

รายงานการวิจัยฉบับสมบูรณ์

เครื่องประจุไฟฟ้าเซลล์แสงอาทิตย์ ในสภาวะความเข้มแสงต่ำ A solar cell battery charger for low-intensity light

คณะผู้วิจัย

นายธนกร ลิ้มสุวรรณ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยอุบลราชธานี

โครงการวิจัยนี้ได้รับทุนอุดหนุนการวิจัยจากสำนักงานงบประมาณแผ่นดิน ประจำปังบประมาณ พ.ศ. 2549

กิตติกรรมประกาศ

การวิจัยครั้งนี้ได้รับทุนอุดหนุนการวิจัยจากมหาวิทยาลัยอุบลราชธานี ประจำปังบประมาณ พ.ศ. 2549

ผู้วิจัย ธันวาคม 2549

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	
บทคัดย่อภาษาอังกฤษ	ก
กิตติกรรมประกาศ	ี ค
สารบัญ	1
สารบัญตาราง	จ
สารบัญภาพ	ฉ
บทที่ 1 บทนำ	1
1.1 ความสำคัญของปัญหา	1
1.2 วัตถุประสงค์	2
1.3 ชอบเขตของการวิจัย	2
1.4 ประโยชน์ที่คาดว่าจะได้รับ	2
1.5 วิธีดำเนินการวิจัย	2
บทที่ 2 วรรณกรรมที่เกี่ยวข้อง	3
2.1 งานวิจัยและงานที่เกี่ยวข้อง	3
2.2 หลักการทำงานของเครื่องประจุไฟฟ้าเซลล์แสงอาทิตย์	7
บทที่ 3 วิธีการดำเนินการวิจัย	10
3.1 แผนงานในการดำเนินงาน	10
3.2 วิธีการทดลอง	15
3.3 แนวทางในการวิเคราะห์ผลการทดลอง	15
บทที่ 4 ผลการวิจัย	17
4.1 การวัดคุณสมบัติของเซลล์แสงอาทิตย์	17
4.2 การวัดคุณสมบัติของเครื่องประจุ	19
4.3 ผลการทดลองเครื่องประจุแบตเตอรี่ด้วยเซลล์แสงอาทิตย์	22
บทที่ 5 สรุปผลการวิจัย	24
บรรณานุกรม	25
ประวัตินักวิจัย	26

สารบัญตาราง

	หน้า
ตารางที่ 3.1 แผนการดำเนินงานใน 12 เดือน	10

สารบัญรูป

	หน้า
รูปที่ 2.1 วงจรสมมูลเซลล์แสงอาทิตย์	4
รูปที่ 2.2 การติดตั้งเครื่องวัดคุณสมบัติกระแส-แรงดันของเซลล์แสงอาทิตย์	4
รูปที่ 2.3 คุณสมบัติกระแส-แรงดันของเซลล์แสงอาทิตย์	5
รูปที่ 2.4 คุณสมบัติกระแส-แรงดันและกำลังไฟฟ้าของเซลล์แสงอาทิตย์	5
รูปที่ 2.5 คุณสมบัติของการประจุแบตเตอรี่	7
รูปที่ 2.6 วงจร Boost converter	8
รูปที่ 2.7 วงจร Boost converter สวิทซ์ออน	8
รูปที่ 2.8 วงจร Boost converter สวิทซ์ออฟ	. 9
รูปที่ 2.9 แรงดันเซลล์แสงอาทิตย์และแรงดันโหลด	9
รูปที่ 3.1 วงจรประจุแบตเตอรี่ต่อตรง	11
รูปที่ 3.2 วงจรประจุแบตเตอรี่ด้วย DC/DC Converter	12
รูปที่ 3.3 การเลือกความถี่สวิทซิ่ง	13
รูปที่ 3.4 วงจรประจุแบตเตอรี่	14
รูปที่ 3.5 การติดตั้งอุปกรณ์เครื่องมือวัด	15
รูปที่ 3.6 อุปกรณ์เครื่องมือวัด เครื่องประจุและเซลล์แสงอาทิตย์	15
รูปที่ 4.1 คุณสมบัติแรงดันและกระแสของเซลล์แสงอาทิตย์ที่ระดับความเข้มแสงต่าง ๆ	17
รูปที่ 4.2 กำลังไฟฟ้าของเซลล์แสงอาทิตย์ที่ระดับความเข้มแสงต่าง ๆ	18
รูปที่ 4.3 แสดงการวัดคุณสมบัติของเครื่องประจุ	18
รูปที่ 4.4 กระแสอินพุทของเครื่องประจุที่ระดับแรงดันต่าง ๆ	18
รูปที่ 4.5 กระแสเอาท์พุทของเครื่องประจุที่ระดับแรงดันต่าง	19
รูปที่ 4.6 แรงดันเอาท์พุทของเครื่องประจุที่ระดับแรงดันต่าง ๆ	20
รูปที่ 4.7 กำลังไฟฟ้าอินพุทของเครื่องประจุที่ระดับแรงดันต่าง ๆ	21
รูปที่ 4.8 กำลังไฟฟ้าเอาท์พุทของเครื่องประจุที่ระดับแรงดันต่าง ๆ	21
รูปที่ 4.9 ประสิทธิภาพของเครื่องประจุที่ระดับแรงดันต่าง ๆ	22
รูปที่ 4.10 แรงดันแบตเตอรี่เวลากลางวัน	22
รปที่ 4.11 กระแสประจแบตเตอรี่เวลากลางวัน	23

บทที่ 1 บทนำ

1.1 ความสำคัญของปัญหา

ปัจจุบันนี้ประเทศไทยได้มีการส่งเสริมการใช้พลังงานทดแทนอย่างกว้างขวาง การใช้เซลล์ แสงอาทิตย์ผลิตพลังงานไฟฟ้าจากแสงอาทิตย์ เป็นทางเลือกหนึ่งที่ได้รับความสนใจ พลังงาน แสงอาทิตย์มีจำนวนมหาศาล จากการศึกษา(นิพนธ์.2549)ของมหาวิทยาลัยศิลปกรและกรมพัฒนา พลังงานทดแทนและอนุรักษ์พลังงาน พบว่าค่าพลังงานแสงอาทิตย์เฉลี่ยรายวันของประเทศไทย ประมาณ 5 kWh/m².day หรือ 940,000 × 10³GWh/year เมื่อเปรียบเทียบกับความต้องการพลังงานใน ประเทศที่ 100 × 10³GWh/year จะพบว่าต่างกันถึง 9,400 เท่า ดังนั้นแสงอาทิตย์จึงเป็นแหล่งพลังงานที่มี ศักย์ภาพสูง

การใช้งานเซลล์แสงอาทิตย์ไม่ควรต่อกับโหลดหรืออุปกรณ์ไฟฟ้าโดยตรง เพราะแสงอาทิตย์มี ความเข้มแสงไม่สม่ำเสมอเช่น มีเมฆบัง ทำให้กระแสไฟฟ้าไม่คงที่ มีผลทำให้ใช้งานอุปกรณ์ไฟฟ้าไม่มี เสถียรภาพ จึงมีการเก็บสะสมพลังงานไฟฟ้า โดยการประจุไว้ในแบตเตอรี่ แล้วใช้พลังงานไฟฟ้าจาก แบตเตอรี่ สำหรับการประจุไฟฟ้า โดยธรรมชาติของไฟฟ้าแล้ว กระแสไฟฟ้าจะไหลจากศักย์ไฟฟ้าสูงสู่ ศักย์ไฟฟ้าต่ำ ดังนั้นระดับแรงดันของเชลล์แสงอาทิตย์ ซึ่งเป็นแหล่งจ่ายไฟที่ใช้ประจุแบตเตอรี่ จะต้องมี ระดับแรงดันสูงกว่าแบตเตอรี่ จึงจะสามารถประจุแบตเตอรี่ได้ เนื่องจากแสงอาทิตย์มีความเข้มแสงไม่ สม่ำเสมอ ทำให้บางช่วงเวลาที่มีความเข้มแสงด่ำเช่นตอนเช้าหรือตอนเย็น แรงดันไฟฟ้าของเชลล์ แสงอาทิตย์ต่ำกว่าระดับแรงดันแบตเตอรี่ จึงไม่สามารถประจุแบตเตอรี่ได้

การประจุแบตเตอรี่โดยทั่วไป(มารีนา.2542) คือการต่อเชลล์แสงอาทิตย์เข้ากับแบตเตอรี่ โดยตรง ซึ่งจะประสบปัญหาดังกล่าวมาแล้ว สามารถแก้ไขโดยใช้เชลล์แสงอาทิตย์เป็นจำนวนมาก เพื่อ สำรองระดับแรงดันไฟฟ้า แต่เชลล์แสงอาทิตย์เป็นอุปกรณ์ที่มีราคาสูงจึงไม่คุ้มค่าหลักเศรษฐศาสตร์

การประจุแบตเตอรี่ด้วยระบบติดตามดวงอาทิตย์ (A. A. Khalil et al. 2004) ประกอบด้วยระบบ ควบคุมเซลล์แสงอาทิตย์เคลื่อนที่ติดตามดวงอาทิตย์ เพื่อให้แสงอาทิตย์ตั้งฉากกับแผงเซลล์แสงอาทิตย์ ตลอดเวลา ซึ่งจะทำให้ได้พลังงานแสงอาทิตย์มากที่สุด จึงสามารถประจุแบตเตอรี่ได้ดีกว่าแผงเซลล์ แสงอาทิตย์ที่ติดตั้งอยู่กับที่ แต่ยังมีปัญหาเรื่องสภาวะความเข้มแสงต่ำและระบบติดตามดวงอาทิตย์มี ตันทุนสูงกว่าแบบติดตั้งอยู่กับที่เป็นอย่างมาก ซึ่งไม่คุ้มค่ากับโครงการขนาดเล็กที่มีความต้องการ พลังงานแสงอาทิตย์ไม่มากพอเพียงที่จะลงทุนและที่มีงบประมาณจำกัด

การประจุแบตเตอรี่ด้วยระบบ MPPT (Maximum Power point Tracking)(วรินทร์.2545) จาก คุณสมบัติที่ไม่เป็นเชิงเส้นของเซลล์แสงอาทิตย์ เป็นไปตามทฤษฎีการโอนกำลังงานสูงสุด (Maximum power transfer theory) กล่าวคือ ภาระของวงจรที่พลังงานสูงสุดจะมีความต้านทานของโหลดเท่ากับความ ต้านทานของแหล่งจ่าย ระบบ MPPT คือการควบคุมความต้านทานของโหลดให้ได้กำลังงานสูงสุด ระบบที่มีจำหน่ายในปัจจุบันนี้มีราคาค่อนข้างสูงและเพื่อความสมบูรณ์ของระบบให้มีประสิทธิ์ภาพสูงสุด จึงต้องใช้งานร่วมกับระบบติดตามดวงอาทิตย์เข้าไปด้วย ทำให้มีต้นทุนสูงมาก

งานวิจัยนี้จะนำเสนอเครื่องประจุแบตเตอรี่ด้วยเซลล์แสงอาทิตย์ โดยใช้เทคนิค DC/DC Converter ที่สามารถประจุได้ในสภาวะความเข้มแสงต่ำเช่นในตอนเช้าหรือตอนเย็น โดยใช้งานกับเซลล์ แสงอาทิตย์ที่ติดตั้งอยู่กับที่และเซลล์มีขนาดเล็ก เช่นการติดตั้งบนหลังคาบ้าน เสาไฟฟ้า สวนสาธารณะ

1.2 วัตถุประสงค์

- 1. เพื่อศึกษาและทดลองวิจัยเครื่องประจุไฟฟ้าเซลล์แสงอาทิตย์ ในสภาวะความเข้มแสงต่ำ
- 2. เพื่อหาแนวทางในการพัฒนาเครื่องประจุไฟฟ้าเซลล์แสงอาทิตย์ให้มีประสิทธิ์ภาพสูงขึ้น

1.3 ชอบเขตของการวิจัย

- 1. ศึกษาเครื่องประจุไฟฟ้าเซลล์แสงอาทิตย์
- 2. ออกแบบและสร้างเครื่องประจุแบตเตอรี่ไฟฟ้าเซลล์แสงอาทิตย์ ในสภาวะความเช้มแสงต่ำ
- 3. ทำการทดลองเพื่อหาสมรรถนะของเครื่องประจุแบตเตอรี่ด้วยเซลล์แสงอาทิตย์

1.4 ประโยชน์ที่คาดว่าจะได้รับ

- 1. ได้ทดสอบหาสมรรถนะของเครื่องประจุแบตเตอรี่ไฟฟ้าเซลล์แสงอาทิตย์ ในสภาวะความเข้ม แสงต่ำ
 - 1.2 ได้นวัตกรรมเครื่องประจุไฟฟ้าเชลล์แสงอาทิตย์
 - 1.3 มีส่วนร่วมในการสนับสนุนการใช้พลังงานทดแทน

1.5 วิธีดำเนินการวิจัย

แผนงานในการดำเนินการวิจัยมีดังนี้

- 1. ศึกษาเครื่องประจุไฟฟ้าเซลล์แสงอาทิตย์
- 2. ออกแบบวงจรเครื่องประจุแบตเตอรี่ไฟฟ้าเซลล์แสงอาทิตย์
- 3. สร้างเครื่องประจุแบตเตอรี่ด้วยไฟฟ้าจากเซลล์แสงอาทิตย์
- 4. ติดตั้งอุปกรณ์วัดแรงดันและกระแสไฟฟ้า
- 5. ทำการทดลองเก็บข้อมูลและคำนวณหาสมรรถนะของเครื่อง
- 6. สรุปผลการวิจัย

บทที่ 2 วรรณกรรมที่เกี่ยวข้อง

2.1 งานวิจัยและงานที่เกี่ยวข้อง

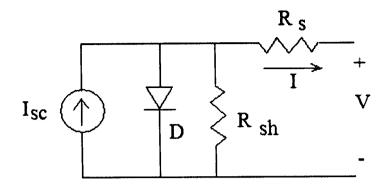
หลักการทำงานเซลล์แสงอาทิตย์

เชลล์แสงอาทิตย์เป็นอุปกรณ์ใช้สำหรับเปลี่ยนรูปพลังงานแสงอาทิตย์เป็นพลังงานไฟฟ้า โดยตรง เรียกว่าเกิดปรากฏการณ์โฟโตโวลทาอิก(Photovoltaic phenomenon) เชลล์แสงอาทิตย์คือ อุปกรณ์อิเล็กทรอนิกส์ชนิดหนึ่งซึ่งผลิตจากสารกึ่งตัวนำ ทำให้เชลล์แสงอาทิตย์มีอายุการใช้งานยาวนาน และมีค่าใช้จ่ายในการรักษาบำรุงต่ำ

เชลล์แสงอาทิตย์มีโครงสร้างเป็นรอยต่อของวัสดุสารกึ่งตัวนำชนิดเอ็นและชนิดพี(PN junction) เหมือนไดโอด ดังวงจรสมมูลรูปที่ 2.1 เชลล์แสงอาทิตย์มีคุณสมบัติเป็นแหล่งจ่ายกระแส เมื่อมี แสงอาทิตย์ตกกระทบบนแผงเชลล์แสงอาทิตย์จะเกิดกระแสไฟฟ้าไหล (I) ดังแสดงในสมการที่ 2.1

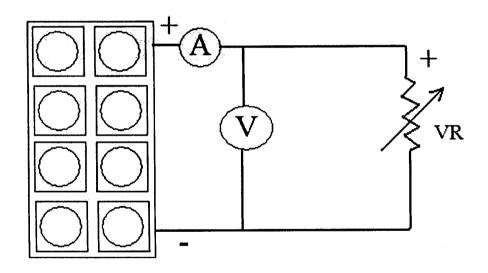
$$I = I_{sc} - I_{o} \left[exp \left[\frac{qV}{AkT} \right] - 1 \right]$$
 (2.1)

I_{sc} คือ กระแสโฟโต

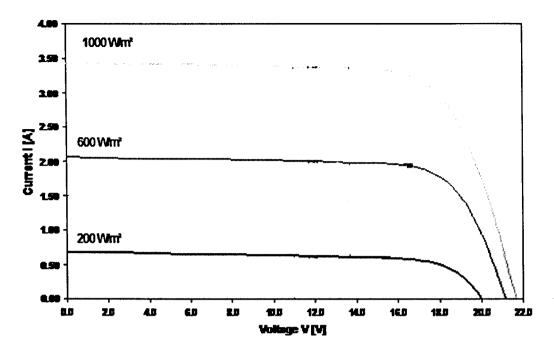

I_ก คือ กระแสอิ่มตัวย้อนกลับ

q คือ ค่าประจุอิเล็กตรอน(1.6x10⁻¹⁹ C)

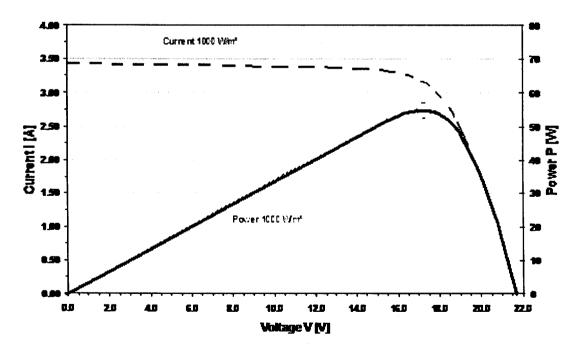
k คือ ค่าคงที่โบลทซ์มานน์(1.38 $imes 10^{-23} \, ext{J/K})$


A คือ ค่าตัวประกอบของรอยต่อพีเอ็น

T คือ อุณหภูมิ(K)


รูปที่ 2.1 วงจรสมมูลเซลล์แสงอาทิตย์

จากรูปที่ 2.1 วงจรสมมูลเซลล์แสงอาทิตย์ เซลล์แสงอาทิตย์ทำหน้าที่เป็นแหล่งจ่ายกระแสเมื่อมี แสงตกกระทบแผงเซลล์ โดยปกติ $R_{\rm m}$ ที่ต่อขนานจะมีค่าความต้านทานสูงมาก ทำให้กระแสไหลผ่าน $R_{\rm m}$ ต่ำมาก ทำให้กระแสทั้งหมดถูกจ่ายให้กับโหลด ส่วน $R_{\rm s}$ ที่ต่ออนุกรมจะมีค่าความต้านทานต่ำมาก ทำให้ เกิดแรงดันตกคร่อม $R_{\rm s}$ ต่ำ ทำให้ระดับแรงดันของโหลดไม่ลดระดับลงเมื่อรับภาระโหลดเพิ่มขึ้น


รูปที่ 2.2 การติดตั้งเครื่องวัดคุณสมบัติกระแส-แรงดันของเซลล์แสงอาทิตย์

รูปที่ 2.2 แสดงการติดตั้งเครื่องมือวัดกระแสและแรงดันไฟฟ้า การทดลองเพื่อหาค่าคุณสมบัติ กระแส-แรงดันของเซลล์แสงอาทิตย์ โดยการปรับตัวต้านทานปรับค่าได้เป็นช่วง ๆแล้วบันทึกค่าแรงดัน และกระแส เริ่มปรับตัวต้านทานจากศูนย์ ได้ผลการทดลองดังกราฟรูปที่ 2.3

รูปที่ 2.3 คุณสมบัติกระแส-แรงดันของเซลล์แสงอาทิตย์

จากรูปที่ 2.3 แสดงการตอบสนองของกระแสและแรงดันของเชลล์แสงอาทิตย์ เมื่อมีการ เปลี่ยนแปลงความต้านทานของโหลด กราฟแต่ละเส้นแสดงที่ระดับพลังงานต่าง ๆกัน กระแสจะแปรผัน ตรงกับระดับพลังงานแสงอาทิตย์ ส่วนแรงดันแต่ละระดับพลังงานแสงอาทิตย์ไม่แตกต่างกันมากนัก

รูปที่ 2.4 คุณสมบัติกระแส-แรงดันและกำลังไฟฟ้าของเซลล์แสงอาทิตย์

จากรูปที่ 2.4 แสดงระดับพลังงานที่เซลล์แสงอาทิตย์สามารถจ่ายได้ กำลังไฟฟ้าคือผลคูณของ กระแสและแรงดัน พบว่าเซลล์แสงอาทิตย์สามารถจ่ายกำลังสูงสุดที่จุดหนึ่งที่มีกระแสและแรงดันที่ เหมาะสม ได้ผลคูณของกระแสและแรงดันสูงสุดหรือมีพลังงานในการประจุแบตเตอรี่มากที่สุดและมี ประสิทธิภาพมากที่สุด

การประจุแบตเตอรี่

การประจุแบตเตอรี่คือการจ่ายพลังงานไฟฟ้าให้กับแบตเตอรี่ เพื่อสะสมพลังงานไฟฟ้าใน แบตเตอรี่ การประจุแรงดันไฟฟ้าของแหล่งจ่ายต้องสูงกว่าแบตเตอรี่ ถ้าแหล่งจ่ายมีแรงดันต่ำกว่าจะ กลายเป็นว่าแบตเตอรี่จ่ายไฟให้เซลล์แสงอาทิตย์ แทนที่จะเป็นการรับกระแสไฟฟ้า ทำให้เซลล์ แสงอาทิตย์ซึ่งเป็นแหล่งจ่ายกลายเป็นโหลดยิ่งทำให้แบตเตอรี่มีพลังงานสะสมน้อยลง

สมการที่ 2.2 แสดงสมการแรงดันของแบตเตอรี่ขณะประจุ

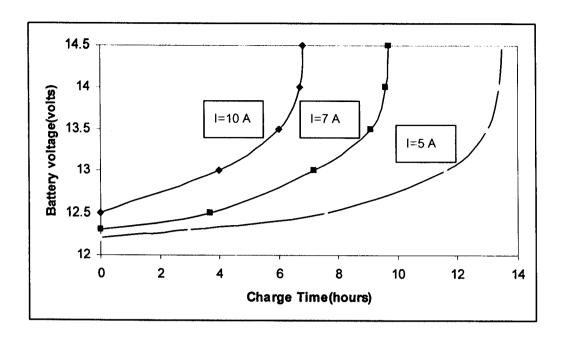
$$V_{b} = V_{o} + (R_{tot} \times I) + \left[K_{1} \frac{I^{n}}{C}\right] t + \left[\frac{K_{2}}{C - I^{n} t}\right]$$
(2.2)

V คือ แรงดันแบตเตอรื่

 $m V_o$ คือ แรงดันเริ่มต้นของแบตเตอรี่

R_{tot} คือ ความต้านทานรวมภายใน

I คือ กระแสขณะที่ประจ


C คือ ค่าความจุไฟฟ้าของแบตเตอรี่(Ah)

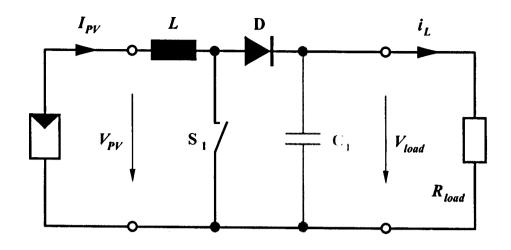
เคือ เวลาประจุ

n คือ Peukert's exponent ปกติเท่ากับ 1

K₁ คือ ค่าสัมประสิทธิ์จาก Peukert's equation

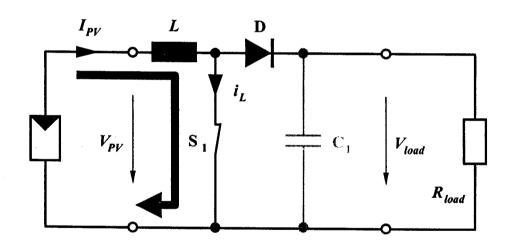
K ₂คือ ค่าสัมประสิทธิ์ที่แรงดันเพิ่มขณะแบตเตอรี่ใกล้เต็ม

รูปที่ 2.5 คุณสมบัติของการประจุแบตเตอรี่

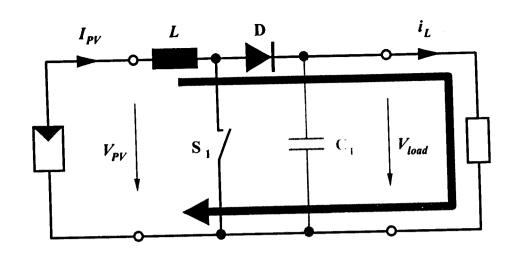

รูปที่ 2.5 กราฟคุณสมบัติของการประจุแบตเตอรี่จากการจำลองจากสมการที่ 2.2 พบว่าจุด แรกเริ่มแรงดันจะสูงเพราะแบตเตอรี่มีแรงดันเริ่มต้น ตามสมการที่ 2.2 เมื่อแบตเตอรี่ใกล้จะเต็ม (13.5V) แรงดันจะเพิ่มขึ้นอย่างรวดเร็ว อัตราการประจุขึ้นกับปริมาณกระแสที่ใช้ในการประจุ ถ้าใช้ กระแสมากจะใช้เวลาในการประจุต่ำกว่าการประจุด้วยกระแสที่ต่ำกว่า

2.2 หลักการทำงานของเครื่องประจุไฟฟ้าเซลล์แสงอาทิตย์

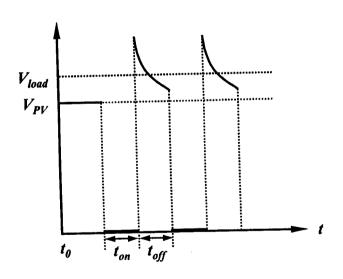
จากทฤษฎีข้างต้นพบว่าการประจุแบตเตอรี่ที่มีประสิทธิภาพ เซลล์แสงอาทิตย์ต้องจ่ายแรงดัน และจ่ายกระแสที่ทำให้มีกำลังไฟฟ้าสูงสุด จากการวัดคุณสมบัติของเซลล์แสงอาทิตย์ พบว่าความ ต้านทานของโหลดคือตัวแปรที่ควบคุมกำลังไฟฟ้าสูงสุด ดังนั้นการควบคุมจึงต้องใช้วงจรปรับเปลี่ยน ความต้านทานของโหลดให้เหมาะสมเพื่อให้มีประสิทธิภาพในการประจุ การปรับเปลี่ยนความต้านทาน สามารถกระทำได้โดยการรักษาระดับแรงดันเอาท์พุทให้คงที่ ในส่วนของการเปลี่ยนแปลงกระแสคือการ ปรับเปลี่ยนความต้านทานด้วย ตามกฎของโอห์ม


DC/DC converter

บุสต์คอนเวอร์เตอร์(Boost converter) คือวงจรแปลงผันกำลังไฟฟ้ากระแสตรงเป็นกระแสตรง (DC/DC converter) และรักษาระดับแรงดันเอาท์พุทให้คงที่ เป็นเทคนิคการเพิ่มแรงดันแหล่งจ่ายไฟ โดยทำงานแบบสวิทซิ่งที่ความถี่สูง ข้อดีของวงจรบุสต์คอนเวอร์เตอร์คือให้ประสิทธิภาพการทำงานสูงถึง 80 เปอร์เซ็นต์ วงจรมีขนาดเล็ก มีหลักการทำงานง่าย ๆ ดังรูปที่ 2.6 อุปกรณ์ที่สำคัญคือตัวเหนี่ยวนำ ไดโอดความเร็วสูง วงจรสวิทซ์ใช้มอสเฟสสวิทซ์แหล่งจ่ายกำลังและตัวเก็บประจุ


รูปที่ 2.6 วงจร Boost converter

จากรูปที่ 2.7 ขณะที่สวิทช์ออนกระแสไหลผ่านตัวเหนี่ยวนำครบวงจรตามลูป เกิดการสะสม พลังงานที่ตัวเหนี่ยวนำ


รูปที่ 2.7 วงจร Boost converter สวิทซ์ออน

จากรูปที่ 2.8 ขณะที่สวิทซ์ออฟกระแสไหลผ่านตัวเหนี่ยวนำ ไดโอดและโหลดครบวงจร แรงดัน ของโหลดจะเท่ากับแรงดันเซลล์แสงอาทิตย์บวกกับแรงดันของตัวเหนี่ยวนำ ที่ได้สะสมพลังงานไว้แล้ว ขณะที่สวิทซ์ออน ทำให้ได้แรงดันโหลด (V load) เพิ่มขึ้น

รูปที่ 2.8 วงจร Boost converter สวิทซ์ออฟ

จากรูปที่ 2.9 แสดงแรงดันของเซลล์แสงอาทิตย์เมื่อมีการทำงานของสวิทซ์ออน-ออฟตลอดเวลา และระดับแรงดันโหลดจะเพิ่มขึ้นจากระดับแรงดันของเซลล์แสงอาทิตย์

รูปที่ 2.9 แรงดันเซลล์แสงอาทิตย์และแรงดันโหลด

บทที่ 3 วิธีการดำเนินการวิจัย

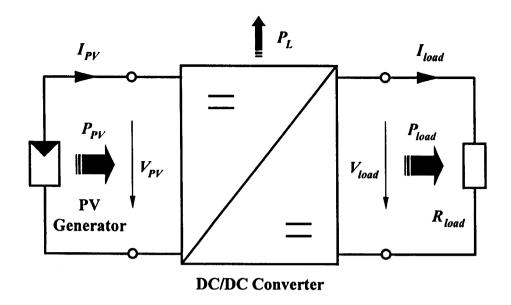
3.1 แผนงานในการดำเนินงานวิจัย

แผนงานในการดำเนินการวิจัยมีดังนี้

- 1. ศึกษาเครื่องประจุไฟฟ้าเซลล์แสงอาทิตย์
- 2. ออกแบบวงจรเครื่องประจุแบตเตอรี่ไฟฟ้าเซลล์แสงอาทิตย์
- 3. สร้างเครื่องประจุแบตเตอรี่ไฟฟ้าเซลล์แสงอาทิตย์
- 4. ติดตั้งอุปกรณ์ในการตรวจวัดแรงดันและกระแสไฟฟ้า กับแผงโชล่าร์เชลล์ เครื่องประจุและ แบตเตอรี่
- 5. ทำการทดลองเก็บข้อมูลและคำนวณหาสมรรถนะของเครื่อง สำหรับรายละเอียดจะกล่าวดังต่อไปนี้

ตารางที่ 3.1 แผนการดำเนินงานใน 12 เดือน

แผนงานและกิจกรรม	1	2	3	4	5	6	7	8	9	10	11	12
1.ศึกษาเครื่องประจุไฟฟ้าเซลล์แสงอาทิตย์	-	-										
2.ออกแบบวงจรเครื่องประจุแบตเตอรี่ไฟฟ้าเชลล์ แสงอาทิตย์		-	-									
3.สร้างเครื่องประจุแบตเตอรี่ไฟฟ้าเซลล์ แสงอาทิตย์			-		-							
4.ติดตั้งอุปกรณ์ในการตรวจวัดแรงดันและ กระแสไฟฟ้า					▼		->					
5.ทำการทดลองเก็บข้อมูลและคำนวณหา สมรรถนะของเครื่อง							-			-		
6.สรุปผลการทดลอง										•		-


3.1.1 ศึกษาเครื่องประจุไฟฟ้าเซลล์แสงอาทิตย์

วงจรประจุแบตเตอรี่ด้วยเซลล์แสงอาทิตย์ที่นิยมใช้คือการต่อวงจรอย่างง่าย ดังวงจรรูปที่ 3.1 พบว่าแรงดันโหลดตกจนไม่สามารถประจุแบตเตอรี่ได้ เนื่องจากความต้านทานโหลดของแบตเตอรี่มี ความต้านทานต่ำมาก ดังกราฟคุณสมบัติกระแส-แรงดันของเซลล์แสงอาทิตย์รูปที่ 2.3 ที่กระแสสูงของ แต่ระดับพลังงานแสงอาทิตย์จะมีความต้านทานของโหลดต่ำจะมีแรงดันของเซลล์แสงอาทิตย์ต่ำ แก้ปัญหาได้โดยการเพิ่มจำนวนเซลล์แสงอาทิตย์เพื่อให้มีแรงดันเพียงพอที่จะประจุแบตเตอรี่ได้ ซึ่งเป็น การลงทุนที่สูงเพราะเซลล์แสงอาทิตย์มีราคาสูง วงจรนี้มีประสิทธิภาพต่ำเพราะไม่สามารถควบคุม กระแสและแรงดันให้เกิดกำลังไฟฟ้าสูงสุดได้ รูปแบบการต่อวงจรดังรูปที่ 3.1

รูปที่ 3.1 วงจรประจุแบตเตอรี่ต่อตรง

วงจรประจุแบตเตอรี่เซลล์แสงอาทิตย์ด้วยวงจร DC/DC converter ซึ่งช่วยทำให้วงจรประจุ สามารถรักษาระดับแรงดันได้ที่กระแสสูง ๆ ทำให้การประจุมีประสิทธิภาพ การประจุให้กำลังสูงมีการ สูญเสียต่ำเพราะเป็นการทำงานแบบสวิทซ์ รูปแบบการต่อวงจรดังรูปที่ 3.2

รูปที่ 3.2 วงจรประจุแบตเตอรี่ด้วย DC/DC Converter

3.1.2 ออกแบบวงจรเครื่องประจุแบตเตอรี่ไฟฟ้าเซลล์แสงอาทิตย์

ต้องการออกแบบให้วงจรบุสต์คอนเวอร์เตอร์มีแรงดันเอาท์พุทเป็น 14.8 V (เป็นค่าประมาณที่ ให้กำลังสูงสุดได้จากการทดลอง) โดยมีแหล่งจ่ายไฟกระแสตรง 9 V (แหล่งจ่ายต่ำสุดที่วงจรสามารถ ทำงานได้) ความถี่สวิทซ์ 42 KHz ความต้านทานโหลด 50 โอห์ม มีอัตราริปเปิ้ล 0.1 %

วิธีการคำนวณ

• หาค่า D จากสมการต่อไปนี้

$$\frac{V_0}{V_s} = \frac{1}{1 - D}$$

$$\frac{14.8}{9} = \frac{1}{1 - D}$$

$$1 - D = \frac{9}{14.8}$$

$$D = 1 - 0.6 = 0.4$$

• หาค่าตัวเหนี่ยวนำจากสมการต่อไปนี้

$$L_{\min} = \frac{D(1-D)^2 R}{2 f}$$

$$L_{\min} = \frac{0.4 \times (1-0.4)^2 \times 50}{2 \times 42,000}$$

$$L_{\min} = 86 \,\mu\text{H}$$

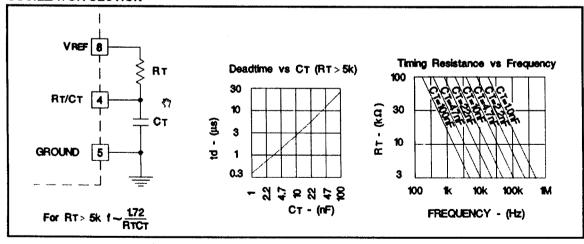
• หาค่าตัวเก็บประจุจากสมการต่อไปนี้

$$\frac{\Delta V_o}{V_o} = \frac{D}{RCf}$$

$$C = \frac{D}{Rf \frac{\Delta V_o}{V_o}}$$

$$C = \frac{0.4}{50 \times 42,000 \times 0.001} = 190 \,\mu\text{F}$$

• ออกแบบความถี่สวิทช์ด้วยไอซี UC 3843

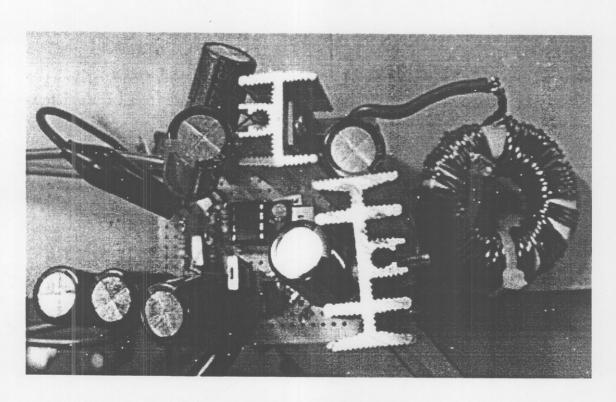

ออกแบบความถี่ 42 KHz โดยใช้กราฟข้อมูลของไอซี UC 3843 ในหัวข้อเรื่อง Oscillator Section ดังรูปที่ 3.3 หรือ ใช้สมการ $f=\frac{1.72}{R_TC_T}$ กำหนดให้ $C_{\scriptscriptstyle T}$ = 2.2 nF

$$42 KHz = \frac{1.72}{R_T 2.2nF}$$

$$R_T = \frac{1.72}{42 KHz \times 2.2nF}$$

$$R_T = 18.6 K\Omega$$

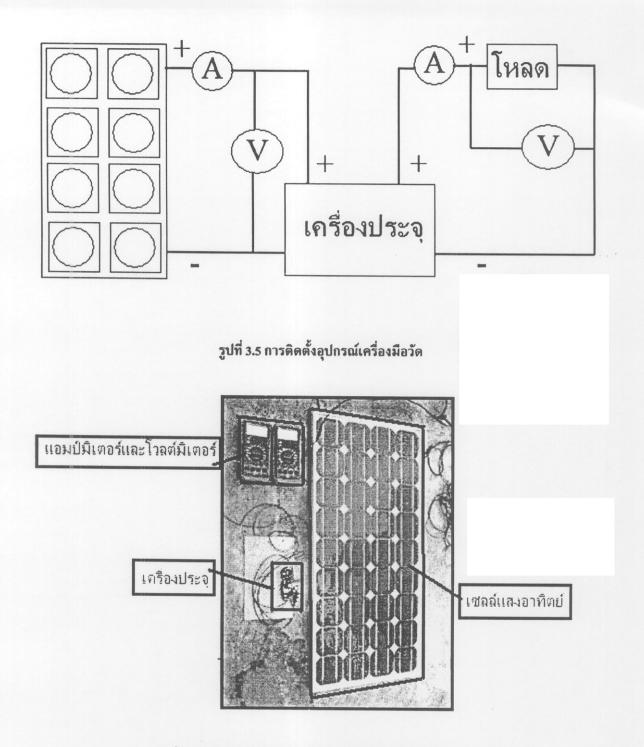
OSCILLATOR SECTION



รูปที่ 3.3 การเลือกความถี่สวิทชิ่ง

3.1.3 สร้างเครื่องประจุแบตเตอรี่ไฟฟ้าเซลล์แสงอาทิตย์

สร้างเครื่องประจุเซลล์แสงอาทิตย์ตามที่ได้ออกแบบไว้ ดังรูปที่ 3.4 มีมิติขนาดกว้าง 10 ซม. ยาว 10 ซม. สูง 5 ซม. มีขนาดเล็กประหยัดพื้นที่ ได้ทำการทดสอบใช้งานอย่างต่อเนื่อง 4-5 ซม. อุณหภูมิของมอสเฟตและไดโอดเท่ากับอุณหภูมิของห้อง แสดงได้ว่ามีประสิทธิภาพสูงเพราะมีการ สูญเสียความร้อนต่ำ ซึ่งหมายถึงการสูญเสียพลังงานต่ำด้วย คุณสมบัติทางไฟฟ้าทั่วไปของเครื่องประจุเซลล์แสงอาทิตย์มีดังนี้


- แรงดันอินพุทต่ำสุดที่รักษาระดับแรงดันเอาท์พุทได้ 9.2 V
- แรงดันเอาท์พุท 14.8 V
- กระแสเอาท์พุท 5 A
- ความถี่สวิทซ์ 42 KHz
- ประสิทธิภาพมากกว่า 80 เปอร์เซ็นต์

รูปที่ 3.4 วงจรประจุแบตเตอรี่

3.1.4 ติดตั้งอุปกรณ์ในการตรวจวัดแรงดันและกระแสไฟฟ้า กับแผงโซล่าร์เซลล์ เครื่องประจุและ แบตเตอรี่

อุปกรณ์ที่ใช้ในการตรวจวัดสมรรถนะของระบบได้แก่โวลต์มิเตอร์ แอมป์มิเตอร์ ตัวต้านทาน โดยมีวงจรแสดงการติดตั้งดังรูปที่ 3.5

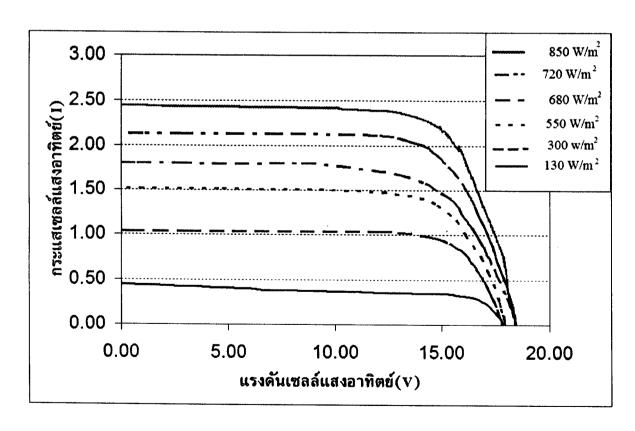
รูปที่ 3.6 อุปกรณ์เครื่องมือวัด เครื่องประจุและเซลล์แสงอาทิตย์

3.1.5 ทำการทดลองเก็บข้อมูลและคำนวณหาสมรรถนะของเครื่อง

ทำการทดลองเก็บข้อมูลโดยใช้โวลต์มิเตอร์และแอมป์มิเตอร์ ทำการวัดหาคุณสมบัติเซลล์ แสงอาทิตย์ วัดคุณสมบัติเครื่องประจุโดยใช้แหล่งจ่ายไฟกระแสตรงและทดสอบหาสมรรถนะของเครื่อง คำนวณหาประสิทธิภาพของเครื่องได้จากกำลังขาเข้าและกำลังขาออก

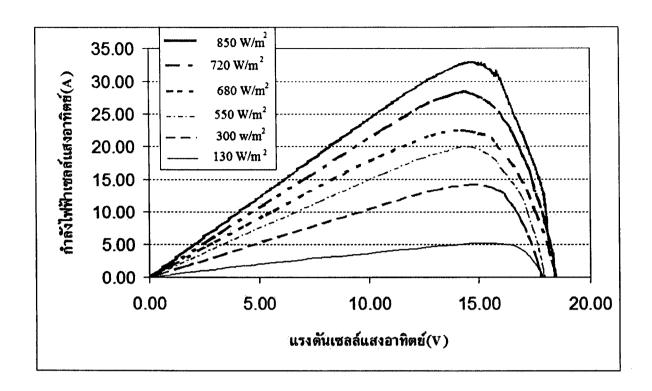
3.2 วิธีการทดลอง

- 3.2.1 การวัดคุณสมบัติของเซลล์แสงอาทิตย์ คือการหาค่าของแรงดันและกระแส เมื่อปรับ โหลดจากความต้านทานต่ำไปสูง ที่ความเข้มแสงคงที่ ดังรูปที่ 2.2
- 3.2.2 การวัดคุณสมบัติของเครื่องประจุ คือวัดค่าของแรงดันและกระแส เพื่อคำนวณหาค่า กำลังทั้งด้านขาเข้าและขาออก เพื่อคำนวณคำนวณหาประสิทธิภาพของเครื่อง
- 3.2.3 ทำการทดลองเครื่องประจุแบตเตอรี่ด้วยเซลล์แสงอาทิตย์ โดยการต่อวงจรเครื่องมือ วัดดังรูปที่ 3.5 วัดค่าของแรงดันและกระแสเมื่อปรับโหลดจากความต้านทานต่ำไปสูง ที่ความเข้มแสง คงที่ คำนวณหาค่ากำลังทั้งด้านขาเข้าและขาออก เพื่อคำนวณคำนวณหาประสิทธิภาพของระบบโดยรวม

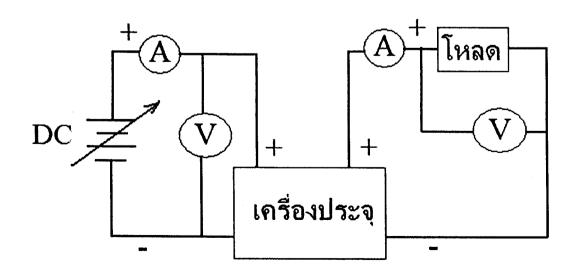

3.3 แนวทางในการวิเคราะห์ผลการทดลอง

จากการทดลองข้างต้น มีจุดประสงค์เพื่อหาประสิทธิภาพการทำงานของระบบการประจุ แบตเตอรี่ด้วยเซลล์แสงอาทิตย์ ดังนั้นตัวแปรที่ทำการวิเคราะห์ได้แก่ แรงดัน กระแส ความต้านทาน ของโหลดและกำลัง ซึ่งการวิเคราะห์ผลทั้งหมดจะนำเสนอในบทที่ 4

บทที่ 4 ผลการวิจัย

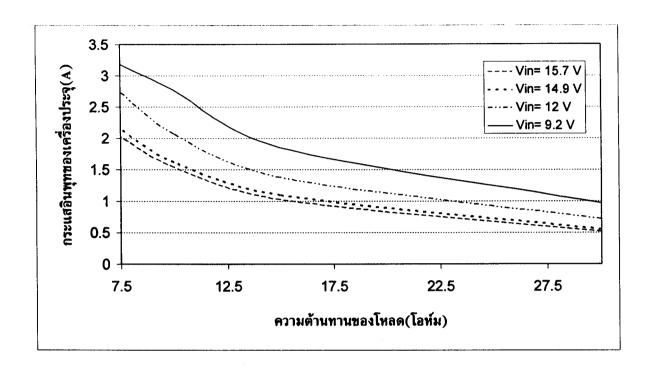

บทนี้จะกล่าวถึงผลการทดลองและการวิเคราะห์ผลการทดลอง เมื่อทำการติดตั้งเครื่องมือวัดแล้วได้ทำการทดลอบสมรรถนะของเครื่อง โดยใช้เซลล์ แสงอาทิตย์มีข้อมูลคุณสมบัติจากผู้จำหน่ายดังนี้ แรงดันวงจรเปิด 21 V ให้กำลังสูงสุด 56 W แบตเตอรี่ ที่ใช้ในการทดลองนี้มีขนาด 12 V ความจุ 35 Ah ได้ผลการทดลองดังหัวข้อต่อไปนี้

4.1 การวัดคุณสมบัติของเซลล์แสงอาทิตย์ ต่อวงจรดังรูปที่ 2.2 ทำการปรับตัวต้านทานของโหลด ได้ผลการวัดกระแสและแรงดันดังกราฟ รูปที่ 4.1

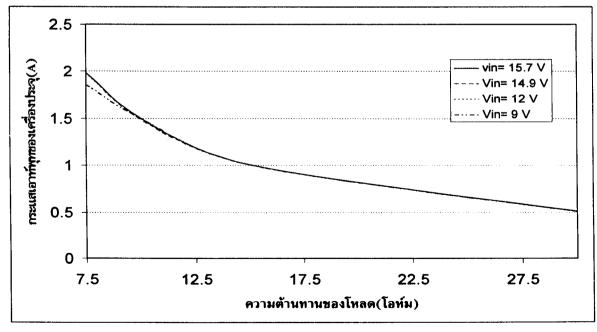

รูปที่ 4.1 คุณสมบัติแรงดันและกระแสของเซลล์แสงอาทิตย์ที่ระดับความเข้มแสงต่าง ๆ

รูปที่ 4.1 พบว่าให้ผลการทดลองตรงกับทฤษฎี มีแรงดันที่วงจรเปิดเท่ากับ 18 V จ่ายกระแส สูงสุดที่ 2.5 A กำลัง 45 W ซึ่งให้ค่าคุณสมบัติของเซลล์แสงอาทิตย์ต่ำกว่าที่ผู้จำหน่ายแจ้งไว้

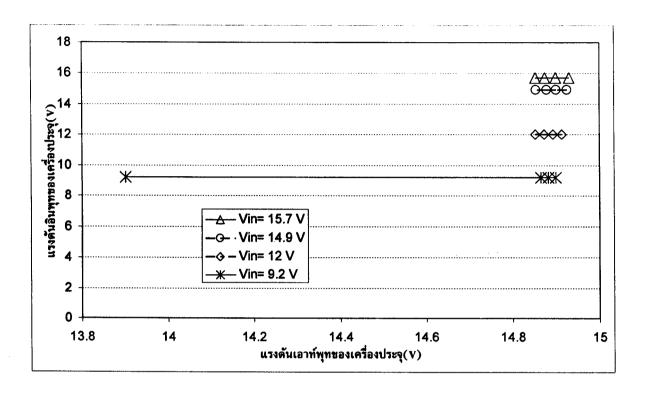
รูปที่ 4.2 กำลังไฟฟ้าของเซลล์แสงอาทิตย์ที่ระดับความเข้มแสงต่าง ๆ


รูปที่ 4.2 ได้ค่ากำลังไฟฟ้าสูงสุด ที่แรงดันประมาณ 14.8 V ทุกระดับพลังงานแสงอาทิตย์ ดังนั้น แรงดันที่ 14.8 V จึงให้ประสิทธิภาพมากมากที่สุดและใช้เป็นแรงดันประจุแบตเตอรี่ ดังที่ได้ออกแบบใน หัวข้อที่ 3.1.2 เรื่องการออกแบบวงจรเครื่องประจุแบตเตอรี่ไฟฟ้าเซลล์แสงอาทิตย์

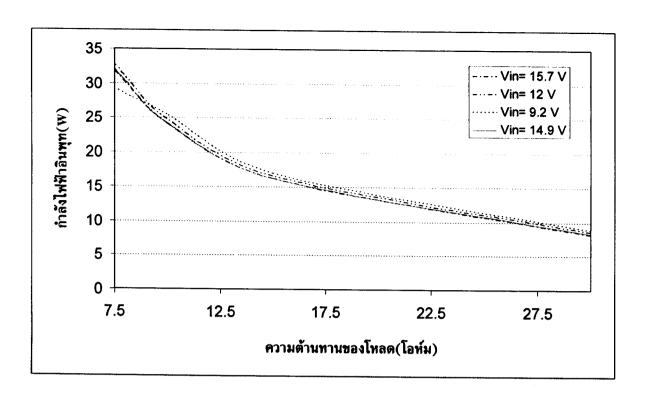
รูปที่ 4.3 แสดงการวัดคุณสมบัติของเครื่องประจุ


4.2 การวัดคุณสมบัติของเครื่องประจุ

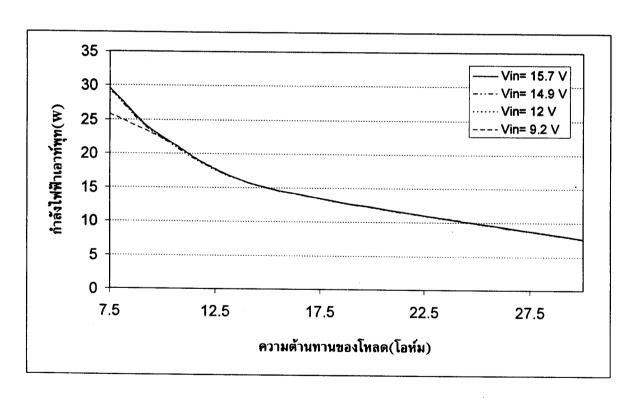
ต่อวงจรดังรูปที่ 4.3 ทำการปรับแหล่งจ่ายแรงดันและความต้านทานของโหลด ได้ผลการวัด กระแสและแรงดันดังกราฟต่อไปนี้


รูปที่ 4.4 กระแสอินพุทของเครื่องประจุที่ระดับแรงดันต่าง ๆ

รูปที่ 4.4 กระแสมีการเปลี่ยนแปลงตามความต้านทานของโหลดและมีความสัมพันธ์กับแรงดัน ตามกฎของโอห์ม

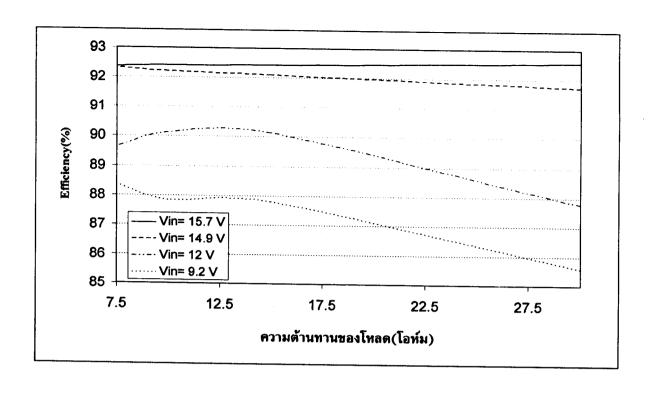

รูปที่ 4.5 กระแสเอาท์พุทของเครื่องประจุที่ระดับแรงดันต่าง ๆ

รูปที่ 4.5 เนื่องจากมีแรงดันเอาท์พุทคงที่ประมาณ 14.85 V ดังรูปที่ 4.5 จึงทำให้กระแสเอาท์พุท เท่ากันทุกระดับแรงดัน ยกเว้นที่ 9.2 V ที่ความต้านทาน 7.5 โอห์ม จะมีกระแสตกเล็กน้อย



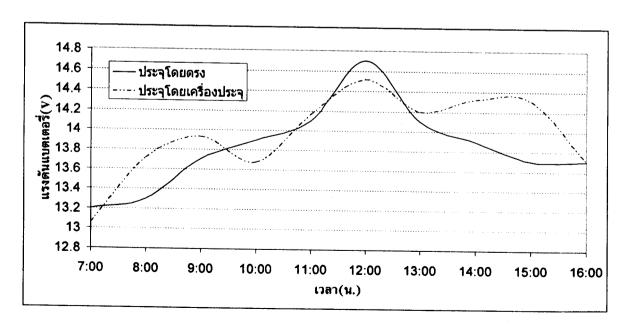
รูปที่ 4.6 แรงดันเอาท์พุทชองเครื่องประจุที่ระดับแรงดันต่าง ๆ

รูปที่ 4.6 แรงดันอินพุทตั้งแต่ 9.2 V ถึง 15.7 V ให้แรงดันเอาท์พุทคงที่ประมาณ 14.85 V ซึ่ง ได้ผลตามที่ได้ออกแบบไว้ ยกเว้นแรงดันอินพุท 9.2 V ที่กระแสสูง ๆแรงดันจะตกเล็กน้อยที่ 13.9 V

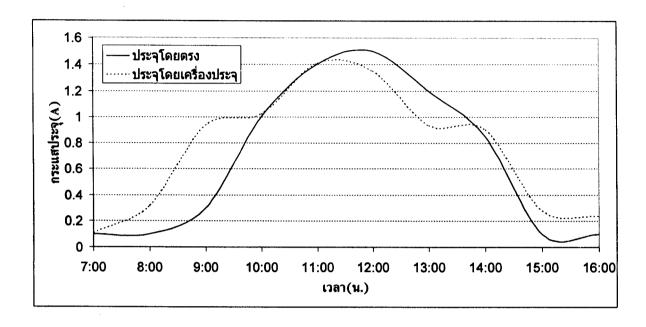


รูปที่ 4.7 กำลังไฟฟ้าอินพุทชองเครื่องประจุที่ระดับแรงดันต่าง ๆ

รูปที่ 4.8 กำลังไฟฟ้าเอาท์พุทของเครื่องประจุที่ระดับแรงดันต่าง ๆ


เมื่อพิจารณา รูปที่ 4.7 และรูปที่ 4.8 พบว่ากำลังไฟฟ้าเอาท์พุทมีค่าต่ำกว่ากำลังไฟฟ้าอินพุท เล็กน้อย ซึ่งแสดงให้เห็นว่าการประจุมีประสิทธิภาพดี มีการสูญเสียพลังงานต่ำ

รูปที่ 4.9 ประสิทธิภาพของเครื่องประจุที่ระดับแรงดันต่าง ๆ


รูปที่ 4.9 แสดงประสิทธิภาพการประจุของเครื่องประจุ เมื่อโหลดมีค่าความต้านทานขนาด ต่าง ๆกัน พบว่ามีประสิทธิภาพไม่ต่ำกว่า 85 % โดยมีค่าประสิทธิภาพมากที่สุดที่ 92.5 % ที่ระดับแรงดัน 15.7 V ประสิทธิภาพต่ำสุดที่ 85.5 % ที่ระดับแรงดัน 9.2 V

4.3 ผลการทดลองเครื่องประจุแบตเตอรี่ด้วยเซลล์แสงอาทิตย์ โดยเปรียบเทียบระหว่างการประจุโดยตรงกับการประจุโดยผ่านเครื่องประจุ

รูปที่ 4.10 แรงดันแบตเตอรี่เวลากลางวัน

รูปที่ 4.10 ระดับแรงดันแบตเตอรี่ทั้งหมดอยู่ในช่วง 13.1 V ถึง 14.7 V ซึ่งเป็นช่วงที่สามารถ ประจุแบตเตอรี่ได้ แต่ในช่วงเวลาสภาวะแสงอาทิตย์ต่ำการประจุโดยตรงจะให้แรงดันต่ำกว่าใช้เครื่อง ประจุ

รูปที่ 4.11 กระแสประจุแบตเตอรี่เวลากลางวัน

บทที่ 5 สรุปผลการวิจัย

งานวิจัยครั้งนี้ได้บรรลุตามวัตถุประสงค์ที่ได้ตั้งไว้ ผลการทดลองเครื่องประจุแบตเตอรี่ด้วย เซลล์แสงอาทิตย์แบบต่อตรงซึ่งเป็นที่นิยมโดยทั่วไป พบว่าการประจุมีสมรรถนะไม่ดีเท่าที่ควร ในช่วง ก่อนเวลา 9.30 น. และหลังเวลา 14.30 น. มีการประจุน้อยกว่า 0.6 A ในขณะนั้นเวลา 9.30 น. จะมีระดับ พลังงานแสงอาทิตย์ประมาณ 500 W/m² เมื่อพิจารณาจากกราฟคุณสมบัติแรงดัน-กระแสของเซลล์ แสงอาทิตย์พบว่าสามารถจ่ายกระแสได้ถึง 1.4 A ดังนั้นการประจุที่จ่ายกระแสได้เพียง 0.6 A จึงเป็นการ จ่ายกระแสที่ค่อนข้างน้อย ผู้วิจัยได้ศึกษาค่าพารามิเตอร์ที่สามารถเพิ่มสมรรถนะในการประจุแบตเตอรี่ ด้วยเซลล์แสงอาทิตย์ในสภาวะความเข้มแสงต่ำและได้ทำการติดตั้งเครื่องมือวัด เพื่อทดลองคุณสมบัติ แรงดัน-กระแสของเซลล์แสงอาทิตย์ พบว่าความต้านทานของโหลดสามารถควบคุมกำลังไฟฟ้าสูงสุดได้ ซึ่งจะช่วยให้ได้กระแสประจุสูงกว่าการประจุโดยตรงที่ไม่สามารถควบคุมความต้านทานของโหลดได้

จากข้อสรุปข้างต้น กล่าวได้ว่าการควบคุมความต้านทานของโหลดคือพารามิเตอร์ที่เพิ่ม สมรรถนะของการประจุแบตเตอรี่ด้วยเชลล์แสงอาทิตย์ในสภาวะความเข้มแสงอาทิตย์ต่ำ ด้วยวิธีการ ควบคุมความต้านทานของโหลดทางอ้อม พิจารณากราฟคุณสมบัติแรงดัน-กระแสของเชลล์แสงอาทิตย์ พบว่า ที่กำลังไฟฟ้าสูงสุดอยู่ระดับแรงดัน 14.8 V ในทุกระดับพลังงานแสงอาทิตย์ ดังนั้นการใช้วงจร บุสต์คอนเวอร์เตอร์เพื่อรักษาระดับแรงดันให้คงที่ 14.8 V จึงทำให้ได้กำลังไฟฟ้าสูงสุดตลอดเวลา เนื่องจากระดับแรงดันคงที่ ดังนั้นกระแสจึงแปรผันตรงกับพลังงานแสงอาทิตย์ จากกฎของโอห์มผลของ การเปลี่ยนแปลงของกระแสก็คือการเปลี่ยนแปลงค่าความต้านทานของโหลดด้วย

บรรณานุกรม

- นิพนธ์ เกตุจ้อย, คงฤทธิ์ แม้นศิริ, วัฒนพงษ์ รักษ์วิเชียร. 2549. สถานีประจุแบตเตอรี่รถไฟฟ้าด้วย เซลล์แสงอาทิตย์ สำหรับรถขนส่งมวลชน มหาวิทยาลัยนเรศวร: การประชุมวิชาการ เครือข่ายพลังงานแห่งประเทศไทยครั้งที่ 2 นครราชสีมา
- พัชรีพร มงคลวัฒนากุล, เพ็ญศรี ศิริลัทพร, เกรียงไกร อัศวมาศบันลือ. 2548. การควบคุมทิศทางของ แผงรับพลังงานแสงอาทิตย์ โดยการระบุตำแหน่งดวงอาทิตย์และการตรวจวัดความเข้ม ของแสงอาทิตย์: การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลประเทศไทยครั้งที่ 19. จังหวัดภูเก็ต
- มารีนา มะหนิ. 2542. Solar Energy of Engineering: มหาวิทยลัยอุบลราชธานี
- วรินทร์ วงษ์มณี. 2545. การติดตามพลังงานสูงสุดสำหรับระบบสูบน้ำด้วยโช่ลาร์เซลล์ โดยใช้การ ควบคุมแบบเว็กเตอร์: วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต มหาวิทยาลัย เทคโนโลยีพระจอมเกล้าธนบุรี
- วีระเชษฐ์ ขันเงิน, วุฒิพล ธาราธีรเศรษฐ์. 2547. Power Electronics: วี เจ พรินติ้ง
- อนุชา ดีผาง, สิงห์ทอง พัฒนเศษฐานนท์, เจริญพร เลิศสถิตธนกร. 2548. ระบบติดตามดวงอาทิตย์ ด้วยอุปกรณ์ตรวจจับตำแหน่งดวงอาทิตย์เชิงดิจิตอล: การประชุมวิชาการเครือข่ายพลังงาน แห่งประเทศไทยครั้งที่ 1.
- A. A. Khalil, M. El-Singaby. 2004. Position control of sun tracking system: IEEE. p.1134-1137.
- D. Yogi goswami, Frank Kreith, Jan F. Kreider. 2000. Principles of Solar Engineering: Taylor and Francis

ประวัตินักวิจัย

หัวหน้าโครงการ

ชื่อ(ภาษาไทย)

นาขธนกร ลิ้มสุวรรณ

(ภาษาอังกฤษ)

Mr.Thanakorn Limsuwan

1. คุณวุฒิ

ปริญญาตรี

2. ตำแหน่งปัจจุบัน

อาจารย์

ภาควิชาวิศวกรรมไฟฟ้าและอิเล็กทรอนิกส์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยอุบลราชธานี

โทรศัพท์ 0-4535-2601 โทรสาร 0-4535-3380

e-mail: ltk26@hotmail.com

3. ประวัติการศึกษา

ปีการศึกษา ที่จบ	ระดับปริญญา (ตรี โท เอก) และชื่อเต็ม	อักษรย่อปริญญา / วิชา	สาขา	ชื่อสถาบัน การศึกษา	ประเทศ
2537	วิศวกรรมศาสตร บัณฑิต	วศ.บ. (ไฟฟ้า)	วิศวกรรมไฟฟ้า	มหาวิทยาลัย เทคโนโลยีมหา นคร	ไทย

4. ผลงานวิจัยพิมพ์เผยแพร่ บทความทางวิชาการ

National Refereed Conference

- Tanakorn Limsuwan, "Voltage-Mode Vector Summation Circuit" KKU Engineering Journal, Vol 33, Number 4, 403-414, July-August 2006.
- Thanakon Limsuwan, Pisit Techarungpaisan, Kulachate Painthong and Umphisak Teeboonma. 2006 "The Sun Tracking System for Solar Energy Measurements" The 2nd Energy Network Conference of Thailand, Suranaree University of Technology, Nakomratchasrima, Thailand, 27-29 July 2006.
- Pisit Techarungpaisan, Tanakorn Limsuwan, Kulachate Pianthong, and Chawalit Thinwongpituk 2006 "Effect of Heating Coil Length on Performance Characteristic of Hot Water Heater Using Waste Heat from Small Split-type Air Conditioner" The 1st conference of Ubon Ratchathani University, Ubon Ratchathani, Thailand, 28-29 July 2006.