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ABSTRACT

TITLE : ITERATIVE ALGORITHMS FOR FINDING A COMMON

FIXED POINT OF GENERALIZED NONEXPANSIVE
SEQUENCES IN A HILBERT SPACE

BY : TEERAPON SOSAWANG
DEGREE : MASTER OF SCIENCE

MAJOR : MATHEMATICS

CHAIR : WEERAYUTH NILSRAKOO, Ph.D.

KEYWORDS : COMMON FIXED POINT/ EQUILIBRIUM PROBLEM /
ITERATIVE ALGORITHM / MONOTONE MAPPING /
QUASI-NONEXPANSIVE SEQUENCE

In this research, we introduce a new general iterative method for a pair of
sequences of quasi-nonexpansive mappings satisfying certain conditions and present
strong convergence theorems which the iteration converge to a common fixed point
of these mappings in a Hilbert space. With an appropriate setting, we obtain the
corresponding results due to Aoyama and Kimura, Tian and Jin, and Wongchan and
Saejung. At the end, we also apply our methods to find a common element of the set
of fixed points for a sequence of quasi-nonexpansive mappings, the set of solutions
of an equilibrium problem and the set of zero points for the sum of two monotone

mappings.
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CHAPTER 1
INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert space H and
T : C — H be a mapping. The set of all fixed points of T is called the fized point of
T and denoted by F(T'). A mapping T is said to be

(i) nonexpansive if

ITz - Tyl < llz —yll, Vz,y€C;
(ii) quasi-nonexpansive if F(T) # @ and

“:C - Ty” < |I$ - y”v V(I!y) e F(T) X C1

(iii) strongly nonexpansive [7] if it is nonexpansive and
lim "IL'" —Yn — (Txn == Tyn)“ =0

whenever {z,} and {y,} are two sequences in C such that {z, —y,} is bounded

and

lim ([lzn = yall = T2 — Tyull) = 0;
n—oo
(iv) strongly quasi-nonexpansive [22] if it is quasi-nonexpansive and
lim ||z, — Tz,||=0
n—oo
whenever {z,} is a bounded sequence in C such that
lim (llzn — 2| = [Tz — 2]|) = 0
n—oo
for some z € F(T).
It follows directly from the above definitions that
(i) if T'is nonexpansive with a nonempty fixed point set, then T is quasi-nonexpansive;

(ii) if 7' is strongly nonexpansive with a nonempty fixed point set, then T is strongly

quasi-nonexpansive.
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The process for approximation of a fixed point of a nonexpansive or a quasi-
nonexpansive mapping is one of interesting problems in mathematics and it has been
investigated by many researchers. Wittmann [36] studied the following iteration
scheme, which was first considered by Halpern [11]

,=xz€C,

(1.1)

Tns1 = On1T + (1 — ana)Tz,, Yn €N,

where a sequence {a,} in (0,1) is chosen such that
(C1) limp—oo @ = 0;
(C2) o0, an = oo;
(C3) Xonei lan+1 — an| < oo,
see also Reich [23] and Xu [38]. Wittmann proved that for any z; = z € C, the
sequence {z,} defined by (1.1) converges strongly to the unique element
Ppryz € F(T), where Pp(r) is the metric projection of H onto F(T'). Moudafi [18]

proposed the scheme which is known as Moudafi’s viscosity approximation process:

=z €C,
L (1.2)
Tpt1 = anf(-rn) = (1 = an)T-Tm Vn € N,

where f : €' — C is an a-contraction, T': C' — C is nonexpansive with F(T) # @,
{an} is a sequence in (0, 1) satisfying conditions (C1), (C2) and (C3). He proved that
{z,} defined by (1.2) converges strongly to z € F(T) and the following inequality
holds

(f(2) - 2,0 —2) <0, Vge F(T).

In the literature, Moudafi’s scheme has been widely studied and extended
by Cianciaruso et al. [8], Peng and Yao [20], Saejung [24], Suzuki [26] and references
therein.

Recently, Wongchan and Saejung [37] improved and extended this result to
obtain a strong convergence theorem for a strongly quasi-nonexpansive mapping 1T’
such that J — T is demiclosed at zero under only the conditions (C1) and (C2).

Very recently, Aoyama and Kimura [2] presented a strong convergence

theorem for a pair of sequences of nonexpansive mappings in a Hilbert space by the
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following iteration:

r1=xz€C,
(1.3)

Tn+1 = BnZn+ (1 = Bu)Sn(anz + (1 — an)Tnzs), Vn €N,
where {S,,} and {T},} are sequences of nonexpansive self mappings of C, and {a,} and
{B.} are sequences in [0,1]. They proved that {z,} converges strongly to the nearest
point of the set of common fixed points of {S,} and {7} under some appropriate
assumptions.
A typical problem is to minimize a quadratic function over the set of the
fixed points of a nonexpansive mapping 7" on H:

o
xgg) E(A:c,x) — (=, b), (1.4)

where A is a certain operator on H and b is a given point in H. Marino and Xu [16]

was combine the iterative method with the viscosity approximation method by
ry=z2€H, z,0=1—-a,A)Tz,+ a,vf(z,), VYn €N, (1.5)

where f is a contraction on H. They proved that if the sequence {a,} of parameters
satisfies appropriate conditions, then the sequence {z, } generated by (1.5) converges

strongly to the unique solution of the variational inequality
(A= ~vf)c*,z—z*) 20, ze€C(, (1.6)
which is the optimality condition for the minimization problem

min %(Aa:,x) — h(x),

TeF(T)

where h is a potential function for vf(i.e.,h'(z) = vf(z) for z € H).
Very recently, Tian and Jin [32, 33] studied the following iterative scheme:
I =Tc€ H,
(1.7)
Tni1 = Y[ (2n) + (I — anA)((1 —w)I +wT)z,, Vne€N,
where f is a Lipschitzian continuous operator on H, T : H — H is quasi-nonexpansive,
{an} is a sequence in (0,1), and w € (0, 1). It is proved that the sequence {z,} con-

verges strongly to the unique solution of the variational inequality:
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((vf = A)z,z — %) <0,Vz € C, where Z = Ppi)(I — A+ 7f)Z.
Motivated by Aoyama and Kimura [2] and Tian and Jin 32, 33], we consider
the following iterative process:

{
Il=$€C,

9 Un = PC(an'Yf(In) + (I - O.’nA)Tn:Bn), (1'8)

Inyl = PC(ﬁnxn + (1 - 6n)Snyn)$ Vn €N,

where A is a certain operator on H, f : C — H is a Lipschitzian continuous operator,
{T, : C — H} and {S, : C — H} are sequences of quasi-nonexpansive mappings,
{an} and {3,} are sequences in (0,1), and v > 0. Strong convergence theorems of
this scheme for finding a common fixed points of {S,} and {7} are presented. With
an appropriate setting, we shall obtain the corresponding results due to Aoyama and
Kimura [2] and Tian and Jin (32, 33], and many others.

The thesis is organized as follows. Chapter II contains some preliminaries
and basic concepts of normed space, inner product and Hibert space which are
essential for the study. In Chapter III, we study the iteration scheme defined by (1.8)
for a sequence of quasi-nonexpansive mappings and present the strong
convergence theorems of this scheme to common fixed point of these mappings under
some additional assumption on the mappings. Application of our main results for
find a common element of the set of fixed points for a sequence of quasi-nonexpansive
mappings, the set of solutions of an equilibrium problem and the set of zero points
for the sum of two monotone mappings is showed. For the last chapter, we conclude

our results of the studies.
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CHAPTER II
PRELIMINARIES

In this chapter, we give some definitions, notations and theorems that will
be used in the later chapter.
Throughout this study, we let R and N stand for the set of real numbers

and the set of natural numbers, respectively.

2.1 Normed spaces

Definition 2.1.1 ([17]). Let X be a real linear space. A norm on X is a nonnegative
real valued function on X such that the following conditions are satisfied by z,y € X

and each scalar a:

(N1) ||z|| = 0 if and only if z = 0;

(N2) [laz|| = |alll];

(N3) llz+yll < |zl + lyll (the triangle inequality).

The ordered pair (X, || - ||) is called a normed space. If no any confusion arises, we

usually write the norm space (X, || - ||) simply as X.

Proposition 2.1.2 ([17]). A normed space X is a metric space with the metric

induced by the norm on X defined by d(z,y) = ||z — y|| for all z,y € X.

Definition 2.1.3 ([13, Definition 4.8-1]). A sequence {z,} in a normed space X is
said to be strongly convergent (or convergent in norm) if for every € > 0 there are

rz € X and N € N such that
|z, —z|| <&, Vn>N.

This is written lim,,_,, £, = z or simply z, — z. The element z is called the strong

limit of {z,}, and we also say that {z,} converges strongly to z.



Definition 2.1.4 ([13, Definition 2.3-1]). A sequence {z,} in a normed space X is
said to be Cauchy if for every £ > 0 there is an N € N such that

|Zm — znal| <€, VYm,n > N.
Remark 2.1.5. Every convergent sequence is Cauchy, but the converse is not true.

Example 2.1.6. Let Q be a set of all rational numbers and R\Q be a set of all
irrational numbers. Let Z € R\Q and z,, € Q be in the interval (:f: - %,:Z' S i) for all

n € N. Then {z,} is a Cauchy sequence in Q but not converges.

Definition 2.1.7. A normed space X is called a Banach space if every Cauchy

sequence in X converges to an element of itself.

Definition 2.1.8 ([13, Definition 1.4-1]). A nonempty subset C of a normed space
X is called a bounded set if its diameter

diamC = sup ||z — y||
z,yeC
is finite. A sequence {z,} in X is called bounded if the set {z;,zs,...} is bounded.

Remark 2.1.9. A sequence {z,} in X is bounded if and only if there exists M > 0
such that ||z,|| < M for all n € N.

Theorem 2.1.10 ([13]). Let X be a normed space. Then the following hold.

(i) A convergent sequence in X is bounded and its limit is unique.

(ii) If a sequence {x,} in X is convergent to z, then every subsequence {z, } of

{z,} converges to same limit x.

Theorem 2.1.11 ([13]). Let C be a nonempty subset of a normed space X. Then C

is closed if and only if the situation x, € C and x, — = imply that z € C

Definition 2.1.12 ([13]). Let X be a normed space and a real number r > 0. The
closed ball of X is the set {z € X : ||z|| < r} and is denoted by B,.(0). The unit
sphere of X is the set {x € X : ||z|| = 1} and is denoted by Sx.

Definition 2.1.13 ([13]). A nonempty subset C of a real linear space is convezr if

for each pair of its points, the line segment joining them is contained in C. That is,

{az+(1-a)y:a€el0,l]} cC, Vz,yeC.



Definition 2.1.14 ([13]). Let X and Y be real linear spaces. A mapping7 : X — Y

is called a linear operator if
T(ax+y)=aT(z)+T(y), Vz,ye X and a€R.

Definition 2.1.15 ([13]). Let X be a real linear space. A linear functional f on X

is a linear operator from X into R.

Proposition 2.1.16 ([17]). Let X be a normed space. Then |||z|| — [|y||| < ||z — y||

whenever z,y € X. Thus, the function z — ||z|| is continuous from X into R.

Definition 2.1.17 ([13]). Let X be a normed space. A linear functional f: X — R
is said to be bounded if there exists M > 0 such that

|f(z)| < M||z||, VzeX.

Definition 2.1.18 ([13]). Let X be a normed space. Then the set of all bounded

linear functionals on X constitutes a normed space with norm defined by

11 = sup % = sup /(o)
pavr) =1

which is called dual space of X and denoted by X*. The second dual space of X is
the dual space (X*)* of X* and is denoted by X**.

Definition 2.1.19 ([13]). Let X be a normed space. For each z € X corresponds to a
unique bounded linear functional g, € X** given by g.(f) = f(z) (f € X* variable).
A mapping C : X — X** defined by = +— g,, C is called the canonical mapping.

Definition 2.1.20 ([13]). A normed space X is said to be reflerive if the canonical
mapping C : X — X** is surjective.

Definition 2.1.21 ([13]). A sequence {z,} in a normed space X is said to be weakly

convergent if there is an z € X such that for every f € X*,

This is written , — z or z, — . The element z is called the weak limit of {z,},

and we say that {z,} converges weakly to .



Theorem 2.1.22 ([13, Theorem 4.8-4]). Let X be a Banach space. If {z,} is a
strongly convergent sequence, then it is weakly convergent but the converse is not

true.

Theorem 2.1.23 ([17, Theorem 1.10.7]). A normed space is reflerive if and only if

each of its bounded sequences has a weakly convergent subsequence.

2.2 Inner product and Hilbert spaces

Definition 2.2.1 ([29]). A real linear space X is called an inner product space if
there is a real valued function (-,-) defined on X x X with the following properties

for each z,y € X and each scalar « :

(IP1) (z,z) > 0 and (z,z) = 0 if and only if z = 0,
(IP2) (z,y) = (y,z) (symmetry),

(IP3) (az,y) = afz,y),

(IP4) (z+y,z) = (z,2) + (y,2).

(z,y) is called the inner product of z and y.

Proposition 2.2.2 ([29]). Let (X, (-,-)) be an inner product space. Then (X, || - ||)

is a normed space with a norm defined by

lzll = v/(z, z). (2.1)

Proposition 2.2.3 ([28]). Let X be an inner product space. If z and y are any two

elements in X, then the following statements hold:
@) llz +yll* + llz — ylI* = 2(llzlI* + [lylI*);
(i) ll= = yl* =zl - lyll* — 2(z — v, 9);
(iii) [l +yll? < llzl|* + 2(y, = + y);
(iv) llaz + (1 - a)y|* = allz]* + (1 — a)|lyll* — a(1 - @)||z - y||* for all a € [0,1].

Definition 2.2.4. An inner product space is called a Hilbert space if it is a Banach

space with the norm defined by (2.1).



Theorem 2.2.5 ([13, Theorem 4.6-6]). A Hilbert space is reflezive.

Theorem 2.2.6 ([29, Theorem 5.1.10]). Let {z,} and {y.} are sequences in an inner
product space X and z,y € X. If z, — = and y, — y, then (T, yn) — (z,¥).

Theorem 2.2.7 ([29]). Let C be a nonempty closed convex subset of a Hilbert H and

let x € H. Then there exists a unique element o € C with
lz — zol| = d(z,C),
where d(z,C) = inf{||Jz — y|| : y € C}.

Definition 2.2.8 ([29, Definition 5.2.1]). Let C be a nonempty closed convex subset
of H and P : H — C be a mapping. Then for each z € H, there exists a unique
element Pz € C such that |z — Pz|| = d(z,C). Such a mapping P of H onto C is
called the metric projection onto C' and denoted by Fe.

Theorem 2.2.9 ([29, Theorem 5.2.3]). Let C be a nonempty closed convez subset of
a Hilbert H and let Pc be the metric projection onto C. Then the followings hold:

(i) l[Pcz — Peyl| < llx —y|| for every z,y € H;
(i) if z, — xo and Pex, — yo, then Poxo = yo;
(iii) ¢f z € H and z € C, then z = Pcx if and only if

(x—2y—2)<0, VyeC.

Definition 2.2.10 ([13]). An linear operator A on an inner product space X is called

strongly positive bounded if there is 5 > 0 such that (Az,z) > 7||z||? for all z € X.

Lemma 2.2.11 ([16]). Let A is a strongly positive linear bounded operator on a
Hilbert space H with coefficient ¥ > 0 and 0 < p < |A||"1. Then ||I — pA| <1 - p7.

Definition 2.2.12. Let C be a nonempty subset an inner product space X and 5 > 0.
A mapping A of C into X is said to be

(i) monotone if

(x —y,Az — Ay) >0, Vz,y € C;
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(ii) 7 -strongly monotone if

(x —y, Az — Ay) > qllz — yl|?>, Vz,y€C;

(i) 7-inverse-strongly monotone if

(.’E - y,A.’B - Ay) 2> F?”Ax - Ay"2’ any € C.

2.3 Some known facts

Definition 2.3.1. Let C' be a nonempty subset of a normed space X and L > 0. A
mapping T : C — X is said to be

(i) L-Lipschitzian continuous if

Tz — Ty|| < Ll|lz —yll, Vz,y € C;

(ii) L-contraction if it is L-Lipschitzian continuous with L < 1.

Lemma 2.3.2 ([22]). Let C be a nonempty closed convex subset of a Hilbert space H,
T be a quasi-nonexpansive mapping of C into H and w € (0,1). Then the mapping

To =1 -w)+uwT
is strongly quasi-nonezpansive and F(T) = F(T,,).

Definition 2.3.3. Let C be a nonempty subset of a normed space X. A mapping
T :C — X is said to be demi-closed at a point p € C if whenever {z,} is a sequence
in C' which converges weakly to a point z € C and {T'z,} converges strongly to p, it

follows that Tz = p.

Theorem 2.3.4 ([10]). Let C' be a nonempty closed convex subset of a Hilbert space
H and T be a nonezpansive mapping of C into H. Then I — T is demiclosed at zero.

Definition 2.3.5. Let C' be a nonempty closed convex subset of a Hilbert space H
and let {T,,} be a sequence of mappings of C into H. The set of common fized point
of {T..} is denote by F({T,}), that is, F({T.}) = N2, F(T>).
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Definition 2.3.6. Let C be a nonempty closed convex subset of a Hilbert space H
and let {T,,} be a sequence of mappings of C into H such that F({T,}) # @. A

sequence {7,} is said to be
(i) strongly nonexpansive ([7]) if each T, is nonexpansive and
nli_I.Eo IZn = Yn — (TaZn — Tya)ll = 0

whenever {z,} and {y,} are two sequences in C such that {z, —y,} is bounded

and

ﬂh_{'élo (”In = Ynll = |Tnzn — Tnyn“) =0;
(ii) strongly quasi-nonexpansive ([22]) if each T, is quasi-nonexpansive and
lim ||z, — Thz.|| =0
n—o0
whenever {z,} is a bounded sequence in C such that
nh_{gc |lzn — z|| = | Tnzn — 2| =0,
for some z € F({T,}).

Remark 2.3.7. It follows directly from the definition above that if T}, is strongly

nonexpansive with a nonempty fixed point set, then it is strongly quasi-nonexpansive.

Definition 2.3.8. Let C be a nonempty closed convex subset of a Hilbert space H
and let {T,} be a sequence of mappings of C' into H such that F({T,}) # @. A

sequence {7,,} is said to satisfy

(i) the AKTT-condition([3]) if for each bounded subset B of C,

Zsup{HTnH:r —Thz|| : z € B} < o0;

n=1

(ii) the NST-condition ([19]) if for each bounded sequence {z,} in C,
lim ||z, — Thz,|| =0
n—oo

implies wy,(2n) C oy F(T), where wy,(z,) is the set of all weak cluster points
of {2,};
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(iii) the R-condition ([1]) if for each bounded subset B of C,

lim sup{||Th+1z — Thz|| : z € B} = 0.

n—X0 rcB

Lemma 2.3.9 ([4, Lemma 3.2]). Let C be a nonempty closed convex subset of H,
{Tn} be a family of mappings of C into itself which satisfies the AKTT-condition,
then the mapping T : C — H defined by

Tz = lim Tz, VzeC, (2.2)

n—oo
satisfies
lim sup{||Tz — T,z| : = € B} = 0.
n—o0 ze B
for each bounded subset B of C.

From now on, we will write ({7,,,T}) satisfies AKTT-condition and T is
defined by (2.2).

Lemma 2.3.10 ([34, Lemma 2.5]). Let C be a nonempty closed convez subset of a
Hilbert space H, {T,,} be a family of quasi-nonezpansive mappings of C into H such
that F({T,}) # @. Suppose that ({T,,T}) satisfies AKTT-condition,

F(T) = F({T.}) and I -T is demi-closed at0. Then {T,} satisfies the NST-condition

and R-condition.

Lemma 2.3.11 ([4, Corollary 3.13]). Let C' be a nonempty closed convex subset of a
Hilbert space H and let {T,,} be a sequence of quasi-nonezpansive mappings of C into
H satisfying NST-condition and F({T,}) # @. Let {S,} be a sequence of mappings
of C itself defined by

Sn =Bl + (1= B)T,
for all n € N, where {3,} is a sequence in [a,b] C (0,1). Then {S,} is a strongly
quasi-nonezxpansive sequence and F({1,}) = F({S,}).

Lemma 2.3.12 ([4, Theorem 3.4]). Let C and K be a nonempty closed convez subset
of a Hilbert space H. Let {S,} be a strongly nonezpansive sequence of C into K and
{R.} be a strongly nonezpansive sequence of K into H such that

F({S.}) N F({R.}) # @ Let T,, be a mappings of K into H defined by

Tn = an, Vn € N,

Then {T,} is a strongly nonexpansive sequence.
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Lemma 2.3.13 ([35, Lemma 2.10]). Let C and K be a nonempty closed convex
subset of a Hilbert space H. Let {S,} be a sequence of nonexpansive mappings of
C into K and {R,} be a sequence of nonexpansive mappings of K into H such that

F({S:})NF({Rn}) # @ and
1Rnz = ul® < [l& = ull* — an|| Ruz — 2|’

forallz € K, u € F({R,}) and n € N, where {a,} is a sequence in [a,c0) C (0, 00).
Let {T,.} be a sequence of nonezpansive mappings of K into H defined by

T, =5,H,, VneN.

If {S.} and {R,} satisfying NST-condition, then {T,} satisfying NST-condition and
F({T:}) = F({Sa}) N F({R.}).

By Lemma 2.3.11 and Lemma 5.6 [35], we have the following.

Lemma 2.3.14. Let C be a nonempty closed convex subset of a Hilbert space H. Let
{T.} be a sequence of nonezpansive mappings of C into H such that F({T,}) # @
and {p,} be a sequence in [0,1]. For each n € N, a W-mapping ([30]) T,, generated
by Tn, Troqy s Ih and pin, pin_1, ..., pi1 8 defined as follows:

Unnt1 =1,

Unn = pnTnUnnir + (1 — )1,

Unn-1 = tin1Tn 1Unp + (1 — 1)1,

Unik = teTiUn g1 + (1 — )1,
Unji-1 = phe—1Te-1Un i + (1 — pr-1)1,

Ung = p2ToUpns + (1 — p2)1,

Wo=Uny = mTiUn2 + (1 — )l
If {un} € (0,1), then {W,} is a strongly nonexpansive sequence satisfying
NST-condition and F({W,}) = F({T.}).

Definition 2.3.15 ([28]). Let B be a mapping of H into 2¥, where 2¥ denotes the
set of all subsets of H. A mapping B is said to be multi-valued mapping on H.



(i) The effective domain of B is the set
{z € H: Bz # @}
and is denoted by dom(B).

(i) The set of zero points of B is the set
{z € dom(B) : 0 € Bz}
and is denoted by B~1(0).

Definition 2.3.16. A multi-valued mapping B on H is said to be a monotone

operator ([5]) on H if
(r—y,u—v) >0, Vz,y € dom(B),u € Bxr and v € By.

A monotone operator B on H is said to be mazimal if its graph is not property

contained in the graph of any other monotone operator B’ on H.

Lemma 2.3.17 ([2, Example 4.2]). Let B be a mazimal monotone operator on H
with a zero point, {p,} a sequence of positive real number, and {T,} be a sequence
defined by

T,=(+p,B)"', VneN.

Then {T,} is a strongly nonezpansive sequence. Moreover, if liminf,_ pn >0, then

{T,.} satisfies NST-condition and F({T,}) = B~1(0).

Lemma 2.3.18 ([2, Example 4.3]). Let A: C — H be an a- inverse-strongly
monotone mapping such that VI(C, A) is nonempty. Let {\,} be a sequence of
positive numbers such that

0 < liminf A, < limsup )\, < 2a (2.3)

12400 n—oo

and {T,,} a sequence of mappings defined by T, = Po(I — A\, A) forn € N. Then {Tu}
is a strongly nonexpansive sequence that satisfies NST-condition and

F({T.}) = VI(C, A).
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Lemma 2.3.19 ([2, Example 4.4]). Let C be a nonempty closed convez subset of a
Hilbert space H. Let B : C — H be an a—inverse-strongly monotone mapping and E
be a mazimal monotone operator on H. Suppose that (B + E)~'(0) is nonempty and
{An} is a sequence of positive real numbers satisfying 0 < inf, A\, < sup, A < 2a.
Let {T,,} be a sequence of mappings defined by

To=(I+ME)'(I-MB), VneN. (2.4)

Then {T,} is a strongly nonezpansive sequence satisfying NST-condition and
F({T.}) = (B + E)7(0).

Lemma 2.3.20 ([25, Lemma 2.6]). Let {s,} be a sequence of nonnegative real
numbers, {7} be a sequence in (0,1) such that Y ") Y, = 0o, and {0.} be a sequence

of real numbers. Suppose that
Sn+1 < (1 — Yn)Sn + Ynbn, for alln € N.
If limsup,_ . 0n, <0 for every subsequence {sn,} of {sn} satisfying
“E_].iol.}f(snkﬂ — 8n,) 20,

then lim, .o, 5, = 0.




CHAPTER III
MAIN RESULTS

In this chapter, we introduce a new general iterative algorithm for two quasi-
nonexpansive sequences satisfying certain conditions and present strong convergence
theorems in which the iteration converges to a common fixed point of these mappings
in a Hilbert space. To this end, the following iterative algorithm is introduced:

A sequence {z,} in C defined by

4

.=z €C,

{90 = Pe(anvf(z0) + (I — anA)Thzy), (3.1)

Tnt1 = PC(ﬂnIn e (1 = 6n)8nyn)a Vn € N,

where C is a closed convex subset of a Hilbert space H, {S,} and {T,} are two
quasi-nonexpansive sequences of C into H such that F := F({S,}) N F({T..}) # @,
f is a k - Lipschitzian continuous operator on H with x > 0, A is an operator on
H with n > 0 and 0 < £ < 1/7 such that I — pA is an (1 — pn) - contraction for
every 0 < p < &, {an} and {3,} are sequences in [0, 1] such that a,, < 1/n, and
0<~vy<n/k.

3.1 Auxiliary results

In this section, we give lemmas which are needed for proving the our main

results.

Lemma 3.1.1. Let {z,} be a sequence defined by (3.1). Then {z,}, {Tnz,} and
{Snyn} are bounded.

Proof. Let z € F. For any n € N, both S,, and T,, are quasi-nonexpansive, we have
g — z|| = ||Pe (an')’f(zn) +A{I — anA)Tnxn) — Pez||
”an'}(f('rn) + (I - anA)Tnmn - z”

= llany(f(zn) = £(2)) + an(7f(2) — A2) + (I — anA)Tnzn — (I — anA)z||

IA
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< el f(zn) = FR + anllvf(2) — Azl + [|( — anA)Tazn — (I — anA)z||
< onykllzn — zll + anllvf(2) — Azl + (1 — ann)|Taza — 2||
< onYkllzn — zl| + anllvf(2) — Azl + (1 — ann)|lzn — 2||
= (1 = aa(n—7K)|zn — 2|| + aall7f(2) — Az]|. (32)
Also,
|Zn+1 — 2|l

= [|Pc(Bazn + (1 = Ba)Snyn) — Pez||

< Ballzn — 2l + (1 = Bn) |1 Snym — 2|l

< Ballzn = 2l + (1 = Ba)llyn — 2|l

< Ballen — 2l + (1 = Ba) ((1 = en(n — ¥&))l|zn = 2l + anll7f(2) — Az|)

= (1= an(l=Bn)(n — v))|Zn — 2l + an(l — Ba)(n - 7")%&”'

Let

M= max{||5r:1 - z",W}

Clearly, ||z, — 2|| < M. Assume that ||z — z|| < M for some k > 1. Since a,, < 1/n

and 0 <y < n/k, we get 0 < a,,(1 — 3,)(n — &) <1 and so
121 = 2] < (1 — (1 = Be)(n — v8))M + (1 = Bi)(n — y&)M = M.

By induction, we have ||z, — z|| < M for all n € N and hence {z, — z} is bounded.
It follows that {z,}, {T,z.} and {S,y.} are also bounded. ]

Lemma 3.1.2. Let {z,} be a sequence defined by (3.1), 2 € F and
M = sup{||z, — z|| : n € N}. Then

|Ixn+1 - 2"2 S (1 - ’Yn)”ﬂfn - 2”2 + %’t‘sm Vn € N,

where Y = an(1 — Bn)(n — %) and

0p = an( ,,)2 _ 25,}/) M? s 2an.m'M[]'yf(z) - AZ“ s 2((7f - A)zvyn - Z) :
(n— k) n—"kK 17— YK
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Proof. From Proposition 2.2.3 (iii) and (3.2), we get

llyn — 2112
= |Pe(anvf(2a) + (I = anA)Toz,) — Poz|)?
< llan(7f(za) — A2) + (I — anA)Tozn — (I — anA)z|
< (T = anA)Thzn — (I — anA)z||? + 200 (v f(T0n) — Az, yn — 2)
< (1 = an?ITazn — 2|1 + 2aa{7f(Za) — A2,y — 2)
< (1= awn)?|zn — 2% + 200Y{f(zn) — f(2),Yn — 2)
+2an(71f(2) — Az,yn — 2)
< (1= ann)?||zn — z|1* + 2007 f(zn) — F(2)]|[lym — 2]
+ 2a,{7f(2) — Az, yp — 2)
< (1 = @an)?||Zn — 2||% + 200YE]|Zn — 2||||yn — 2|
+2an(7f(2) — Az, yn — 2)
< (1= ann)?|lzn — 2|I* + 20076 M ||ya — 2|l + 20a{7f(2) — Az,yn — 2)
< (1= ann)?||zn — 2|I?

+ 2a,7eM ((1 — an(n — vK))||zn — z|| + anl|vf(2) — Az||)

+ 20, {(7f — A)z, pn — z)
£ (1—2ax(n —¥K)) |2 — 2II°

+ 20, (n — 7K)
( an’M? - ankyYMIlvf(2) = Azl| | ((vf = A)z,ym — 2))

2(n — ) n— K n—K
< (1-an(n —K))llzn — 2|
i an("? - 1K)

2 2 o = =

(ann LTS ¥ 20y M||7f(2) = Azl | (1S ~ A)z,yn Z))

(n — k) n—=k n—k
= (1 - an(’? - 7"))“-’571 - 3”2 + an(rf — YK)dn. (3-3)

It follows from Proposition 2.2.3 (iv) that

IN

1Ba(Zn = 2) + (1 = Bn)(Snyn — 2)|I2
ﬁﬂ”:l:ﬂ - Z||2 + (1 = ﬂﬂ)”Snyn - 3"2

“In+1 . 2’”2

IA
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< Ballza — 2l + (1 Ba)llyn — 22
< Ballzn - 2|
- ﬂn)((l - auln = 10) o =21 + (= 75)3
= (1= an(l=Ba) (= 7K)zn — 2I° + an(l = Ba)(n — ¥K)dn
= (1= )lZn = 2 + Yaba.
This completes the proof. O

Lemma 3.1.3. Let {z,} be a sequence defined by (3.1). Suppose, in addition, that
limy, .o an = 0,limsup,,_, ., O < 1 and there ezist a subsequence {z,,} of {z,} and
z € F such that

1iminf(||:1.‘nk+1 = Z” = ”xﬂk = Z”) 2 0
k—oo

Then the following statements hold.
(i) If{T.} is a strongly quasi-nonezpansive sequence, then
klim ”Tmzﬂx - Iﬂk” =0.
—00
(i) If {Sn} is a strongly quasi-nonezpansive sequence, then
Jim |18, Y, — Ym, [l = 0.
—00

Proof. Since lim,, o, a,, = 0, we have

0 < liminf (|lzn1 — zI| = |lza, — 2
= liminf (1 = Bu) (ISnbme — 21l = l12m, — 211)) (2.9)
< liminf(1 = B,) (lgm, = 2l = lIzn, — 1) (3.9)
< liminf(L — o) (g [17f(2n,) = Azl + (1 = )| Ty, — 21| = 12, — 2]])

Bim an, (1= fn,) (17/(@n,) — Azl| = 7T, a,  2])

+liminf(1 — B, ) (1T, 2n, — 2l| = 70, — 21])

= liminf(1 ~ fn,) (I Tes@n, — 2Il = |2, — 2l)
< liinsup(l - ﬁnk)(”TnkInk - z” - “Iﬂk - Z”)
- (3.6)
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This implies that
lim (1= Bo,) (7, — 2]l = [Ty, = 2I)) = 0.
Since limsup,,_, . G, < 1, we get
i (e, — 2l = [ Toyn, = 2I) =0. (37)
From (3.4), (3.5) and (3.6), we obtain,
Jim (g, — 2l = 12n, = 21) =0 = Jim (ISustm, = 2l = llzm = 2l (38)

It follows that
,}EEO ("Sﬂkyﬂk = z“ = “yﬂk = z”) =0. (39)

(i) Suppose that {7,,} is a strongly quasi-nonexpansive sequence. Setting

Ty, if n = n; for some k,
Ty =
z  otherwise.
Since {z,, } is a bounded sequence and (3.7), {Z#,} is bounded and
lim (|25 = 2|| = | TaZn — 2[|) = 0.
Since {1},} is a strongly quasi-nonexpansive sequence,

lim ||, — Tpin|| = 0.

In particular,
klim |Zn, — Tn,Zn, || =0.
—00

By using a similar method and (3.9), one can shown that (ii) is satisfied. O

Lemma 3.1.4. Let {z,} be a sequence defined by (3.1). Suppose, in addition, that
limy, oo @n = 0,0 < liminf, . 8, < limsup,_., B, < 1 and there exist a subsequence

{zn.} of {zn} and z € F such that
lim inf(||zn, +1 = 2[| = [|Zn, — z[|) 2 0.
—00
If {T.,} or {S,} is a strongly quasi-nonezpansive sequence, then

kli.rgo "Tﬂkxﬂk - Iﬂkll =0 and kll{g) ”S"ky‘nk - yﬂk“ =0.
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Proof. We shall show that limg_. ||Sn, ¥n, — Zn, || = 0. From (3.6), we obtain

1 (g3 = 2l = llzm, — 2I) =0,
Since
Iznt1 = 2l* = Boyllen, = 2l + (1 = Bay )1 Sngn, — 212
~Bai (1 = B ) 1S Yny — Tap |l
we have
Brie(1 = B )1Snithme = Tne I = Bay (l2ny = 2I1° = [[Znyir — 21I°)

o ﬁﬂk)(llsﬂkyﬂk - 2”2 — |Zaps1 — 2”2)'

Then, by (3.9),
leIEO ﬁﬂk(]‘ - ﬁm)”snkyﬂk - x"k“ =0.

Since 0 < liminf, . 3, < limsup,_, 3, < 1, we get,
lr‘lim | Sne¥ne — Znill = 0. (3.10)
—00

Case 1: Let {T,,} be a strongly quasi-nonexpansive sequence. From Lemma
3.1.3 (i), we have

klim |Tni s, — %a, ]| = 0.
—00
It follows from a, — 0 that
||yﬂk - Ink” s aﬂk'hf(xnk) - AInk” + (1 - aﬂkn)”Tﬂkxﬂk - :Uﬂk” - 0(311)

From (3.10) and (3.11), we obtain

| SnYn, — Ynell < Sn¥ni — T, || + ”‘rﬂk = ¥n,ll = 0. (3.12)

Case 2: Let {S,} be a strongly quasi-nonexpansive sequence. Form Lemma
3.1.3 (ii), we have
klirglo ”Snkynk — Yn | = 0.

It follows from a,, — 0 that

IA

”Tﬂkx"k - yﬂk“ g ”yﬂu - Snkyﬂk”
< aﬂk”ATﬂkxﬂk - 7f($ﬂk)” + ||y"k - Sﬂkyﬂk” —+ 1k (3'13)

”Tﬂkxnk - Sﬂkyﬂk “
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From (3.10) and (3.13), we obtain
“Tﬂkzﬂk - Iﬂk” < ”Tnkx“k - nkyﬂkll + ”Sﬂkyﬂk - Ink” — 0. (3'14)
This completes the proof. O

The following lemmas are extracted from Lemmas 5 and 6[14]. The proof

is given here for sake of completeness.

Lemma 3.1.5. Let C be a nonempty closed convex subset of H. Let A be an operator
on H with p > 0 such that I — pA is a contraction and let w € C. Then the followings

are equivalent:
(i) w = Pe(I — pA)w;
(if) (Aw,y —w) >0 for ally € C;
(iil) w = Po(I — A)w.
Such w € C always erists and is unique.

Proof. We have that for w € C,

w=FPe(I-pAw = (w—-pAw—-w,w—y)>0, VyeC
= (—pAw,w—-y) >0, VyeC
— (Aw,y—w) >0, VyeC
— (w—Aw-w,w-y)>0, VYyeC
— w=PFPs(I-Aw.

Then (i), (ii), and (iii) are equivalent. Since I — pA is a contraction, we see that

Po(I — pA) is a contraction. Therefore such w € C' exists always and is unique. O

Lemma 3.1.6. Let f be a k - Lipschitzian continuous operator on H, A be an
operator on H with n > 0 and 0 < £ < 1/n such that I — pA s an (1 — pn)-
contraction and 0 < v < n/k. Then there exist § > 0 and 0 < & < 1/7 such that
I — p(A—~f) is an (1 — pij)-contraction for every 0 < p < €. Furthermore, let C be
a nonempty closed convexr subset of H. Then Po(I — A+~ f) has a unique fized point

w € C. This point w € C is also a unique solution of the variational inequality

(vf = Aw,q-w) <0, VgeC.
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Proof. Let f=n—yx and £ =&. Then 0 < € < 1/7. For 0 < p < £, we get

I = p(A —~f))z — (I-p(A—~)yll
< = pA)z — (I — pA)y + py(f(2) — fFW))I
< = pA)z — (I — pA)yll + llpyv(f(z) — F)I
< (I = p)llz —yll + pyxllz -yl
= (1= p(n —K))llz - yll
=1 -pi)llz -yl
for all z,y € H. Therefore, I — p(A —~vf) is an (1 — pfj) - contraction. Using Lemma

3.1.5, we have Po(I — A+ «f) has a unique fixed point w € C. This point w € C is

also a unique solution of the variational inequality

((vf — Aw,q—w) <0,

for all ¢ € C. O

3.2 Strong convergence theorems

Theorem 3.2.1. Let C' be a nonempty closed convexr subset of a Hilbert space H,
{S,} and {T,} be two quasi-nonexpansive sequences of C into H satisfying the NST-
condition and F := F({S,}) N F({T,.}) # @, f be a k - Lipschitzian continuous
operator on H with k > 0. Let A be operator on H withn > 0 and 0 < £ < 1/n such
that I — pA is an (1 — pn)- contraction for every 0 < p < £. Suppose that {ay,} is
a sequence in (0,1) satisfying lim, .oc o, =0 and > . a, = 0, and 0 < v < n/k.

Assume one of the following conditions hold:

(i) {7} or {S,} is a strongly quasi-nonezpansive sequence and {3,} is a sequence

in (0,1) satisfying 0 < liminf, . 8, < limsup,_,., 5, < 1.

(ii) {Tn} and {S,} are strongly quasi-nonezpansive sequences and {3,} is a sequence

in (0,1) satisfying limsup,,_, . G, < 1.

Then the sequence {x,} defined by (3.1) converges strongly to an element w € F and
the following inequality holds,

(vf —A)w,p—w) <0, VpeF
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Proof. Notice that F' is a nonempty closed convex subset of H. By Lemma 3.1.6,

there exists a unique element w € F such that w = Pp(I — A+ vf)(w), i.e.,
(vf—A)w,p—w) <0, VpeF (3.15)
By Lemma 3.1.2, we have
IZn+1 = wl? < (1 = Ya)|Za — w]|* + 16, (3.16)

for all n € N, where v, = a,(1 — 8,)(n — v£), M = sup{||z, — w| : n € N} and
2 _ _ _
(5,3 - O‘n( 77 — 257) M2 + QGnK’YM”'Yf(w) Aw” + 2((‘7]. A)w1 yﬂ w) .
(n — k) n—kK n—K
We show that z,, — w by using Lemma 2.3.20. Since lim,,_,., a,, = 0 and

D e 0y = 00, We get » oo oy, = 0o and then we only show that
2
limsup d,, = —— limsup((7f — A)w, yn, — w) <0,
k—oo Nn—7K k-oo

for every subsequence {n;} of {n} such that liminfx_..(||zn,+1 —w|| = ||Zn, —w||) > 0.

Let {ni} be a subsequence of {n} such that
lim inf(||Zny+1 = ]| = [|Zn, —w]]) 2 0.
k—o0
Assume (i) or (ii). By Lemma 3.1.3 or Lemma 3.1.4, respectively, we have
im |7, zn, = Zp, [ =0 and  lim [|Sp,yn, — yn,ll = 0.
k—oo0 k—o0

Because {yn, } is a bounded sequence in H, there exists a subsequence {y,, } of {y, }

such that y,,, — ¢ and

limsup((7f — A)w, yn, — w) = hm ((vf = A)w, yn,, — w). (3.17)

k—oo

Since {S,} satisfies the NST- condition, we have ¢ € F({S,}). Since a,, — 0,
1Y, = Znill < om, 7 f(Zn,) = ATnell + (1 = Ay )| Ty Tny, = T || = 0
and hence 2, — g¢. Since {T},} satisfies NST- condition, we have ¢ € F({T,.}). Then
q € F({Sx}) N F({T.}).
It follows from (3.15) and (3.17) that
Iiiris;lp((vf = AW, Yo, — w) = Im((vf — A)w, yn,, — w) = ((vf — A)w, ¢ —w) < 0.

This implies that limsup,_, ., d,, < 0. By Lemma 2.3.20 and (3.16) we have z, — w

as desired. O
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Lemma 3.2.2. Let A be a 7-strongly monotone and L-Lipschitzian continuous
operator on H with ¥ > 0 and L > 0. Let n € (0,5/2] and £ = min {i, 21}. Then
I — pA is an (1 — pn)- contraction for every 0 < p < &.

Proof. For any 0 < p < { and z,y € H, we have

|z — y — p(Az — Ay)|)?
Iz — yl|? = 2p{x — y, Az — Ay) + p*|| Az — Ay||?

I(Z = pA)z — (I = pA)y|?

< e —yl? - 207llz — 9l + P°L?||z — |

= (1-207+ L)z -yl

= (1—4pn+p°L?)||z -yl

< (L-20m+p°n* = p*n° = 20m + p*L?)||z — y]|?
= [~ 2 = oLk~ )l — P

< (1-pm)?llz —yl™.

Since 0 < pn < 1, we obtain that

I( = pA)z — (I — pA)yll < (1 — pm)llz -y,
for all z,y € H. This completes the proof. O
Using Theorem 3.2.1 and Lemma 3.2.2, we have the following.

Corollary 3.2.3. Let C be a nonempty closed conver subset of a Hilbert space H,
{S,} and {T,} be two quasi-nonezpansive sequences of C into H satisfying the NST-
condition and F := F({S,}) N F({T.}) # @, f be a k - Lipschitzian continuous

operator on H with k > 0. Let A be a 7-strongly monotone and L-Lipschitzian
continuous operator on H with 5 > 0 and L > 0. Suppose that {a,} is a sequence in
(0,1) satisfying lim, oo 0 =0 and 3 . o, = 00, and 0 < v < 7/2k. Assume one

of the following conditions hold:

(i) {Tn} or {Sn} is a strongly quasi-nonezpansive sequence and {(3,} is a sequence

in (0,1) satisfying 0 < liminf, . 8, < limsup, . 3, < L.

(ii) {T} and {S,} are strongly quasi-nonezpansive sequences and {/3,} is a sequence

in (0,1) satisfying imsup,,_, . G, < 1.
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Then the sequence {z,} defined by (3.1) converges strongly to an element w € F and
the following inequality holds,
(0f—Aw,g—w) <0, VqeF.

As in Lemma 3.2.2, we can relax an n which is widely whenever A is a

strongly positive bounded linear operator on H as follows:

Lemma 3.2.4. Let A be a strongly positive bounded linear operator of H with 7 > 0.
Let n € (0,7] and £ = min {7, ﬁ} Then I — pA is an (1 — pn) - contraction for
every 0 < p < €.

Proof. Let 0 < p < £&. By Lemma 2.2.11, we get

I(I = pA)z — (I — pA)y|| 1T = pA)(z - y)
< = pAlllle -yl

< 1-p)lz -yl
This implies that  — pA is an (1 — p7) - contraction. O
By Theorem 3.2.1 and Lemma 3.2.4, we obtain the following result.

Corollary 3.2.5. Let C' be a nonempty closed convex subset of a Hilbert space H,
{Sn} and {T,,} be two quasi-nonezpansive sequences of C into H satisfying the NST-
condition and F := F({S,}) N F({T,}) # @, f be a k - Lipschitzian continuous
operator on H with k > 0. Let A be a strongly positive bounded linear operator on H
with ¥ > 0. Suppose that {a,} is a sequence in (0, 1) satisfying lim, . a,, = 0 and

Yo Jan =00, and 0 < y < J/k. Assume one of the following conditions hold:

(i) {Tn} or {S.} is a strongly quasi-nonezpansive sequence and {f3,} is a sequence

in (0,1) satisfying 0 < liminf, . 3, < limsup,_ . G, < 1.

(if) {7} and {S,} are strongly quasi-nonezpansive sequences and {3, } is a sequence

in (0,1) satisfying limsup,,_, . G, < 1.

Then the sequence {z,} defined by (3.1) converges strongly to an element w € F and
the following inequality holds,

(vf—A)w,gq—w) <0, VgeF.
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When S,, = I and 3, = 0 in Theorem 3.2.1, we have the following result.

Corollary 3.2.6. Let C be a nonempty closed convex subset of a Hilbert space H,
{T,.} be a strongly quasi-nonezpansive sequence of C into H satisfying the NST-
condition and F({T,}) # @, f be a k - Lipschitzian continuous operator on H with
k > 0. Let A be an operator on H withn > 0 and 0 < £ < 1/n such that I — pA
is an (1 — pn)-contraction for every 0 < p < §. Suppose that {a,} is a sequence in
(0,1) satisfying lim, .o 0, =0 and ) 2 &, = 00, and 0 < y < n/k. Let {z,} be a
sequence defined by

Ty =€ C,
(3.18)

Tny = Fe (an'Yf(xn) oo ol Q,,A)T,;In), Vn € N.
Then the sequence {z,} converges strongly to an element w € F({T,}) and the
following inequality holds,

(vf — Aw,q—w) <0, Vge F{T,}).
By Corollary 3.2.6 and Lemma 3.2.2, we obtain the following result.

Corollary 3.2.7. Let C be a nonempty closed conver subset of a Hilbert space
H, {T,} be a strongly quasi-nonezpansive sequence satisfying NST-condition and
F({T,}) # @, f be a k - Lipschitzian continuous operator on H with k > 0. Let A
be a §-strongly monotone and L-Lipschitzian continuous operator on H with 5 > 0
and L > 0. Suppose that {an} is a sequence in (0,1) satisfying lim, .o, a, = 0
and ) " o, = 00, and 0 < v < 5/2k. Then the sequence {z,} defined by (3.18)
converges strongly to w € F({T,}) and the following inequality holds,

((0f — Aw,q—w) <0, Vge F{T.}).
By Theorem 3.2.6 and Lemma 3.2.4, we obtain the following result.

Corollary 3.2.8. Let C be a nonempty closed conver subset of a Hilbert space
H, {T,} be a strongly quasi-nonexpansive sequence satisfying NST-condition and
F({T.}) # @, f be a k - Lipschitzian continuous operator on H with k > 0. Let A
be a strongly positive bounded linear operator on H with 5 > 0. Suppose that {a,} is
a sequence in (0,1) satisfying lim, .., =0 and ) ", 0 = 00, and 0 < y < ¥/k.
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Then the sequence {z,} defined by (3.18) converges strongly to w € F({T,}) and the
following inequality holds,

(7f - Aw,q—w) <0, Vge F{T.}).

Theorem 3.2.9. Let C' be a nonempty closed conver subset of a Hilbert space H,
{T..} be a sequence of quasi-nonexpansive mappings of C into H satisfying the NST-
condition and F({T,}) # @, f be a k - Lipschitzian continuous operator on H with
k > 0. Let A be an operator on H withn > 0 and 0 < £ < 1/n such that I — pA
is an (1 — pn)-contraction for every 0 < p < £. Suppose that {a,,} and {B,} are a
sequences in (0,1) satisfying lim, .o 0 =0 and Y - | o, = 00, 0 < liminf, .o G, <

liminf, .o 8, <1, and 0 <y < n/k. Let {z,} be a sequence defined by

=z €C,
\ ¥ = FaZn + (1 — Ba) s, (3.19)

| Zn1 = Po(onf(zn) + (I = anA)ya), VneN.

Then the sequence {z,} converges strongly to an element w € F({T,}) and the
following inequality holds,

(vf — A)w,q—w) <0, Vge F{T,}).

Proof. Set §n =1, ’ﬁ, = Gl + (1 — Bp)Th, @n = oy and En = (. Define a sequence
{’fn} by
.:El =TI € C,

T = Po(@nrf (&) + (I - @8, A)TH3,), (3.20)

Zat1 = Po(BaZn + (1 — Ba)Salhn), VneEN.

By Lemma 2.3.11, {Tn} is a strongly quasi-nonexpansive sequence and
F({T,}) = F({T..}). Moreover, the iterative schemes (3.19) and (3.20) are equivalent.
Applying Theorem 3.2.1, we conclude that {z,} converges strongly to an element

w € F({T,}) and the following inequality holds,

(vf = A)w,q—w) <0,

for all ¢ € F({Tn}). O
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By Theorem 3.2.9 and Lemma 3.2.2, we obtain the following result.

Corollary 3.2.10. Let C' be a nonempty closed convex subset of a Hilbert space H,
{T,} be a sequence of quasi-nonezpansive mappings of C into H satisfying NST-
condition and F({T,}) # @, f be a k - Lipschitzian continuous operator on H with
k > 0. Let A be a ¥-strongly monotone and L-Lipschitzian continuous operator
on H with ¥ > 0 and L > 0. Suppose that {a,} and {3,} are a sequences in (0,1)
satisfying limy, oo an = 0 and Y oo | @y = 00, 0 < liminf, .o B, < liminf, . Bn < 1,
and 0 < v < 7/2k. Then the sequence {x,} defined by (3.19) converges strongly to
w € F({T,}) and the following inequality holds,

(vf = Aw,q—w) <0, Vg€ F{Tn}).

Remark 3.2.11. When 7,, =T and 3, = w € (0,1) in Corollary 3.2.10, then result

extends and improves [32, Theorem 3.1].
By Theorem 3.2.9 and Lemma 3.2.4, we obtain the following result.

Corollary 3.2.12. Let C be a nonempty closed conver subset of a Hilbert space
H, {T,} be a strongly quasi-nonezpansive sequence satisfying NST-condition and
F({T,}) # @, f be a k - Lipschitzian continuous operator on H with x > 0. Let A
be a strongly positive bounded linear operator on H with 5§ > 0. Suppose that {a,}
and {(3,} are a sequences in (0,1) satisfying lim,_oc 0, = 0 and > 2 a, = 00,
0 < liminf, .o By < liminf, .o 3, <1, and 0 < v < 5/k . Then the sequence {z,}
defined by (3.19) converges strongly to w € F({T,}) and the following inequality
holds,
(vf = Aw,q—w) <0, Vge F({T.}).

Remark 3.2.13. When 7,, =T and 3, = w € (0, 1) in Corollary 3.2.12, then result

extends and improves [33, Theorem 3.1].
When A =1 and v =1 in Theorem 3.2.1, we have the following result.

Theorem 3.2.14. Let C be a nonempty closed convex subset of a Hilbert space H,
{S.} and {T,,} be two quasi-nonexpansive sequences of C into H satisfying the NST-
condition and F := F({S,}) N F({T.}) # @, f be a k - contraction continuous
operator on H with k > 0. Suppose that {a,} is a sequence in (0,1) satisfying

lim, oo 0 =0 and > o, @, = 00. Assume one of the following conditions hold:
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(i) {Tn} or {Sa} is a strongly quasi-nonezpansive sequence and {f3,} is a sequence
in (0,1) satisfying 0 < liminf, . 3, < limsup,_, G, < 1.

(i) {Tn} and {S,} are strongly quasi-nonezpansive sequences and {3, } is a sequence
in (0,1) satisfying limsup,,_, . B, < 1.

Let {z,} be a sequence defined by

,

=€ C,
1 % = Po(anf(zn) + (1 — an)Thza), (3.21)

{In+1 == PC(ﬂnxn + (1 - ﬁn)Snyn): Vn eN.

Then the sequence {z,} converges strongly to an element w € F and the following
inequality holds,
(f(w) —w,q-w) <0, Vg€F.

Since every strongly nonexpansive sequence with a nonempty common fixed

point set is strongly quasi-nonexpansive, we obtain the following result.

Corollary 3.2.15. Let C be a nonempty closed convex subset of a Hilbert space
H, {S,} and {T,} be two nonexpansive sequences of C into H satisfying the NST-
condition and F := F({S,}) N F({T,.}) # @, f be a k - Lipschitzian continuous
operator on H with k > 0. Suppose that {a,} is a sequence in (0,1) satisfying

limy, oo an = 0 and Yo" | @, = 00. Assume one of the following conditions hold:

(i) {T.} or {S.} is a strongly nonerpansive sequence and {3,} is a sequence in

(0,1) satisfying 0 < liminf, .. G, < limsup,_, G, < 1.

(i) {Tn} and {S,} are strongly nonexpansive sequences and {f3,} is a sequence in

(0,1) satisfying limsup,,_, . 3, < 1.

Then the sequence {z,} defined by (3.21) converges strongly to an element w € F
and the following inequality holds,

(f(w) —w,q—w) <0, Vge€F.

Remark 3.2.16. Our Corollary 3.2.15 extends and improves [2, Theorem 3.1] in the

following way:
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(1) The R-condition is removed.
(2) The restriction condition

lim 8, =0 or 0< liminf3, <limsupfg, <1

n—oo n n—0o

is weakened and replaced by limsup,,_, ., 3, < 1 whenever {S,} and {T,} are

both strongly nonexpansive sequences.

(3) The class of contraction mappings is wider than the class of constant mappings.
When S, =TI and 3, = 0 in Theorem 3.2.14, we have the following result.

Theorem 3.2.17. Let C be a nonempty closed conver subset of a Hilbert space
H, {T,} be strongly quasi-nonezpansive sequence of C into H satisfying the NST-
condition and F({T,}) # @, f be a k - contraction continuous operator on H with
k > 0. Suppose that {a,} is a sequence in (0,1) satisfying lim, .. o, = 0 and
Yomey @ = 00. Let {z,} be a sequence defined by

23 =2 €EC,
(3.22)

Zn+1 = Pol(anf(z,) + (1 - an) Ty, Vn € N.
Then the sequence {x,} converges strongly to an element w € F({T,}) and the
following inequality holds,
(f(w) —w,g—w) <0, Vge F({T,}).

When T,, = T in Theorem 3.2.17, we have the following result.

Corollary 3.2.18 ([37, Theorem 3.1]). Let C' be a nonempty closed conver subset of
a Hilbert space H, T be a strongly quasi-nonezpansive mapping of C into H such that
I—=T 1s a demiclosed at zero and F(T') # @, f be a k - contraction continuous operator
on H with k > 0. Suppose that {a,} is a sequence in (0,1) satisfying lim,_..c a, = 0
and ) 7 an = 0o. Let {z,} be a sequence defined by

Iy =€ Ca

Tptl = Pc(anf(zn) +(1- an)T:rn), VYn € N.

Then {z,} converges strongly to w € F(T) and the following inequality holds,

(f(w) —w,q—w) <0, Vge F(T).
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3.3 Applications

Let C be a nonempty closed convex subset of a Hilbert space H. Let
g : C x C — R be a bifunction and let A : C — H be a nonlinear mapping. Then,

we consider the following equilibrium problem:
Find z € C such that g(z,y)+ (Az,y—2) >0 forall y e C. (3.23)
The set of such z is denote by EP(g, A), i.e.,
EP(g,A)={z€C:9(z,y) + (Az,y—z) >0 for all ye C}.

In the case of A =0, EP(g, A) is denoted by EP(g). In the case of g = 0, EP(g, A)
is denoted by VI(C, A). The equilibrium problem is very genefal in the sense that
it includes, as special case, optimization problems, variational inequalities, minimax
problems, the Nash equilibrium problem in noncooperative games.

For solving the equilibrium problem, let us assume that the bifunction g :

C x C — R satisfies the following conditions:
(Al) g(z,z)=0for all z € C;
(A2) g is monotone, i.e., g(z,y) + g(y,z) <0 for all z,y € C;

(A3) g is upper-hemicontinuous, i.e., for each z,y,z € C,

limsup g(tz + (1 — t)z,y) < g(z,y);

t—0+

(A4) g(z,-) is convex and lower semicontinuous for each z € C.

The following lemma was given in Combettes and Hirstoaga [9] and Takahashi, Taka-
hashi and Toyoda [27].

Lemma 3.3.1. Let C' be a nonempty closed conver subset of a Hilbert space H.
Assume that g : C x C — R satisfies conditions (A1) — (A4). Forr > 0, define a
mapping T, : H — C as follows:

1
Tr:r:={zGC’:g(z,y)—l—;(y—z,z—I)20, Yy e C}

for all z € H. Then the following hold:
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(1) T, is single-valued;
(2) T, is a firmly nonezpansive mapping, i.e., for all z,y € H,

”T,-:I: - Try“2 < (T,.I ~Ly,z— y);

(3) F(T;) = EP(9);
(4) EP(g) is closed and convex.
We call such T, the resolvent of g for r > 0.

Lemma 3.3.2 ([35, Lemma 4.4]). Let C' be a nonempty closed conver subset of a
Hilbert space H, let g : C x C — R satisfying conditions (A1) — (A4) and let r > 0.
Let a > 0 and let A be an a-inverse-strongly monotone mapping of C into H with

EP(g,A) # @, then

2aa —r

IT(I = rA)z — ul® < ||z — ul|® - IT-(I - rA)z — z|?

2c

forallz € C andu € F(T,(I —rA)) = EP(g, A). Furthermore, if 0 < r < 2a, then
T.(I —rA) is a nonexpansive mapping of C into itself.

Lemma 3.3.3 ([35, Lemma 4.5]). Let C' be a nonempty closed conver subset of a
Hilbert space H, let g be a bifunction from H x H into R satisfying (Al) — (A4).
Let A be an a-inverse-strongly monotone mapping of C into H with a > 0 and

EP(g,A) # @. Let {R,} be a sequence of mappings of C into itself defined by
R, =T, (I —ry,A),

for alln € N, where {r,} is a sequence in (0, 00) satisfying liminf, .. r, > 0. Then
{R,} is a strongly nonezpansive sequence satisfying NST-condition and

F({Rn}) = EP(g, A).

Now, we apply Theorem 3.2.6 to the following strong convergence theorem
for finding a common solution of a common fixed point problem for a sequence of

nonexpansive mappings and of an equilibrium problem for a bifunction in a Hilbert

space.
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Theorem 3.3.4. Let C be a nonempty closed conver subset of a Hilbert space H.
Let g be a bifunction from C x C into R satisfying conditions (A1) — (A4). Let A
be an operator on H with n > 0 and 0 < £ < 1/n such that I — pA is an (1 — pn)-
contraction for every 0 < p < £ and B be an a-inverse-strongly monotone mapping
of C into H. Let {T,} be a sequence of nonezpansive mappings of C into H such
that Q@ = F({T,})NEP(g, B) # @ and f be a - Lipschitzian continuous operator on
H with k > 0. Let {un} be a sequence in (0,1). Let W,, be a W-mapping of C into
H generated by Ty, Th-1, ..., T\ and pin, pin—1, ..., 1. Suppose that {a,} is a sequence
in (0,1) such that lim,—.oc an =0 and Y -, an = 00, {r,} is a sequence in [c,d] for
some ¢,d € (0,2a), and 0 <y < n/k. Let {z,} and {u,} be sequences generated by
)=z €C and

9(tn,y) + (BZn, Y — tn) + 7-(y — Un,un — 72} 20, VyeC, (3.24)

Tpnt1 = PC(an7f($n) ¥ (I - anA)Wnun)a Vn € N.
Then both {z,} and {u,} converge strongly to w € 2, which is the unique solution of
the variational inequality

(A=~vf)w,w—q) >0, YgeQ.

Proof. Let R, = T, (I — r,B)z, and T, = W,.R,. By Lemmas 2.3.13, 2.3.14 and
3.3.3, we get {fn} is a strongly nonexpansive sequence satisfying NST-condition and
F({T,}) = F({W.}) n EP(g, B) = F({T.}) N EP(g, B) # @. Moreover, the
sequences {z,} and {u,} defined by (3.24) can be rewrite by

=1z € C,
(3.25)

Tpntl = PC(an’Yf(In) * (I = anA)Tnxn)s Vn e N.

Applying Theorem 3.2.6, we conclude that {z,} and {u,} converge strongly to w € (,

which is the unique solution of the variational inequality

(A=vflw,w—q) >0, VYgeQ.

By Theorem 3.3.4 and Lemma 3.2.2, we obtain the following result.
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Corollary 3.3.5. Let C be a closed convex subset of a Hilbert space H. Let g be a
bifunction from C x C into R satisfying (A1) — (A4). Let A be a y-strongly monotone
and L-Lipschitzian continuous operator on H and B be an a-inverse-strongly

monotone mapping of C into H. Let {T,,} be a sequence of nonerpansive mappings
of C into H such that @ = F({T,}) N EP(g9,B) # @ and f be a k- Lipschitzian
continuous operator on H with k > 0. Let {u,} be a sequence in (0,1). Let W, be
a W-mapping of C into H generated by T,,,T,—1, ..., 71 and pin, pin—1, ..., 1. Suppose
that {an} is a sequence in (0,1) such that lim, ..o an = 0 and Y oo | an, = 00, {rs}
is a sequence in [c,d] for some c,d € (0,2a), and 0 < v < 5/2k. Then both {z,}
and {u,} defined by (3.24) converge strongly to w € 2, which is the unique solution

of the variational inequality
(A-vflw,w—q) 20, VgeN.
By Theorem 3.3.4 and Lemma 3.2.4, we obtain the following result.

Corollary 3.3.6. Let C be a closed convex subset of a Hilbert space H. Let g be a
bifunction from C x C into R satisfying (A1) — (A4). Let A be a strongly positive
bounded linear operator on H with 5 > 0 and B be an a-inverse-strongly monotone
mapping of C into H. Let {T,,} be a sequence of nonexpansive mappings of C into
H such that Q = F({T,}) N EP(g,B) # @ and f be a k- Lipschitzian continuous
operator on H with k > 0. Let {i,} be a sequence in (0,1). Let W,, be a W-mapping
of C into H generated by T,,T,,_1,...,Ty and pin, pin_1, ..., p11. Suppose that {ay} is
a sequence in (0,1) such that lim, ..o, =0 and Y oo, @, = 00, {r,} is a sequence
in [c,d] for some c,d € (0,2a), and 0 <y <7¥/k. Then both {z,} and {u,} defined
by (3.24) converge strongly to w € 0, which is the unique solution of the variational
inequality
(A=vflw,w—q) >0, VYge.

When B = 0 in Theorem 3.3.4, we have the following result.

Theorem 3.3.7. Let C be a closed conver subset of a Hilbert space H. Let g be
a bifunction from C x C into R satisfying (A1) — (A4). Let A be operator on H
with n > 0 and 0 < § < 1/n such that I — pA is an (1 — pn)- contraction for every
0<p<& Let {T,} be a sequence of nonexpansive mappings of C into H such that



36

Q= F{Tn}) N EP(g9) # @ and f be a k- Lipschitzian continuous operator on H
with k > 0. Let {u,} be a sequence in (0,1). Let W, be a W-mapping of C into H
generated by T, Th—1,...,T1 and pn, pn_1, ..., 1. Suppose that {a,} is a sequence in
(0,1) such that lim, .o, = 0 and Y .. o, = 00, {rn} is a sequence in [c,d| for
some ¢,d € (0,2a), and 0 < v < n/k. Let {z,} and {u,} be sequences generated by
1=z €C and

g(uiy)-}-,-l‘(y_uﬂ!un_xﬂ)zos Vyeca
" " (3.26)

Tt = Pc(Otn’Yf(.’Cﬂ) + (I - anA)Wnun)'l Vn € N.
Then both {z,} and {u,} converge strongly to w € Q, which is the unique solution of

the variational inequality
(A-7flw,w—q) 20, VgeQ.
By Theorem 3.3.7 and Lemma 3.2.2, we obtain the following result.

Corollary 3.3.8. Let C be a closed convex subset of a Hilbert space H. Let g be a
bifunction from C x C into R satisfying (A1) —(A4). Let A be a y-strongly monotone
and L-Lipschitzian continuous operator on H with ¥ > 0 and L > 0. Let {T,} be
sequence of nonexpansive mappings of C into H such that Q@ = F({1,,})NEP(g) # @
and f be a k- Lipschitzian continuous operator on H with k > 0. Let {u,} be a
sequence in (0,1). Let W,, be a W-mapping of C into H generated by T,,,T,,_1, ..., T}
and fin, fn—1, ..., 1. Suppose that {a,} is a sequence in (0, 1) such that lim, .., a, =0
and Y7 a, =00, {r,} is a sequence in [c,d| for some c,d € (0,2a), and 0 <y <
5/2k. Then both {z,} and {u,} defined by (3.26) converge strongly to w € Q, which

is the unique solution of the variational inequality
((A_ff)waw_‘?)zoa VqEQ
By Theorem 3.3.7 and Lemma 3.2.4, we obtain the following result.

Corollary 3.3.9 ([21, Theorem 3.1]). Let C be a closed convex subset of a Hilbert
space H. Let g be a bifunction from C x C into R satisfying (A1) — (A4). Let A be a
strongly positive bounded linear operator on H with5 > 0. Let {T,,} be a sequence of
nonezpansive mappings of C into H such that @ = F({T,,}) N EP(g) # @ and f be a
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k- Lipschitzian continuous operator on H with k > 0. Let {u,} be a sequence in (0,1).
Let W,, be a W-mapping of C into H generated by T,,,T,_1, ..., and pin, pin—1, ---, H1-
Suppose that {ay} is a sequence in (0, 1) such thatlim,_.c0n, =0 and Y . | an = 00,
{rn} is a sequence in [c,d] for some c,d € (0,2a), and 0 < v < 5/k. Then both {z,}
and {u,} defined by (3.26) converge strongly to w € 2, which is the unique solution
of the variational inequality

(A=vflw,w—q) >0, VqeN.

By Theorem 3.2.1 and Lemma 2.3.19, we obtain the following result which
is a strong convergence theorem for finding a common solution of a common fixed
point problem for a sequence of quasi-nonexpansive mappings and of a monotone

inclusion problem for the sum of two monotone mappings in a Hilbert space.

Theorem 3.3.10. Let C' be a nonempty closed convex subset of a Hilbert space H,
{S,.} be a quasi-nonezpansive sequence of C into H satisfying the NST-condition. Let
A be an operator on H withn >0 and 0 < £ < 1/ such that I — pA is an (1 — pn)-
contraction for every 0 < p < £ and B be an a—inverse-strongly monotone mapping
of C into H and E be a mazximal monotone operator on H such that
Q=F{S.})N(B+E)'(0) # 2. Let f be a k - Lipschitzian continuous

operator on H. Suppose that {a,} is a sequence in (0,1) satisfying

lim, .o, = 0 and z:’f:l a, = 00, {M\,} be a sequence of positive real numbers
satisfying 0 < liminf, . A, < limsup,_, A, < 2q, and 0 < v < n/k. Assume one

of the following conditions hold:
(i) {Bn} is a sequence in (0,1) satisfying 0 < liminf,_, 3, < limsup,_, . G, < 1.

(ii) {Sn} is a strongly quasi-nonezpansive sequences and {3,} is a sequence in (0,1)

satisfying limsup,,_, . 3, < 1.

Let {z,} defined by

$1=IEC,

¥ = Po(envf(zn) + (I — anA)((I + ME) (I = \,B))z,), (3.27)

Zpii = Pg(ﬁn:ﬂn +(1- ﬁn)Snyn), Vn € N.
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Then the sequence {z,} converges strongly to an element w € 2 and the following
inequality holds,
(Wf —Aw,p—w) <0, VpeQ.

By Theorem 3.3.10 and Lemma 3.2.2, we obtain the following result.

Corollary 3.3.11. Let C be a nonempty closed convex subset of a Hilbert space H,
{S,} be a quasi-nonezpansive sequence of C into H satisfying the NST-condition. Let
A be a §-strongly monotone and L-Lipschitzian continuous operator on H with 5 > 0
and L > 0. Let B be an a—inverse-strongly monotone mapping of C into H and E be
a mazximal monotone operator on H such that 2 = F({S,})N(B+ E)~*(0) # @. Let
f be a k - Lipschitzian continuous operator on H with k > 0. Suppose that {a,} is
a sequence in (0,1) satisfying lim, oo an =0 and Y o an = 00, {A,} is a sequence
of positive real numbers satisfying 0 < liminf, .o A, < limsup,_, A < 2a, and

0 < v < 7/2k. Assume one of the following conditions hold:
(i) {Bn} is a sequence in (0,1) satisfying 0 < liminf, .. B, < limsup,_,, G < 1.

(ii) {S.} is a strongly quasi-nonezpansive sequences and {3,} is a sequence in (0,1)

satisfying limsup,,_, . f, < 1.

Then the sequence {z,} defined by (3.27) converges strongly to an element w €
and the following inequality holds,

(vf = Aw,p—w) <0, Vpe.
By Theorem 3.3.10 and Lemma 3.2.4, we obtain the following result.

Corollary 3.3.12. Let C be a nonempty closed convex subset of a Hilbert space H,
{S.} be a quasi-nonezpansive sequence of C into H satisfying the NST-condition.
Let A be a strongly positive bounded linear operator on H with 5 > 0 and B be an
a—inverse-strongly monotone mapping of C into H, and E be a mazimal

monotone operator on H such that 2 = F({S,})N(B+E)™'(0) # @. Let f be a k -
Lipschitzian continuous operator on H with k > 0. Suppose that {a,,} is a sequence
in (0,1) satisfying lim, ..o an, =0 and Y oo | an = 00, {\,} is a sequence of positive
real numbers satisfying 0 < liminf, .. A\, < limsup,_ A < 2a, and 0 < v < F/k.

Assume one of the following conditions hold:
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(i) {Bn} is a sequence in (0,1) satisfying 0 < liminf, .., 8, < limsup,_ .. G, < 1.

(i) {Sa} is a strongly quasi-nonezpansive sequences and {f3,} is a sequence in (0,1)

satisfying limsup,, . B, < 1.

Then the sequence {z,} defined by (3.27) converges strongly to an element w € Q
and the following inequality holds,

(vf - Aw,p—w) <0, Vpeq.
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CHAPTER IV
CONCLUSIONS

We summarize results as follow:

1. Let C be a nonempty closed convex subset of a Hilbert space H, {S,} and {7}

be two quasi-nonexpansive sequences of C' into H satisfying the NST-condition
and F := F({S,}) N F({T.}) # @, f be a k - Lipschitzian continuous operator
on H with k > 0. Let A be operator on H with n > 0 and 0 < £ < 1/n such
that I — pA is an (1 — pn)- contraction for every 0 < p < £&. Suppose that
{a,} is a sequence in (0, 1) satisfying lim, ..o 0, =0 and ) >’ @, = oo, and

0 < v < n/k. Assume one of the following conditions hold:
(i) {Tn} or {S,} is a strongly quasi-nonexpansive sequence and {f,} is a
sequence in (0, 1) satisfying 0 < liminf, . &, < limsup,_, G, < 1.
(ii) {T,} and {S,} are strongly quasi-nonexpansive sequences and {(,} is a

sequence in (0, 1) satisfying limsup,, . fn < 1.

Let {z,} be a sequence defined by

i

r,=x€C,
1 Yn = PC(O'nIYf(xn) #* (I - “nA)TnIn)s

Tny1 = PC (ﬁnxn + (1 = ﬂn)Snyn), Vn € N.

Then the sequence {z,} converges strongly to an element w € F and the

following inequality holds,

(vf—Aw,p—w) <0, VpeF.

. Let C be a nonempty closed convex subset of a Hilbert space H, {T,} be a

strongly quasi-nonexpansive sequence of C into H satisfying the NST-condition
and F({T,}) # @, f be a k - Lipschitzian continuous operator on H with x > 0.
Let A be an operator on H with n > 0 and 0 < £ < 1/ such that I — pA is an
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(1 — pn) - contraction for every 0 < p < £. Suppose that {a,} is a sequence in
(0,1) satisfying lim,_,oc & =0 and oo, @, = 00, and 0 < v < n/k. Let {z,}
be a sequence defined by

=z €C,

ZTny1 = Fo (an'Tf(In) + (I - anA)TnIn)a Vn € N.
Then the sequence {z,} converges strongly to an element w € F({7,}) and the

following inequality holds,

(vf—A)w,q—w) <0, Vqe F({T.}).

. Let C be a nonempty closed convex subset of a Hilbert space H, {T,} be

a sequence of quasi-nonexpansive mappings of C into H satisfying the NST-
condition and F({T,}) # @, f be a k - Lipschitzian continuous operator on H
with K > 0. Let A be an operator on H with n > 0 and 0 < £ < 1/7 such that
I — pAis an (1 — pn) - contraction for every 0 < p < £. Suppose that {a,}
and {f,} are a sequences in (0, 1) satisfying lim, .. a, =0and Y . a, = 00,
0 < liminf, . G, < liminf, .0, < 1, and 0 < v < p/k. Let {z,} be a

sequence defined by

’

i =3 €,
\ Yn = ﬁnxn + (]- - ﬂn)Tnxna

| Zns1 = Pc(anvf(zn) + (I — and)y,), VneN.

Then the sequence {z,} converges strongly to an element w € F({T,}) and the
following inequality holds,

(vf = Aw,q—w) <0, Vge F{T.}).

. Let C be a nonempty closed convex subset of a Hilbert space H, {S,} and

{T,.} be two quasi-nonexpansive sequences of C into H satisfying the NST-
condition and F := F({S,}) N F({T,.}) # @, f be a k - contraction continuous
operator on H with £ > 0. Suppose that {a,} is a sequence in (0, 1) satisfying
limp ooy = 0 and ) 7 @, = co. Assume one of the following conditions

hold:
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(i) {Tn} or {S,} is a strongly quasi-nonexpansive sequence and {3,} is a
sequence in (0, 1) satisfying 0 < liminf, . 8, < limsup,,_, ., Gn < 1.

(i) {7} and {S,} are strongly quasi-nonexpansive sequences and {3,} is a

sequence in (0, 1) satisfying limsup,,_, . 8, < 1.

Let {z,} be a sequence defined by

.

r,=z€C,
! Yn = PC(an(In) + (1= an)TnIn):

\-Tn+1 = Pc(ﬁn-’ﬂn + (1 - ﬁn)snyn)a Vn € N.

Then the sequence {z,} converges strongly to an element w € F and the

following inequality holds,

(f(w) —w,g—w) <0, VgeF

. Let C be a nonempty closed convex subset of a Hilbert space H. Let g be
a bifunction from C x C into R satisfying conditions (Al) — (A4). Let A
be an operator on H with 7 > 0 and 0 < £ < 1/5 such that I — pA is an
(1 — pn)- contraction for every 0 < p < £ and B be an a-inverse-strongly
monotone mapping of C into H. Let {7,} be a sequence of nonexpansive
mappings of C into H such that Q = F({T,,}) N EP(g,B) # @ and f be a -
Lipschitzian continuous operator on H with x > 0. Let {u,} be a sequence in
(0,1). Let W, be a W-mapping of C into H generated by T,,,T,,_1,...,77 and
My fbn—1, -+, 1. Suppose that {a, } is a sequence in (0, 1) such that lim, . an, =
0 and Y 7 an, = o0, {r,} is a sequence in [¢,d] for some ¢,d € (0,2a), and

0 <~v < n/k. Let {z,} and {u,} be sequences generated by z; = z € C and

g(una y) + (mey = un) + i(y — Up, Up — 3::1) >0, Vy S C'n

Tns1 = Po(anvf(z,) + (I — 0 A)Wyouy,), Vn € N

Then both {z,} and {u,} converge strongly to w € 2, which is the unique

solution of the variational inequality

(A=7N)w,w—q) 20, Vge.
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6. Let C' be a nonempty closed convex subset of a Hilbert space H, {S.} be a
i quasi-nonexpansive sequence of C into H satisfying the NST-condition. Let A
be operator on H with 7 > 0 and 0 < £ < 1/n such that I — pA is an (1 — pn)
- contraction for every 0 < p < £ and B be an a—inverse-strongly monotone
mapping of C' into H, and E be a maximal monotone operator on H such that
Q= F{S.})N(B+ E)(0) # @. Let f be a x - Lipschitzian continuous
operator on H with x > 0. Suppose that {a,} is a sequence in (0, 1) satisfying
lim,, oo, =0 and )., @, = 00, {\.} is a sequence of positive real numbers
satisfying 0 < liminf, . A\, < limsup,_, A < 2a, and 0 < v < n/k. Assume

one of the following conditions hold:
(i) {B.} is a sequence in (0, 1) satisfying

0 < liminf 3, < limsup 3, < 1.
n—oo

n—o0

(ii) {S.} is a strongly quasi-nonexpansive sequences and {/3,} is a sequence in

: (0,1) satisfying limsup,,_,. 3, < 1.
. Let {z,} defined by

r

Ty =I€E C,

9 Yn = PC(an'Yf(Iﬂ) + (I - anA)((I . ’\nE)_l(I . )“nB))mn)!

Tnt1 = Pc (ﬁnxn -+ (]- - ﬁn)Sﬂyn)a VneN.

Then the sequence {z,} converges strongly to an element w € Q and the

following inequality holds,

(vf - Aw,p—w) <0, Vpeq.
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