 48 ถึง 72 ชั่วโมง ใน ระหว่างนี้ให้เขย่าขวดเพาะเลี้ยงอย่างน้อยวันละ 1 ครั้ง
3. การเก็บเกี่ยวโครโมโซม : ครบ 48 หรือ 72 ชั่วโมงให้เติมสารละลาย colchicine หรือ colcemid $(0.2 \mathrm{mg} / \mathrm{ml}) 0.1 \mathrm{ml}$ ลงในขวดเพาะเลี้ยงจากนั้นเขย่าเบาๆแล้วนำเข้าตู้บ่ม นาน 30 นาที ครบ เวลาให้นำมาปั่นที่ความเร็ว 2000 รอบต่อนาที นาน 5 นาที ดูตส่วนที่ใสทิ้งให้เหลือประมาณ $1-2 \mathrm{ml}$ เติมสารละลายเกลือเจือषาง $(0.075 \mathrm{M} \mathrm{KCl})$ จนได้ปริมาณ 10 ml ผสมให้เข้ากัน นำเข้าตู้บ่ม $37^{\circ} \mathrm{C}$ นาน 15 นาที จากนั้นนำไปปั่นที่ความเร็วและเวลาเท่าเดิม ดูคส่วนที่ใสทิ้งจนเหลือปริมาตร ประมาณ $1-2 \mathrm{ml}$ ให้ผสมตะกอนกับสารละลายที่เหลืออย่างทั่วถึงด้วย pasteur pipette หรือใช้ vortex mixer แล้วหยดสารละลาย fixative ลงไปจนได้ปริมาตร 5 ml นำไปปั่นและดูดส่วนที่ไสทิ้ง เติม fixative ไหม่แล้วนำไปปั่นอีกครั้ง ให้เปลี่ยน fixative ใหม่ซ้ำแบบนี้ $1-2$ ครั้ง จนได้ตะกอนเซลล์ขาวที่ก้น หลอด
4. การเตรียมสไลด์และการย้อมสีโครโมโซม : หยดสารละลายตะกอนที่ได้ลงบนสไลด์ที่ สะอาค ประมาณ $2-3$ หยดโดยไม่ซ้ำตำแหน่งเดิม วางสไลด์ลงบนถาดอุ่นสไลด์เพื่อทำให้โครโมโซม มีความคงตัว (aging and stable) จากนั้นนำไปย้อมสี Giemsa !ละนำสไลด์ส่วนหนึ่งไปย้อมแกบ โครโมโซมแบบจี (G-banding) โดยดัดแปลงตามริธีของ Seabright(1971)
5. การจัดทำคาริโอไทป์และวิเคราะห์ผล : คัดเลือกกลุ่มโครโมโซมที่มีการกระจายตัวดี ทำ การตรวจนับเละบันทึกกาพ สุกรป่า 1 ตัวจะตรวจนับโครโมโซมอย่างน้อย 25 เมตาเฟส และถ่าย ภาพอย่างน้อย 5 กาพ จากนั้นล้างฟิล์ม อัดขยายรูปและจัดทำคาริโอไทป์ การจัดเรียงคาริโอไทป์จะ ถือเอาตามวิธีของ Eldridge(1985) เป็นหลัก

ผลการทดลอง

จำนวนโครโมโซมของสุกรป่าไทยเท่ากับ $38(2 \mathrm{n}=38)$ รูปร่างโครโมโซมมี 3 แบบ คือ แบบ เมตาเซนตริก สับเมตาเมตาตริก และอโครเซนตริก ซึ่งแบ่งได้ 4 กลุ่มดังนี้ (ตามตารางที่ แและรูปที่ 1 6)

กลุ่ม A : เป็นกลุ่มที่มีรูปร่างสับเมตาเซนตริกขนาดใหญ่ (มี 1 คู่)
กลุ่ม B : เป็นกลุ่มที่มีรูปร่างอโครเซนตริก (มี 6 คู่)
กลุ่ม C : เป็นกลุ่มที่มีรูปร่างสับเมตาเซนตริกขนาดกลาง (มี 8 คู่) และ X -chromosome
กลุ่ม D : เป็นกลุ่มที่มีรูปร่างเมตาเซนตริกขนาคเล็ก (มี 3 คู่) และ Y-chromosome
โครโมโซมคู่ที่ 1 เป็นโครโมโซมที่มีขนาคใหญู่ที่สุคและมีรูปร่างสับเมตาเซนตริก โครโมโซมคู่ที่ 10 เป็นโครโมโซมที่มีรูปร่างเมตาเซนตริกที่มีขนาดใหญ่ที่สุค และพบว่าตำแหน่ง เซนโตรเมียร์จะไม่ติดสีย้อม ทำให้มองเห็นเป็นช่องว่าง (gap) ระหว่างแขนสั้นและแขนยาวของ โครโมโซม ซึ่งอาจใช้โครโมโซมคู่นี้เป็นจุดสังเกต (landmark) หรือ marker ในการศึกษาโครโมโซม ของสุกรป่าได้ (รูปที่ $1-6$)

โครโมโซมเพศของสุกรป่า เพศเมียเป็น $\mathrm{XX}(38, \mathrm{XX})$ เพศผู้เป็น $\mathrm{XY}(38, \mathrm{XY})$ โดยโครโมโซม เอ็กซ์ (x-chromosome) มีรูปร่างแบบสับเมตาซซตริกและมีขนาดใกล้เคียงกับโครรึโโซมรูปร่างสับ เมตพซนตริกคู่อื่นๆ ทำให้ตรวจสอบและจำแนกออกจากคุ่อื่นๆได้ยากหากข้อแโครโมโซมด้วยสี Giemsa ธรรมดา ยก้ว้นกรมีย้อมแถบโครโมโซมจะจำแนก x-chromosome ได้งยยมาก ส่วน โครโมโซมวาย (y-chromosome) จะมีรูปร่างเมตาเชนตริกและมีขนาดเส็กที่สุด โครโมโซมวายเป็น โคร โมโซมที่มีขนาคเส็กที่สุดของสุกร่่าไทย ตารางที่ 1 จำนวนโครโมโซมและคาริโอไทป่ของสูกรป๋ไไทย

species	diploid	karyotype description (pairs)		
		metacentric	submetacentric	acrocentric
Sus scrofa vitattus	38	3	9	6
		(คู่ที่ 10-12)	(คู่ที่ 1-9)	(คู่ที่ 13-18)

ภาพที่ 1 สุกรป่าที่นำมาจากฟาร์่มของเกบตรกรในเขต อ.เมือง จ.จันทบุรี

ภาพที่ 2 somatic metaphase ของสุกรป่าไทยเพศเมีย ลูกศรชี้โครโมโซมคู่ที่ 10 ที่ตำแหน่งเซนโตร เมียร์ไม่ติดสีย้อม (กำลังขยาย 5000 เท่า)

ภาพที่ 3 somatic metaphase ของสุกรป่าไทยเพศผู้ ลูกศรชี้โครโมโซมคู่ที่ 10 ที่ตำแหน่งเซนโตร เมียร์ไม่ติดสีย้อม (กำลังขยาย $\mathbf{5 0 0 0}$ เท่า)

ภาพที่ 4 Giemsa-stained karyotype ของสุกรป้าไทยเพศเมีย $(\mathbf{3 8}, \mathrm{XX})$ ลูกศรชี้แสดงให้เทันบริเวณ ตำแหน่งเซนโตรเมียร์ของโครโมโซมคู่ที่ 10 ที่ไม่ติดสีย้อม (กำลังขยาย 5000 เท่า)

ภาพที่ 5 G-banded karyotype ของสุกรป้าไทยเพศเมีย $(38, \mathrm{XX})$ กำลังขยาย 5000 เท่า

ภาพที่ 6 Giemsa-stained karyotype ของสุกรป่าไทยเพศผู้ $(38, \mathrm{XY})$ ลูกศรชี้แสดงให้เห็นบริเวณ ตำแหน่งเซนโตรเมียร์ของโครโมโซมคู่ที่ 10 ที่ไม่ติดสีย้อม (กำลังขยาย 5000 เท่า)

ภาพที่ 7 G-banded karyotype ของสุกรป่าไทยเพศผู้($38, \mathrm{XY}$) ลูกศรชี้แสดงให้เห็นบริเวณตำแหน่ง เซนโตรเมียร์ของโครโมโซมคู่ที่ 10 ที่ไม่ติดสีย้อม (กำลังขยาย 5000 เท่า)

สุกร่ไาไทยที่ใช้ศึกษาครั้งนี้ ได้มาจากฟาร์มของเกษตรกรผู้เลี้งงสุกร่ป่าพื่อการค้าไทย คือ นายสุรศักดิ วุติเกตุ มีกูมิลำนาอยู่ที่ ต.ท่าช้าง อ.มือง 0 .ัันทบุรี ซึ่งจากการเตรียมโครโมโซมโดยวิธี การเพาเเี้ยงเซลล์ลิมโฟไซต์ พบว่า สุกรป่ามีจำนวนโครโมโซมแบบดิพลอยด์เท่ากับ $38(2 \mathrm{n}=38)$ รูปร่างโครโมโซมในคาริโอไทป์จำเนกได้ 3 ชนิด คือ แบบเมตาเซนตริก(ค่ที่ 10-12) แบบสับมตตา เซนตริก(คู่ที่ $1-9$) และแบบอโครเซนตริก(คู่ที่ 13-18) และขนาคของโครโมโซมในคาริโอไทป์แบบ่ง リด้ 4 กลุ่นคือ กลุ่ม A (มี ค คู่), กลุ่ม B (มี 6 คู่), กลุ่ม C (มี 8 ค่) และกกุ่ม D (มี 3 ค่่)

สุกร ป่าไทยมีจำนวนโครโมโซมเท่ากับสุกร่่าญู่ปุ่นและสุกรป่าจากอเชียตะวันออกเดียงงต้ (Moramoto และคณะ, 1965 และ Grzimek, 1972) และแตกต่างจากจำนวนโครโมโซมชองสุกรป่าไน ยุโรป ซึ่งมีจีานวนโครโมโซมมท่ากับ $36(2 \mathrm{n}=36$) (McFee และคนะ, 1966 และ Rary และคนะ, 1968) เมื่อเปรียบเทียบคาริโอไทป์ของสุกร่าไาไทยกับสุกรป่ายุโรป พบว่า สุกรป่าไทยไม่มีโครโมโซมรูป ร่างสับมตตาซนตริกที่มีขนาดาหญ่เป็นลำดับที่ 2 เหมือนที่พบไนสุกร่ายุโรป จากการรายงานของ Gustavsson และคณะ ถื่อปี 1973 ซื่งได้ช้้ทคคนิคการข้อมเกบโครโมโซมของหมูป่ายุโรปพิสูงน์ว่า โครโมโซมรูปร่างสับมมตาซนตริกที่มีขนาดไหญ่่ป็นลำดับที่ 2 (คู่ที่ 2) เกิดมาจากการรวมกันของ เซนโตรมียร์ของโครโมโซมอโครเซนตริก 2 เท่ง คือคู่ที่ 15 !ละ 17 เข้าด้วยกัน (centric fussion or Robertsonian translocation) แต่โครโมโซมรูปร่างสับเมตเซนตริกที่มีขนาดใหญ่เป็นลำดับที่ 2 ของ
 ของสุกรพันโุมาก ซึ่งแื่อยเรียบเทียบคาริโอไทป์ของสุกรปปไไไทยกับสุกรพันธุ์พบว่ามีธีานวน โครโมโซม! วิจัยของ McFee และ Rary ที่บอกว่าสุกรพันธุ์และสุกรป่ามีความสัมพันธ์ยย่างไกล้ชิดไนสาย วิวัฒนาการ(MCFee และคณะ, 1966 และ Rary และคนะ, 1968) ในปี ค.ศ. 1972 Grzimek ได้กล่าวถึง สุกร่าญี่ปุ่นและสุกรป่าจาก!อเชียตะวันออกเฉียงใต้านหนังสือสารานุกรมชีวิตสัตว์ว่าทั้งสองสาย พันธุ์นี้มีความสัมพันธ์อย่างไกก้ชิดยยกออกจากกันในระดับ subspecies ยังสามารถผสมพันธุ์กันได้ เพราะมีจำนวนโครโมโซมเท่ากัน $(2 \mathrm{n}=38)$ และรูปร่างโครโมโซมแทบจะไม่มีความแตกต่างกันและ สุกรป่าไทยคาดว่าก็คงจะเหมือนเช่นเดียวกับสุกรป่าญู่ปุ่ไุนเละสุกรป่าอเชียตะวันออกเดียงได้

โครโมโซมคู่ที่ 10 ของสุกรป่าไทยมีลักษณะพิเศษคือจะไม่ติดสีย้อมบริวนรอยคอดเซนโตร เมียร์ ซึ่งโครโมโซมคู่นี้พบบได้ทั้งสุกรป่าในยุโรปและสุกรพันรุ์ (Eldridge, 1985) อาจจะใช้ โครโมโซมคู่นี้เป็นจุดศังเกต (landmark) หรือ marker ของโครโมโชมสุกรได้

ความผิดปกติของโครโมโซมที่เกิดขึ้นในสุกรชนิดต่างๆมีหลายแบบล้วนแต่มีผลเสียต่อการ เพาะเลี้ยงและขยายพันธ์!เละก่อให้เกิดการสูญีสีย เช่น การแท้ง, ถูกหมูตายหรือเริญเติบโตช้า เกิด เพศผสมหรือกระเทย (intersex swine) และเป็นหมัน (Looda, 1975 ; King และคณะ, 1981; Eldridge, 1985) เหล่นี้เป้นต้น ดังนั้นการตรวจสอบโครโมโซมของสุกรที่มีความผิดปกติคังกล่ววสามารถช่วย

ไห้คำตอบและหาสาเหตุของความผิดปกติได้ ซึ่งเป็นการลดค่าใช้จ่าย การดูแลรักษาและการจัดการ 1นด้านต่างๆุได้เป็นอย่างดี ซึ่งจะเห็นว่าการศึกษาจำนวนโคร โมโซมและวิเคราะห์คาริโอไทป์มาตร ฐานของสุกรจึงมีควมสำคัญและจำเป็นเบื้องต้น ก่อนที่จะนำความรู้ไปประยุกต์ใช้ในด้านอื่นๆต่อไป เอกสารอ้างอิง

Diberardino, D., H. Hayes, R. Fries \& S. long. 1990. International System for Cytogenetic Nomenclature of Domestic Animals (1989). Cytogenet. Cell Genet. 53: 65-79. Eldridge, E.F. 1985. Cytogenetics of Liverstock. pp 219-238. AVI Publishing Company, Inc. Westport.
Gimenez-Martin, G., Lopez-Saez, J.F.\& Monge, F.G. 1962. Somatic chromosomes of the plig. J. Hered. 53(6), 281 and 290.

Gropp, A., Giers, D. \& Tattenborn, V. 1969. Chromosomes of wild swine (Sus scrofa). Experentia 25: 778.
Grzimek, H.C.B. 1972. Animal life Encycopedia, vol.13. Van Nostand Reinhold, New York.
Gustavsson. I., Hageltorn, M., Zech, L. \& Reiland, 1973. Identification of the chromosome in a centric fusion/fission polymorphic system of the pig (Sus scrofa L.). Hereditas 75, 153-155.

Hamerton, J.L., 1971. Human Cytogenetics. Vol.I. General Cytogenetics. Academic Press. New York.

King, W.A., Gustavsson, J., Popescu, C.P.\& Linares, T. 1981. Gametic products transmitted by $\operatorname{rcp}\left(13 q^{-} ; 14 q^{+}\right)$translocation heterozygous pigs, and resulting enbryonic loss. Hereditas 95 : 239-246.

Krallinger. H.F. 1931. Cytological studics on some domestic animals. Arch. Tierernaehr. Tierz. Abt. B, 5: 127-187.
Lojda, L. 1975. The cytogenetic pattern in pigs with hereditary intersexuality similar to the syndrome of testicular feminization in man. DOC. Vet. Brno. 8: 71-82.

Makino, S., Sasaki, M.S., Sofuni, T. \& Ishikawa, T. 1962. Chromosome condition of an intesex swine. Proc. Jpn. Acd. 38(9), 686-689.

McConnell, J., Fechheimer, N.S., and Gilmore, L.O. 1963. Somatic chromosomes of the domestic pig. J. Anim. Sci. 22(2), 374-379.
McFee, A.F., Bamer M.W. \& Rary,J.M. 1966. Variation in chromosome number among European wild pigs. Cytogenetics 5(1-2), 75-81.

Muramoto, J., Makino, S. \& Ishikawa, T. 1965. On the chromosomes of the wild boar and the boarhybrids. Proc. Jpn. Acad. 41(3), 236-239.

Rary, J.M., Henry, V.G., Matochke, G.H., and Murphree, R.L. 1968. The Cytogenetics of swine in the Tellico wildlife management area, Tenn. J. Hered. 59Z2X, 201-204.

Rittmannsperger, CH. 1971. Chromosome studies on wild and domestic swine. Ann. Genet. Sel. Anim. 3(1), 105(Abstr.).

Seabright, M. 1971. A rapid banding technique for human chromosome. Lancet 2:971-972.
Stone, L. 1963. A chromosome analysis of the domestic pig (Sus scrofa) utilizing a peripheral blood culture technique. Can. J. Genet. Cytol. 5(1), 38-42.

Wodsedalek, J.E. 1913. Spermatogenesis of the pig with special reference to the accessory chromosomes. Bic!. Buil. 25.8.

[^0]: ' หน่วยปฏิบัติการเซลล์ทันธุศาสตร์ ภาควิชาวิทยาศาสตร์ชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี
 ${ }^{2}$ คณะกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี

