

รายงานการวิจัย

การคัดเลือกจุลินทรีย์ที่มีความสามารถสูงในการผลิตก๊าชไฮโดรเจน
Screening and isolation of hydrogen-producing microbes with high potential for bio-production of hydrogen

โดย

น.ส.สังวาลย์ แก่นโส

คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี

โครงการวิจัยนี้ได้รับทุนอุคหนุนการวิจัยจาก:เงินรายได้ของมหาวิทยาลัยอุบลราชธานีเพื่อการพัฒนา และสนับสนุนงานวิจัย ประจำปีงบประมาณ 2547

กิตติกรรมประกาศ
โครงการวิจัยนี้เสร็จสมบูรณ์ได้ด้วยดี โดยได้รับการสนับสนุนและช่วยเหลือของผู้เกี่ยวข้องหลาย ฝ่าย ขอขอบคุณ ตร. ณิชารัตน์ สวาสดิพันธ์ ที่ให้ความอนุเคราะห์สารเคมีที่ขาคพร้อมทั้งคำปรึกษาและ ข้อเสนอแนะอันเป็นประโยชน์ต่อโครงการเป็นอย่างดีตลอดมา ขอขอบคุณ คร.อรัญญา พิมพ์มงคล ที่ให้ คำแนะนำเทคนิคการใช้ SEM และ TEM ขอขอบคุณทุกท่านที่มีส่วนช่วยให้โครงการนี้สำเร็จลุล่วงที่ ไม่ได้เอ่ยนามในที่นี้ อนึ่งโครงการวิจัยนี้ได้รับการสนับสนุนทางการเงินจากทุนอุดหนุนจากเงินรายได้ ของมหาวิทยาลัยอุบลราชธานีเพื่อการพัฒนาและสนับสนุนงานวิจัย งานส่งเสริมการวิจัยฯ กองแผนงาน สำนักงานอธิการบดี มหาวิทยาลัยอุบลราชธานี จึงขอขอบคุณไว้ ณ ที่นี้ด้วย

ดร. สังวาลย์ แก่นโส
กุมภาพันธ์ 2548

บทคัดย่อ

จากการคัดแยกเชื้อแบคทีเรียจากตัวอย่างแม่น้ำโขงและน้ำพุ้อน สามารถคัดแยกได้ทั้งรมด 47 isolate เป็นเชื้อที่สร้งงก็าซได้ 11 isolate เชื้อที่ผลิตก๊าซได้คีมี 2 isolate คือ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ ซึ่ง ผลิตก็าซได้ 2.5 ml และ 4.0 ml ตามลำดับ เมื่อเลี้ยงในอาหาร NB pH 7.0 ที่อุณหภูมิห้องเป็นเวลา 144 ชั่วโมง จากการนำเชื้ที่ผลิตก๊าซได้สูงที่สุด 2 isolate มาศึกษาถึงสภาวะที่เหมาะสมต่อการเจริญ พบว่า เชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ เจริญได้ในช่วง $\mathrm{pH} 4.0-8.0$ (pH growth range) และช่วง@ุณหภูมิ $20-50^{\circ} \mathrm{C}$ (temperature growth range) ส่วนการศึกษาความสามารถในการสร้างก๊าซรวมและประสิทธิภาพในการ สร้างก็าซไฮโครเจนในสภาวะต่างๆ พบว่า สภาวะที่เชื้อทั้ง 2 isolate สร้างก๊าซได้ปริมาตรมากที่สุดคือ ที่ pH 7.0 และที่อุณหภูมิ $35^{\circ} \mathrm{C}$ โดยเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ สร้างได้ 5.4 ml และ $\mathrm{KRS} 4 \mathrm{C} / 6$ สร้างได้ 5.2 ml ในอาหาร NB 30 ml อย่างไรก็ตาม สัดส่วนของก๊าซไฮโดรเจนที่ผลิตได้นั้น คิดเป็นเพียง 74.07% และ 73.07% ตามลำดับ ส่วนสภาวะที่ให้ประสิทธิภาพในการสร้างกัาซไฮโดรเจนสูงสุดสำหรับเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ คือที่ pH 6.0 (สร้างก๊าซไฮโดรเจนได้ 1.9 ml จากปริมาณก๊าซรวม 2.2 ml คิคเป็น 86.36%) ที่อุณหภูมิ $45^{\circ} \mathrm{C}$ (สร้างก๊าซไฮโครเจนได้ 1.2 ml จากก๊าซรวม 1.4 ml คิคเป็น 85.71%) สำหรับเชื้อ $\mathrm{KRS4C/6}$ คือที่ pH 6.0 และ pH 7.5 (สร้างกึาๆไไฮโดรเจนได้ 3.0 ml จากปริมาณก๊าซรวม 3.7 ml คิดเป็น 81.08%) ที่อุณหภูมิ $45^{\circ} \mathrm{C}$ (สร้างก๊าซไฮโดรเจนได้ 1.5 ml จากก็าซรวม 1.8 ml คิดเป็น 83.34%)

การจัดจำแนกเชื้อแบคทีเรีย พบว่าเชื้อ KRS4B/5 และ KRS4C/6 จัตอยู่ใน Genus Paenibacillus จากการวิเคราะห์ลำดับเบสของยีน 16 s rRNA พบว่าเชื้อ $\mathrm{KRS4C/6}$ มีลำคับเบสที่คล้ายกับเชื้อ Paenibacillus polymyxa ถึง $98 \%(98 \%$ similarity) และลักษณะทางสัณฐานวิทยาและชีวเคมีก็สยคคล้อง ส่วนเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ ถึงแม้จะมีลำดับเบสคล้ายกับเชื้อ P. polymyxa ถึง 97% แต่มีลักษณะทางสัณฐานวิทยา และชีวเคมีที่แตกต่างจาก P. polymyxa

Abstract

The total of 47 isolates has been obtained from Khong river soil samples and Mai Chan hot spring and ten of them can produce gas. Isolates KRS4B/5 and KRS4C/6 grown in NB medium pH 7.0 at room temperature for 144 h . produced total gas of 2.5 ml and 4.0 ml respectively. Both isolates have temperature growth range of $20-50^{\circ} \mathrm{C}$ and pH growth range of $4.0-8.0$. In this study, performance in gas production by $\mathrm{KRS} 4 \mathrm{~B} / 5$ and $\mathrm{KRS} 4 \mathrm{C} / 6$ in 30 ml NB medium pH 7.0 at $35^{\circ} \mathrm{C}$ yielded 4 ml and $3.8 \mathrm{ml} \mathrm{H}_{2}$ gas from total gas volume of 5.4 ml and 5.2 ml , calculated to 74% and $73 \% \mathrm{H}_{2}$ content respectively. However, highest H_{2} gas contents of 86% and 83% could be obtained by culturing KRS4B/5 and KRS4C/6 respectively at $45^{\circ} \mathrm{C} \mathrm{pH} 7.0$, although under this condition the total H 2 gas volume obtained was markedly reduced to 1.2 ml and 1.5 ml . From 16 S rRNA gene analysis $\mathrm{KRS} 4 \mathrm{~B} / 5$ and $\mathrm{KRS} 4 \mathrm{C} / 6$ were placed within the vicinity of genus Paenibacillus with percentage similarities of 97% and 98% respectively with P. polymyxa.

สารบัญ

(. หน้า
กิตติกรรมประกาศ 2
บทคัดย่อ 3
Abstract 4
สารบัญ 5
สารบัญตาราง 6
สารบัญภาพ 7
คำอธิบายสัญลักษณ์ 8
บทนำ 9
วัตถุประสงค์ของโครงการวิจัย 10
เนื้อเรื่อง: การตรวจเอกสาร 11
อุปกรณ์และวิธีการทดลอง 12
ผล และสรุปผลการทดลอง 16
สรุปผลการวิจัย 29
ข้อวิจารณ์ 30
ข้อเสนอแนะ (Suggestion and Future Direction) 30
บรรณานุกรม 31
ภาคผนวก ก: การเตรียมอาหารเลี้ยงเชื้อและสารเคมี 33
ภาคผนวก ข: Biochemical Test 34
ประวัตินักวิจัย (Curriculum Vitae) 37

สารบัญตรราง

ตารางที่ หน้าที่

1. ลักษณะเชื้อที่คัดเยกได้จากตัวอย่างคินแม่น้ำโขงที่ Aerobic condition 16
2. สักษณะเชื้อที่คัดเยกได้จากตัวอย่างดินแม่น้ำโขงที่ Anaerobic condition 17
3. ลักษณะเชื้อที่คัดแยกได้จากตัวอย่างน้ำพุร้อนที่ Aerobic condition 18
4. การเจริญและการสร้างก๊าซซของเชื้อ เชื้อ KRS4B/5 และ KRS4C/6 19
5. ปริมาณก๊๊ซทั้งหมดที่เชื้อทั้ง 2 isolates สร้างในเวลา 144 ชั่วโมง 20
6. ปริมาณก๊ๆซทั้งหมดและก๊าซ H 2 ที่ ทื้้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ 21
7. ปริมาณก๊าซที่เชื้อสร้างใด้ในอาหาร NB pH 7 ปริมาตร 30 ml ที่อุณหภูมิต่างๆ 22
8. ความสามารถในการต้านทานต่อยาปฏิธีชีนะของเชื้อ $K R S ~ 4 B / 5$ และ 23
KRS 4C/6
9. ผล Biochemical test ของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ 24
10. ผลการเปรียบเทียบลำดับเบสของ 16 S rRNA sequence ของเชื้อ $\mathrm{KR} \uparrow .4 \mathrm{~B} / 5$ และ 27
$\mathrm{KRS} 4 \mathrm{C} / 6$ กับฐานข้อมูลของ RDP
11. เปรียบเทียบลักษณะเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ กับเชื้อที่ทราบชนิคแล้วใน genus 28

สารบัญภาพ

2. ปริมาณก๊าซที่เชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ สร้างในเวลา 144 ชั่วโมง เมื่อเลี้ยงในอาหาร 13 NB pH 7.0 ปริมาตร 30 ml ที่อุณหภูมิห้อง
3. ลักษณะโคโลนี และเซลล์ของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$: 22
4. ลักษณะโคโลนีและเซลล์ของเชื้อ $\mathrm{KRS} 4 \mathrm{C} / 6$ 23
5. ภาพ agarose gel electrophoresis ของ Genomic DNA สกัดจากเชื้อ KRS4B/5 และ 25 $\mathrm{KRS} 4 \mathrm{C} / 6$ ด้วยวิธี $\mathrm{CTAB} / \mathrm{NaCl}$
6. PCR product จากการเพิ่มปริมาณ 16 S rRNA gene ของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$

คำอธิบายสัญลักษณ์

```
\begin{tabular}{ll}
\(\mu \mathrm{l}\) & Microliter \\
\(\mu \mathrm{m}\) & Micrometer
\end{tabular}
Blastn Basic Local Alignment Search Tool Nucleotide)
BioEdit Nucleic acid sequence editing program
cm Centimeter
\({ }^{\circ} \mathrm{C} \quad\) Degree Celcious
CTAB/NaCl
\(\mathrm{dH}_{2} \mathrm{O}\) De-ionized water
DNA Deoxyribonucleic Acid
g Gram
L, 1 Litter
ml Milliliter
\(\mathrm{mm} \quad\) Millimeter
M Molar
N Normality
NA Nutrient agar
NB Nutrient broth
\(\mathrm{OD}_{660}\) Optical density at 600 nanometer
PCR Polymerase Chain Reaction
rpm Round per minute
rRNA Ribosomal RNA
RDP Ribosomal Database Project
RNA Ribonucleic Acid
SDS Sodium Dodesyl Sulfate
TE Tris EDTA
\(\mathrm{v} / \mathrm{v} \quad\) Volume by volume
vol. Volume
```

บทนำ
ปัจจุบันทั่วโลกประสบปัญหาอันสืบเนื่องมาจากปัญหาสิ่งแวดล้อมเป็นพิษอย่างหนักหน่วงและ เพิ่มความรุนแรงขึ้นเรื่อยๆ ดังที่ประสบอยู่ การเพิ่มจำนวนประชากรอย่างรวคเร็วทำให้ความต้องการใช้ พลังงานและทรัพยากรมีเพิ่มมากขึ้นด้วย ปัญหาปริมาณขยะที่เพิ่มขึ้นเกินความสามารถในการกำจัดและ ปัญหาสิ่งแว่ดล้อมเป็นพิษจึงเป็นผลที่ตามมาอย่างหลีกกลี่ยงไม่ได้

แหล่งพลังงานหลักที่ทั่วโลกใช้กันอยู่ในปัจจุบันคือพลังงานที่อยู่ในรูปฟอสซิล เช่น ปีโตรเลียม และถ่านหินซึ่งเป็นที่ทราบกันดีว่าการเผาไหม้ของปีโตรเลียมส่งผลให้เกิดก๊าซคาร์บอนไดออกไซด์ สะสมในบรรยากาศของโลกเพิ่มขึ้นเรื่อยๆ ซึ่งก๊าซคาร์บอนไดออกไซด์นั้นเป็นสาเหตุหนึ่งที่ทำให้เกิด สภาวะเรือนกระจกอันส่งผลให้อุณหภูมิของโลกเพิ่มสูงขึ้น ส่งผลกระทบต่อสภาวะของโลกโดยรวม ทั้งสภาวะโลกร้อน สภาวะการแห้งแล้งที่ยาวนาน และการเปลี่ยนแปลงของสภาพภูมิอากาศที่รุนแรง เป็นตัวอย่างผลกระทบที่เห็นได้อย่างชัดเจนดังที่ประสบอยู่ในปัจจุบัน

ด้วยสาเหตุนี้จึงมีการศึกษาและวิจัย เพื่อนำไปสู่การใช้พลังงานหมุนเวียนแทนการใช้พลังงาน จากฟอสซิล ตัวอย่างพลังงานหมุนเวียนที่มีการค้นคว้าและนำมาใช้ในอคีตและปัจจุบัน เช่น พลังงานลม พลังงานน้ำ พลังงานแสงอาทิตย์ และพลังงานเชื้อเพลิงที่ได้จากน้ำมันพืชหรือเอธานอล และก๊าซมีเทนที่ ได้จากการหมักพืชและสารอินทรีย์ เป็นต้น แต่อย่างไรก็ตามเทคโนโลยีเหล่านี้ต่างก็มีข้อจำกัด เช่น กระแสลมที่ไม่เหมาะสม เซลล์แสงอาทิตย์ที่มีราคาแพง ตามแต่กรณี ส่วนการผลิตก๊าซมีเทนเพื่อใช้เป็น แหล่งพลังงานนั้นยังมีข้อด้อยคือ การเผาไหม้ของก๊าซมีเทนส่งผลให้เกิดาําซคาร์บอนไดออกไซด์ นอกจากนี้ ก๊าซมีเทนยังเป็นก๊าซที่ทำให้เกิดปรากฏการณ์เรือนกระจก

ปัญหาปริมาณขยะที่เพิ่มมากขึ้นเกินความสามารถในการกำจัดนั้น นอกจากจะส่งผลให้ สิ่งแวคล้อมรอบๆ เป็นพิษแล้ว ยังเป็นภาระของสังคมที่จะต้องจัดการ ทำให้สิ้นเปลืองพลังงานและ ค่าใช้จ่ายอีกเป็นจำนวนมหาศาล ปัญหาความไม่พอเพียงของพลังงานและความต้องการที่จะกำจัดขยะนี้ หากนำมาพิจารณาแล้วจะเห็นได้ว่ามีความเป็นไปได้สูงมากในการแก้ปัญหาทั้งสองควบคู่กันไป เนื่องจากขยะที่เกิดขึ้นในปริมาณมากๆ ส่วนใหญู่จะเต็มไปด้วยสารอินทรีย์ ซึ่งโดยปกติแล้วจะถูกย่อย สลายโดยจุลินทรียีที่มีอยู่ในธรรมชาติอยู่แล้ว การย่อยสลายสารอินทรีย์โดยจุลินทรีย์หลายชนิคส่งผลให้ เกิดก๊าซไฮโดรเจน เนื่องจากก๊าซไฮโดรเจนสามารถทำให้เกิดการเผาไหม้ได้อย่างสมบูรณ์ ซึ่งต่างจาก การเผาไหม้ของก๊าซมีเทน ก๊าซไฮโครเจนจึงเป็นอีกทางเลือกหนึ่งที่สามารถนำมาใช้ทดแทน ปิโตรเลียมและก๊าซธรรมชาติได้ เนื่องจากเป็นพลังงานที่ไม่ก่อปัญหาต่อสิ่งแวดล้อมอีกทั้งยังเป็นการ กำจัดหรือลดปริมาณขยะได้ด้วยหากขยะถูกนำมาใช้ในการผลิตก๊าซไฮโครเจน งานวิจัยที่เกี่ยวข้องกับการผลิตก๊าซไฮโครเจนจากวัสดุชืวภาพเพื่อใช้เป็นพลังงานนั้น ได้รับความสนใจอย่างแพร่หลายในขณะนี้ทั้งในประเทศสหรัฐอเมริกาและในยุโรป เพราะการผลิตก๊าซ ไฮโดรเจนโดย.ใช้จุลินทรีย์มีความเป็นไปได้สูงในการพัฒนากระบวนการผลิตให้มีต้นทุนในการผลิตต่ำ ได้ โดยเฉพาะการใช้ของเสียเป็น Substrate ในการผลิต จุลินทรีย์ที่มีความสามารถในการผลิตก๊าซ ไฮโดรเจนได้จะอยู่ในกลุ่มสาหร่ายและแบคทีเรีย โครงการนี้มุงเน้นจะศึกษาในกลุ่มของแบคทีเรียเพราะ

เลี้งงง่าย และมีอัตราการเจริญสูง จึนน่าจะสามารถควบคุมสภาวะต่างๆ ที่ส่งผลต่ออัตราการเจริญู และุุาร ผลิตก๊าซไฮโครเจนได้ง่าข ตลอคจนการเลี้ยงแบคทีเรียต้องการพื้นที่ไม่มากนัก ซึ่งแตกต่างจากการ เพาะเลี้ยงสาหร่าย ที่ต้องใช้พื้นที่มากในการรองรันแสงที่จำเป็นต่อการเเริญ แบคทีเรียที่สามารถผลิต ก๊าซไฮโดรเจนได้นั้นมีอยุ่หลายกลุ่ม ได้แก่ กลุ่มเทอร์โมไฟล์ กลุ่มโฟโตซินเทติก และกลุ่มแอนาโรบิก เป็นต้น และจากสกาพพื้นที่ของประเทศไทยที่มีทั้ง น้ำพุร้อน แหล่งน้ำและของเสียมากมาย จึงเป็นที่ น่าสนใจอย่างชิ่งที่จะมีการคัคแยกเชื้อเหล่านี้เพื่อนำมาใช้ในการผลิตก๊าซไฮโครเจนและกำจัดของเสีย ไปด้วยในขณะเดียวกัน คังนั้นผู้วัจัอจึงมองเห็นความต้องการในการหาความรู้ที่จะนำไปสู่การ ประยุกต์ใช้ในการบำบัคของเสียและเปลี่ยนรูปสารที่ไม่ต้องการให้มีคุณค่ในรูบของพพลังงานได้

วัตถุประสงค์ของโครงการวิจัย

วัตถุประสงค์ของโครงการวิจัยมีดังนี้

1. คัดเลือกเพื้อแบคทีเรียที่มีความสามารถในการผลิตก๊าซไฮโดรเจน จากแหล่งธรรมชาติ
2. ศึกษาสภาวะที่หหมาะสมในการเริญมเละสร้างก๊าซ
3. จำแนกเชื้อแบคทีเรียที่มีประสิทธิภาพในการสร้างก๊าซได้สูงสุด

เนื้อเรื่อง
 การตรวจเอกสาร

การผลิตก๊าซ H_{2} โดยวิธีชีวภาพ (Hydrogen Bio-production)
ในธรรมชาติมีความหลากหลายของพืช สัตว์ และรวมถึงจุลินทรีย์ด้วย โดยจุลินทรีย์ที่มี ความสามารถในการผลิตก๊าซไฮโดรเจนนั้นมีหลายชนิด จากข้อมูลงานวิจัยแหล่งต่างๆ การผลิตก๊าซ ไฮโดรเจนโดยวิธีการทางชีวภาพ (Hydrogen Bio-production) มี 3 รูปแบบด้วยกันคือ 1.การใช้ Anaerobic Bacteria 2.การใช้ Cyanobacteria 3.การใช้ Photosynthetic Bacteria ซึ่งในที่นี้จะกล่าวถึงเฉพาะในรูปแบบ ที่หนึ่ง

การใช้แบคทีเรียในกลุ่ม Anaerobic Bacteria ในการทดลองผลิตก๊าซไฮโดรเจนนั้น มีแบคทีเรีย หลายกลุ่มด้วยกันที่มีความสามารถในการผลิตก๊าซไฮโดรเจนได้ ซึ่งได้แก่ Clostridium spp.,Thermophile และ Hydrogenic Bacteria เป็นต้น ในการศึกษาสภาวะในการเจริญและการผลิตก๊าซไฮโดรเจนของ Clostridium spp. Ginkel พบว่าปัจจัยต่างๆที่มีผลต่อปริมาณก๊าซที่เกิดขึ้นประกอบด้วย pH , substrate และ อุณหภูมิ ซึ่ง Ginkel พบว่าค่า pH ที่ดีที่สุคอยู่ในช่วง $4.5-6.5$ ในส่วนของ substrate ที่ใช้พบว่าชนิดของ substrate ให้ปริมาณก๊าซที่ไม่แตกต่างกันมากนัก แต่ความเข้มข้นของ substrate มีผลโดยตรง โดยมี แนวโน้มคือปริมาณกาซจะเพิ่มขึ้นเมื่อเพิ่มปริมาณ substrate เริ่มต้น (Ginkel, 2001) นอกจากนี้การเติม สารบางอย่างเช่น $\mathrm{FeSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$ และ $\mathrm{NH}_{3}-\mathrm{N}$ ลงในถังหมัก จะส่งผลให้มีปริมาณก๊าซเพิ่มขึ้น (Ren et.al., 2003)

จากาการศึกษาแบคทีเรียในกลุ่มทนร้อน (Thermophile) สามารถคัดแยกได้จากแหล่งธรรมชาติ ในบริเวณที่มีอุณหภูมิสูง เช่น บ่อน้ำพุร้อน โดยวิธีการเลี้ยงเชื้อที่อุณหภูมิประมาณ $50-70^{\circ} \mathrm{C}$ Van Ootegham . พบว่าเมื่อศึกษาลักษณะและคุณสมบัติต่างๆ ที่เกี่ยวข้องในการเจริญและผลิตก๊าซไฮโดรเจน Thermotogales มีข้อดีคือสามารถควบคุมการผลิตก๊าซได้ง่าย และในสภาวะที่มีอุณหภูมิสูงนั้น การเจริญ ของจุลินทร์ย์อื่นๆ ที่ไม่ต้องการจะถูกยับยั้ง (Van Ootegham et.al., 2002)

Tanisho and Shimazaki (2003) ศึกษากระบวนการหมักแบบครั้งเดียว (Batch cultivation) ของเพื้อ Clostridium butyricum และ Enterobacter aerogenes โดยใช้น้ำทิ้งจากน้ำมันปาส์ม (Palm Oil Mill Effluent,POME) เป็นอาหารเลี้ยงเชื้อ (Substrate) พบว่า C. butyricum ให้ $\mathrm{H}_{2} 2.2 \mathrm{NL}$ และ E. aerogenes ให้ $\mathrm{H}_{2} 1.9 \mathrm{NL}$ ต่อปริมเณ อาหารเลี้ยงเชื้อ 1 ลิตร และพบว่าการเติมไนโตรเจน (1% Peptone) สงในอาหารเลี้ยงเชื้อ ส่งผลให้ปริมาณ H_{2} เพิ่มขึ้น อย่างมีนัยสำคัญ และการเลี้ยงเชื้อร่วมกับ Aspergillus niger ไม่ส่งผลต่อปริมาณ H_{2}

De Vrije และคณะ ศึกษาการใช้เอนไซม์และกระบวนการทางเคมีในการย่อยสารพวก Cellulose, Hemicellulose และ lignin ในพืช Miscanthus ด้วยวิธีการหมักเพื่อใช้เป็นอาหารเริ่มต้น พบว่าได้ สเรอาหารที่เหมาะสมต่อการเจริญและผลิตก๊าซ H_{2} ของเชื้อ T. elfii ได้ดีกว่าการใช้ Glucose ไน กระบวนการหมัก

อุปกรณ์แสะวิธีกรรทดลอง

1. การเก็บตัวอย่าง

เก็บตัวอย่างน้ำและดินจากแม่น้ำโขงในเขตจังหวัดมุกดาหาร น้ำพุร้อนห้าแห่งในภาคเหนือ โดย เก็บตัวอย่างในขวดเก็บตัวอย่างปลอดเชื้อ และแช่วัวอย่างในน้ำแข็งตลอคการเดินทาง ทำการคัดแยกเชื้อ ภายใน 24 ชั่วโมงหลังจากนำตัวอย่างถึงห้องทคลอง ตัวอย่างที่เหลือจากการทคลองถูกเก็บในห้องมืดที่ อุณหภูมิ $4^{\circ} \mathrm{C}$

2. คัดแยกเชื้อจากแหส่งธรรมชาติ

2.1 ตัวอย่างดินแม่น้ำโขง

1. นำตัวอย่างดิน 25 g ลงในน้ำกลั่นปลอดเชื้อ 225 ml จากนั้นมาทำ Serial dilution $10^{-1}-10^{-5}$ ด้วย น้ำกลั่นปลอดเชื้อ
2. Spread ลงบนอาหาร NA บ่มที่อุณหภูมิห้อง เป็นเวลา $24-48$ ชั่วโมง ในสภาวะที่มีออกซิเจน ส่วนในสภาวะที่ไม่มีออกซิเจน ขั้นตอนการแยกเชื้อทั้งหมคทำใน Anaerobic Chamber
3. เลือกโคโลนีที่มีลักษณะแตกต่างกันมา streak ลงบนอาหาร NA บ่มที่อุณหภูมิห้อง เป็นเวลา 24-48 ชั่วโมง คัดแยกให้ได้เชื้อที่บริสุทธิ์ โคยการ streak โคโลนีเดี่ยวลงบนอาหารแข็ง NA ใหม่อีก 3 ซ้ำ ในระหว่างการคัดแยกเชื้อให้บริสุทธิ์ จะทำการศึกษาลักษณะของโคโลนี รูปร่าง ขนาด และการติดสีของ เชื้อ ภายใต้กล้องจุลทรรศน์ควบคู่ไปด้วย เพื่ตยืนยันความบริสุทธิ์ของเชื้อ

2.2 ตัวอย่างน้ำพุร้อน

1. ทำ serial dilution $10^{-1}-10^{-5}$ ด้วยน้ำกลั่นปลอคเชื้อ
2. Spread ลงบนอาหาร NA ที่มีคว:มเข้มเข้นของอาหารเป็น 0.5 เท่าจากสูตรอาหารปกติ โดยใช้ ความเจือจาง $10^{-1}-10^{-5}$ บ่มที่อุณหภูมิ $60^{\circ} \mathrm{C}$ เละ $70^{\circ} \mathrm{C}$ เป็นเวลา $24-48$ ชั่วโมง
3. เลือกโคโลนีที่มีลักษณะแตกต่างกัน streak ลงบนอาหาร NA บ่มที่อุณหภูมิ $60^{\circ} \mathrm{C}$ และ $70^{\circ} \mathrm{C}$ เป็นเวลา $24-48$ ชั่วโมง คัดแยกให้ได้เชื้อที่บริสุทธิ์ โดยการ streak โคโลนีเดี่ยวลงบนอาหารแข็ง NA ใหม่อีก 3 ซ้ำ ในระหว่างการคัดแยกเชื้อให้บริสุทธิ์ จะทำการศึกษาลักษณะของโคโลนี รูปร่าง ขนาด และ การติคสีของเชื้อ ภายใต้กล้องจุลทรรศน์ควบคู่ไปด้วย เพื่อยืนยันความบริสุทธิ์ของเชื้อ

3. การเก็บรักษาเชื้อ

1. นำเชื้อบริสุทธิ์ที่คัดแยกได้ลงเลี้ยงในอาหาร NB ปริมาณ 3 ml บ่มที่อุณหภูมิห้อง เป็นเวลา 24 ชั่วโมง นำเชื้อเก็บที่อุฒหภูมิ $4^{\circ} \mathrm{C}$ เพื่อใช้เป็น stock เชื้อในการทดลอง
2. ในการเก็บเชื้อระยะยาวที่ $-80^{\circ} \mathrm{C}$ จะเติม glycerol 0.5 ml ให้มีความเข้มข้น $15 \%(\mathrm{v} / \mathrm{v})$ ลงใน culture 3 ml เพื่อรักษาสภาพเซลล์ แล้วแช่แข็งที่อุณหภูมิ $-20^{\circ} \mathrm{C}$ ก่อนนำไปเก็บที่อุณหภูมิ $-80^{\circ} \mathrm{C}$

4. ทดสอบความสามารถในการสร้างก๊าซของเชื้อที่ได้คัดเยกได้

4.1.1 การคัดเลือกเชื้อที่สร้างก๊าซได้ (Screening)

ทดสอบความสามารถในการสร้างก๊าซโดยการเลี้ยงเชื้อด้วยอาหาร NB ในหลอดทคลองที่มีการ ใส่หลอดดักก๊าซ (Duram Tube) แล้ววัดปริมาณก๊าซที่เกิดขึ้นใน Duram Tube

4.1.2. ทดสอบประสิทธิภาพในการสร้างก๊าซไฮโดรเจน

1. เลี้ยงเชื้อที่ให้ก๊าซรวมในปริมาณมากที่คัดเลือกได้ในข้อ1 ด้วยอาหาร NB ปริมาตร 30 ml ใน Fermentation Tube (ภาพที่1) โคยใช้เชื้อที่เลี้ยงใน NB มาแล้ว 24 ชั่วโมงปริมาณ 0.3 ml เป็นเชื้อตั้งต้น $(0.1 \%$ inoculum) บ่มที่อุณหภูมิห้อง วัคปริมาณก๊าซรวมทุกๆ 24 ชั่วโมงจนกระทั่งปริมาณก๊าซที่เกิดขึ้นมี ค่าคงที่
2. หาปริมาณของก๊าซไฮโดรเจนที่เกิดจากการหมักโดยการเติม 3 N NaOH ปริมาตร 30 ml ลงใน Fermentation Tube เพื่อทำปฏิกิริยากับก๊าซ CO_{2} จากนั้นเติมน้ำกลั่นให้เต็ม tube ปิดฝาให้สนิท โดยไม่ให้ มีฟองอากาศเหลืออยู่ที่บริเวณฝา ทำการผสมให้เข้ากัน ตั้งทิ้งใว้ให้เกิดปฏิกิริยา 10 นาที วัดปริมาณก๊าซที่ เหลือใน tube ซึ่งถือไต้ว่าเป็นก๊าซไฮโครเจน บันทึกปริมาณของก๊าซไฮโครเจนที่เกิดขึ้น

5. ศึกษาสภาวะที่เหมาะสมในการการเจริญและการสร้างก๊าฆไฮโดรเจน

1. นำเชื้อที่คัคแยกได้มา sub-culture อาหาร NB บ่มที่อุณหภูมิห้องเป็นเวลา 24 ชั่วโมง โดยบ่มที่ สภาวะที่มีออกซิเจนและไม่มีออกซิเจนตามลักษณะที่เชื้อสามารถเจริญได้
2. Inoculate เชื้อในข้อ1 ลงใน Fermentation Tube ที่มีอาหาร NB 30 ml บ่มที่อุณหภูมิ $15-90^{\circ} \mathrm{C}$ บันทึกการเจริญ (วัด OD_{600}) และวัดปริมาณก๊าซที่เกิดขึ้นเป็นระยะจนกระทั่งปริมาณก๊าซมีค่าคงที่
3. Inoculate ใชื้อในข้อ1 ลงใน Fermentation Tube ที่มีอาหาร NB 30 ml ที่ค่า pH ต่างๆ (4-9) บ่มที่อุณหภูมิที่เหมาะสมต่อการเจริญของเชื้อที่ได้จากการทดลองในข้อ 2 บันทึกการเจริญของเชื้อและ ปริมาณ ก๊าซที่เกิดขึ้นเป็นระยะจนกระทั่งปริมาณก๊าซมีค่าคงที่

6. ศึกษาลักษณะทางสัณฐานวิทยา

นำเชื้อที่มีประสิทธิภาพในการสร้างก๊าซมาศึกษาลักษณะทางสัณฐานวิทยาภายใต้กล้อง จุลทรรศน์ ซึ่งได้แก่ ลักษณะของเซลล์, การเคลื่อนที่ของเซลล์, การสร้างสปอร์ โดยดูขนาดและตำแหน่ง ของสปอร์ เป็นต้น เพื่อนำข้อมูลที่ได้ไปประกอบการจัดจำแนกเชื้อ

7. Standard Biochemical test

แบคทีเรียมีความต้องการอาหารและกิจกรรมของเซลล์ที่แตกต่างกันขึ้นอยู่กับชนิดของเชื้อ ดังนั้นกิจกรรมทางชีวเคมี ความสามารถในการใช้ Substrate ตลอคจนธาตุอาหารอื่นๆเป็นแหล่งพลังงาน แหล่งคาร์บอน จึงสามารถใช้ในการจัดจำแนกแบคทีเรียได้ กิจกรรมทางชีวเคมีที่ทคสอบเช่น Catalase Activity, Oxidase Activity, Urease Activity และอื่นๆ รวมทั้งความสามารถในการ Hydrolyze แป้ง และ น้ำตาลอื่นๆ เป็นต้น

8. 16 S rRNA Gene Analysis

1. เพิ่มจำนวนเซลล์โดยการเลี้ยงในอาหาร NB เป็นเวลา 24 ชั่วโมง จากนั้น centrifuge ด้วย ความเร็ว 5000 rpm เป็นเวลา 5 นาที แยกเอาเฉพาะเซลล์
2. สกัด genomic DNA จาก 10 ml culture โดยวิธี $\mathrm{CTAB} / \mathrm{NaCl}$
3. ทำ PCR เพื่อเพิ่มจำนวน 16 S rRNA Gene โดยใช้ Fd1 และ Rd1 Universal Primer สำหรับ Bacteria

ในการเพิ่มปริมาณ 16 SrRAA gene ใช้ Fdl และ Rdl primer โดยทำ PCR ในปริมาตรรวม $20 \mu \mathrm{l}$ ซึ่งมีส่วนประกอบดังนี้คือ

1. Master Mix 2 X		
2. Fdl primer	$1 \mu \mathrm{l}$	
3. Rdl primer	$1 \mu \mathrm{l}$	
4. Water	$6 \mu \mathrm{I}$	
5. DNA template	$2 \mu \mathrm{l}$	
ปริมาตรรวม	$20 \mu \mathrm{~L}$	
สภาวะที่ใช้ในการทำ PCR		
Preheat	$94^{\circ} \mathrm{C}$	
Denature	$94^{\circ} \mathrm{C}$	
Annealing	$60^{\circ} \mathrm{C}$	
Extension	$72^{\circ} \mathrm{C}$	
ทำ PCR 30 รอบ		

4. อ่านลำดับเบส (sequence) ของ 16 S rRNA Gene (Bio Service Unit, Biotech)
5.วิเคราะห์สำดับเบสชอง 16 S rRNA Gene โดยการวิธีเทียบเคียงอย่างง่ายกับฐานข้อมูลของ RDP โดยใช้โปรแกรม Blastn (Basic Local Alignment Search Tool Nucleotide)

ผล และสรุปผลการทดลอง

1. การคัดแยกเชื้อ

1.1 การคัดแยกเชื้อจากดินริมฝั่งแม่น้ำโขง

คัคแยกเชื้อภายใต้ Aerobic condition และ anaerobic condition ได้เชื้อทั้งหมด 36 isolates มี ความสามารถในการผลิตก๊าซจำนวน 10 isolates (ตารางที่ 1 และ 2)

Aerobic condition

ถำดับ ที่	รหัฮเชื้อ	ลักษณะโคโลนี				การสร้าง ก๊าซ
		ขนาด	สี	ความนูน	ขอบ	
1	KRS2Ba	-	ขาวขุ่น	แผ่,ลาม	-	-
2	KRS2Bb	3 mm	ขาวขุ่น	flat	entire	-
3	KRS2Bc	$3-5 \mathrm{~mm}$	ขาวขุ่น	raised	entire	-
4	KRS2Bd	$1-2 \mathrm{~mm}$	ขาวขุ่น	convex	entire	-
5	KRS4C1	(คล้ายเส้นใย)	ขาวขุ่น	-	filamentous	-
6	KRS4C3	$1-3 \mathrm{~mm}$	ขาวขุ่น	convex	entire	\checkmark
7	KRS4C4	(คล้ายเส้นใย)	ขาวขุ่น	\because -	filamentous	-
8	KRS4C4a	(คล้ายเส้นใย)	ขาวขุ่น	-	filamentous	-
9	KRS4C4b	$1.5-3.5 \mathrm{~mm}$	ขาวขุ่น	convex	entire	-
10	KRS4C4c	$1-3.5 \mathrm{~mm}$	ขาวขุ่น	convex	entire	-
11	KRS4C5	-	ขาวขุ่น	แผ่,ลาม:	-	-
12	KRS4C6	-	ขาวขุ่น	แผ่,ลาม	-	-
13	KRS4C7	-	ขาวขุ่น	แผ่,ลาม	-	-
14	KR\$4C10	(คล้ายเส้นใย)	ขาวขุ่น	-	filamentous	-

หมายเหตุ: คำอธิบายรหัสเชื้อ
KRS คือ Khong River Soil
B คือ ต้วอย่างดินริมฝั่งแม่น้ำ
C คือ ตัวอย่างดินใต้น้ำ

ตารางที่ 1 เชื้อและลักษณะเชื้อที่คัดแยกได้จากตัวอย่างดินแม่น้ำโขงภายใต้ Aerobic condition

Anaerobic condition

ลำดับ ที่	รหัสเชื้อ	ลักษณะโคโลนี					การสร้าง ก๊าซ
		ขนาด	สี	ความนูน	ขอบ	ลักษณะ พิเศษ	
1	KRS2B/1	1 mm	ขาว	convex	-	-	-
2	KRS2B/2	4 mm	เหลืองขุ่น	convex	erose	-	สร้างก๊าซ
3	KRS2B/3	2 mm	ขาวขุ่น	convex	entire	-	สร้างก๊าซ
4	KRS2B/4	$3-4 \mathrm{~mm}$	เหลืองขุ่น	flat	rhizoid	-	-
5	KRS2B/5	4 mm	ใส	flat	rhizoid	-	-
6	KRS2B/6	-	ขาวขุ่น	flat	lobate	clear zone	สร้างก๊าซ
7	KRS4B/1	-	ใส	flat	filamentous		-
8	KRS4B/2	5 mm	ขาวขุ่น	convex	erose	-	-
9	KRS4B/3	3-4mm	ขาวขุ่น	raised	erose	-	-
10	KRS4B/4	2-5	ใส	raised	lobate	-	-
11	KRS4B/5	2 mm	ขาว	umbonate	entire	-	สร้างก๊าซ
12	KRS4B/6	2 mm	กลางขาว/ข้างใส	flat	undulate	-	-
13	KRS4B/7	3 mm	ขาวขุ่น	raised	undulate	-	-
14	KRS4B/8	-	ขาวขุ่น	-	filamentous	-	-
15	KRS4C/1	แผ่,ลาม	ขาวขุ่น	flat	erose	-	สร้างก๊าซ
16	KRS4C/2	-	เหลืองขุ่น	raised	rhizoid	-	สร้างก๊าซ
17	KRS4C/3	$7-8 \mathrm{~mm}$	ใส	convex	entire	-	-
18	KRS4C/4	-	ขาวขุ่น	-	filamentous	--	-
19	KRS4C/5	2 mm	ขาว	raised	entire	-	สร้างก๊าซ
20	KRS4C/6	1 mm	ขาวขุ่น	convex	entire	-	สร้างก๊าซ
21	KRS4C/7	1 mm	ขาวขุ่น	convex	entire	clear zone	สร้างก๊าซ
22	KRS4C/8	2 mm	ขาวขุ่น	convex	entire	-	สร้างก๊าซ

หมายเหตุ: คำอธิบายรหัสเชื้อ
KRS คือ Khong River Soil
B คือ ตัวยย่างดินริมฝั่งแม่น้ำ
C คือ ตัวอยำงดินใต้น้ำ
ตารางที่ 2 เชื้อและลักษณะเชื้อที่คัดแยกได้จากตัวอย่างดินแม่น้ำโขงภายใต้ anaerobic condition

1.2. กรรัดแยกเชื้อจากน้ำพุร้อนแม่จัน

คัดแยกเชื้อภายใต้ Aerobic Condition ที่อุณหภูมิ $60^{\circ} \mathrm{C}$ และ $70^{\circ} \mathrm{C}$ ในอาหาร NB เป็นเวลา $24-48$ ชั่วโมง คัคแยกเชื้อได้ 11 isolates (ตารางที่ 3)

ถำดับ ที่	รหัสเชื่อ		ลักษณะโคโลนี					การสร้าง ก๊าซ
			ขนาด	สี	ความนูน	ขอบ	ถักษณะพิเศษ	
1	MJ6_70_1		4 mm	ขาวขุ่น	convex	entire		-
2	M36 70_	2	3 mm	ใส	convex	entire		-
3	MJ6_70_3		แผ่ ,ลาม	ขาวขุ่น	-	lobe		-
4	MJ6_70_4		4 mm	เหลือง	convex	entire	มีจุคสีเหลือง กลางโคโลนี ริมโคโลนีใส	-
5	MJ6_60_5		3 mm	เหลืองใส	-	lobe		-
6	MJ6_60_	6	แผ่ ,ลาม		-	lobe		-
7	MJ5_70_1	1W	7 mm	ขาวขุ่น	-	erose		-
8	MJ5_70	2	4 mm	ใส	convex	entire		-
9	MJ5_70_3		2 mm	ขาวขุ่น	convex	entire		-
10	MJ5_60_4		6 mm	เหลืองใส	ขรุขระ	lobe		-
11	MJ5_60	5	4 mm	ใส	ขรุขระ	undulate	มีจุดสีขาวตรง กลาง	-

70 คือ ฉุดหถูมี่ทช่ใช้ในการคัดเยกเชื้อ
$W=$ white $Y=$ yellow คื่อ ลักษนะสีของโคโลนี
ตารางที่ 3 ลักษณะเชื้อที่คัดแยกได้จากตัวอย่างน้ำพุร้อนภายใต้ Aerobic condition

สรุปผลการคัดแยกเชื้อ

1. คัดแยกเชื้อจากตัวอย่างดินแม่น้ำโขง

คัดแยกภายใต้ Aerobic condition แยกเชื้อได้	14	Isolates
คัดแยกภายใต้ Anaerobic condition แยกเชื้อได้	22	Isolates
รวมเชื้อทั้งหมด	36	Isolates
เชื้อที่ผลิตก๊าซ	10	Isolates

2. คัดแยกเชื้อจากตัวอย่างน้ำพุร้อนแม่จัน

คัดเยกภายใต้ Aerobic condition แยกเชื้อได้	11	Isolates
คัดเยกภายใต้ Anaerobic condition	ไม่ได้คัคแยก	
รวมเชื้อทั้งหมด	11	Isolates
เชื้อที่ผลิตก๊าซ	0	Isolate

จากการคัคแยกเชื้อแบคทีเรียจากธรรมชาติ 2 แหล่ง คือ ตัวอย่างคินริมฝั่งแม่น้ำโขง และ ตัวอย่าง น้ำพุร้อนแม่จัน คัดแยกได้ทั้งหมด 47 isolates ในการทดสอบการเจริญและการสร้างก๊าซของเชื้อทั้งหมด ในอาหาร NB ปริมาตร 10 ml ที่มีหลอคดักก๊าซ บ่มเชื้อที่อุณหภูมิห้องเป็นเวลา 24 ชั่วโมง โดยใช้อาหาร ที่มีค่า pH เหมือนกัน พบว่าเป็นเชื้อที่สร้างก๊าซได้ 10 isolates ได้แก่เชื้อ KRS2B/2, KRS2B/3, KRS2B/6, $\mathrm{KRS} 4 \mathrm{~B} / 5, \mathrm{KRS} 4 \mathrm{C} / 1, \mathrm{KRS} 4 \mathrm{C} / 2, \mathrm{KRS} 4 \mathrm{C} / 5, \mathrm{KRS} 4 \mathrm{C} / 6, \mathrm{KRS} 4 \mathrm{C} / 7$ และ $\mathrm{KRS} 4 \mathrm{C} / 8$ นำเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ ซึ่งเป็นเชื้อที่สร้างก๊าซได้มากที่สุค มาศึกษาการสร้างก๊าซในการทดลองขั้นต่อไป

2. ความสามารถในการเจริญและการสร้างก๊าซของเชื้อ $\mathrm{KRS4B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$

2.1 ความสามารถในการเจริญและการสร้างก๊าซที่ pH ต่างๆ ของเชื้อ $\mathrm{KRS4B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$

pH อาหารเลี้ยงเชื้อ	KRS4B/5		KRS4C/6	
	การสร้างก๊าซ	OD_{600}	การสร้างก๊าซ	OD_{600}
3	-	0.1967	-	0.1247
4	-	0.0461	-	0.0514
5	-	0.1168	-	0.1845
6	+	0.2235	+	0.2718
7	+	0.3534	+	0.3168
8	+	0.2854	+	0.2577
9	-	0.0040	-	0.0171
10	-	- 0.0010	-	0.0018
11	-	0.0055	-	0.0088

[^0]ตารางที่ 4 การเจริญและการสร้างก๊าซของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ ที่อุณหภูมิห้อง เป็นเวลา 24 ชั่วโมง เมื่อเลี้ยงในอาหารเลี้ยงเชื้ว NB ที่มี $\mathrm{pH} 3.0-11$ ปริมาณ 10 ml

2.2 ความสามารถในการสร้างก๊าซ ของเชื้อ KRS4B/5 และ KRS4C/6

ตารางที่ 5 ปริมาณก๊าซทั้งหมดที่เชื้อทั้ง 2 isolates สร้างในเวลา 144 ชั่วโมง เมื่อเลี้ยงในอาหาร NB pH 7.0 ปริมาตร 30 ml ที่อุณหภูมิห้อง

ภาพที่2 ปริม่าณก็าซที่เชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ สร้างในเวลา 144 ชั่วโมง เมื่อเลื้ยงในอาหาร NB pH 7.0 ปริมาตร 30 ml ที่อุณหภูมิห้อง

2.3 สรุปความสามารถในการเจิิญมละกรสร้างก๊าชของเชื้อ $\mathrm{KRS4} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$

ในการทดสอบความสามารถในการเจิญและการสร้างก๊าพของเชื้อ $\mathrm{KRS4B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ พบว่าที่อุณหภูมิห้องเชื้อทั้ง 2 isolates สามารถเริมูได้ในอาหารเลี้ยงชื้้ยที่มีค่า $\mathrm{pH} 4-8$ และเงริญได้คี ที่สุดที่ pH 7 สร้างก๊าศได้ในอาหารเลี้ยงงชื้อที่มีค่า $\mathrm{pH} 6-8$ และสร้างก๊าซได้สูงที่สุคที่ pH 7.0 (ตารางที่ 4)

ในการเลี้ยงเชื้อใน Fermentation tube ใน๒าหาร NB ปริมาตร 30 ml ที่อุณหภูมิห้องเป็นเวลา 144 ชั่วโมง พบว่าเชื้อ $\mathrm{KRS4B} / 5$ และ $\mathrm{KRS4C/6}$ สร้างก๊าซได้ 2.5 ml และ 4.0 ml ตามลำดับ (ภาพที่ 2) โดยจะ เริ่มสร้างก็าซที่เวลา 24 ชั่วโมง และมีปริมาณเพิ่มมากขึ้นและมีค่าคงที่เวลาประมาณ 144 ชั่วโมง

3. ผลการศึกษาสภาวะที่เหมาะสมในการเจริญและการสร้างก๊าซไฮโดรเจน

3.1 การหาปริมาณก๊าซไฮโดรเจนที่เชื้อสร้างได้ในอาหาร NB ที่ pH ต่างๆ

ผลการทคส®บความสามารถในการสร้างก๊าซทั้งหมคและก๊าซไฮโดรเจนของเชื้อ $K R S 4 B / 5$ และ KRS4C/6 ในอาหาร NB ที่มี pH ระหว่าง $5.5-7.5$ ปริมาตร 30 ml ที่อุณหภูมิห้อง เป็นเวลา 144 ชั่วโมง เป็นดังตาราง

$\mathbf{y} \mathbf{p H}$	KRS4B/5			KRS4C/6		
	total gas (ml)	$\mathbf{H}_{\mathbf{2}}(\mathrm{ml})$	$\% \mathbf{H 2}$	total gas (ml)	$\mathbf{H}_{\mathbf{2}}(\mathbf{m l})$	$\% \mathbf{H 2}$
5.5	1.6	1.3	81.25	3.0	2.4	80.00
6.0	2.2	1.9	86.36	3.7	3.0	81.08
6.5	2.8	2.1	75.00	3.5	2.7	77.14
7.0	3.1	2.6	83.82	4.0	3.1	77.50
7.5	3.7	3.0	81.03	3.7	3.0	81.08

หมายเหตุ ที่ pH 5.0 และ pH 8.5 เชื้อทั้ง 2 isolates ไม่สร้างก๊าซ
ตารางที่ 6 ปริมาณก๊าซทั้งหมดและก๊าซ H_{2} ที่เชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ สร้างได้ที่ pH 5.5-7.5

ในการทดลองหาสภาวะที่เหมาะสมต่อการสร้างก๊าซของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ १น อาหาร NB ที่มีค่า pH ต่างๆ ระหว่าง $5.0-8.5$ เป็นเวลา 144 ชั่วโมง พบว่าและการสร้างก๊าซมีแนวโน้ม ลคลง เมื่อ pH ลคลง เชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ สร้างก๊าซได้มากที่สุดที่ pH 7.5 โดยมีปริมาตรเท่ากับ 3.7 ml และเป็น ก๊าซไฮโดรเจน 3.0 ml ซึ่งคิดเป็น 81.08% ของก๊าซรวมหรือเท่ากับ $810.8 \mathrm{ml} \mathrm{H}_{2} /$ total gas formed และ คิคเป็น $100 \mathrm{ml} \mathrm{H}_{2} / / \mathrm{media}$ อย่างไรก็ตามสัดส่วนของก๊าซไฮโครเจนที่เชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ สร้างได้สูงที่สุคคือกี่ pH 6.0 คิคเป็น 86.36% หรือเท่ากับ $863.6 \mathrm{ml} \mathrm{H}_{2} / \mathrm{l}$ total gas formed แต่คิดเป็นเพียง $63.33 \mathrm{ml} \mathrm{H}_{2} / l$ media เท่านั้น

เชื้อ $\mathrm{KRS} 4 \mathrm{C} / 6$ สร้างก๊าซได้มากที่สุดที่ pH 7.0 โดยมีปริมาตรเท่ากับ 4.0 ml และเป็นก๊าซ ไฮโดรเจน 3.1 ml ซึ่งคิดเป็น 77.5% ของก๊าซรวม และคิดเป็น $103.33 \mathrm{ml} \mathrm{H} / 1$ media อย่างไรก็ตาม สัดส่วนของก๊าซไฮโครเจนที่เชื้อ $\mathrm{KRS} 4 \mathrm{C} / 6$ สร้างได้สูงที่สุดที่ pH 6.0 และ pH 7.5 ซึ่งคิดเป็น 81.08% หรือเท่ากับ $810.8 \mathrm{ml} \mathrm{H}_{2} / l$ total gas formed และคิดเป็น $100 \mathrm{ml} \mathrm{H}_{2} / l$ media

3.2 การหาปริมาณก๊าซไฮโดรเจนที่เชื้อสร้างได้ในอาหาร NB ที่อุณหภูมิต่างๆ

ตารางที่ 7 แสดงปริมาณก๊าซทั้งหมคและก๊าซไฮโครเจน ที่เชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ สร้างได้ ใน NB pH 7.0 ปริมาตร 30 ml ที่อุณหภูมิต่างๆ เป็นเวลา 144 ชั่วโมง

อุณหภูมิ	KRS4B/5			KRS4C/6		
	total gas (ml)	$\mathbf{H}_{\mathbf{2}}(\mathrm{ml})$	\% H2	total gas (ml)	\mathbf{H}_{2} (ml)	\% H2
$25^{\circ} \mathrm{C}$	3.5	2.5	71.42	3.3	2.7	81.81
$35^{\circ} \mathrm{C}$	5.4	4.0	74.07	5.2	3.8	73.07
$45^{\circ} \mathrm{C}$	1.4	1.2	85.71	1.8	1.5	83.34

หมายเหตุ ที่ $15^{\circ} \mathrm{C}$ และ $55^{\circ} \mathrm{C}$ เชื้อทั้ง 2 isolates ไมสร้างก๊าช
ตารางที่ 7 ปริมาณก๊าซที่เชื้อสร้างได้ในอาหาร NB pH 7 ปริมาตร 30 ml ที่อุณหภูมิต่างๆเป็นเวลา 144 ชั่านง

ในการทคลองหาสภาวะที่เหมาะสมต่อการสร้างก๊าซของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS4C/6}$ ใน อาหาร NB pH 7.0 โดยบ่มที่อุณหภูมิต่างๆ เป็นเวลา 144 ชั่วโมง พบว่าเชื้อทั้ง 2 isolates สร้างก๊าซได้มาก ที่สุดที่อุณหภูมิ $35^{\circ} \mathrm{C}$ เหมือนกัน โดยมีปริมาตร 5.4 ml และ 5.2 ml ตามลำดับ อย่างไรก็ตามสัดส่วนของ ก๊าซไฮโดรเจนคิดเป็นเพียง 74.07% และ 73.07% ตามลำคับเท่านั้น ซึ่งเท่ากับ 740.7 และ $730.7 \mathrm{ml} \mathrm{H}_{2} /$ / total gas formed ตามลำดับ และคิคเป็น $133.33 \mathrm{ml} \mathrm{H}_{2} / 1$ media และ $126.66 \mathrm{ml} \mathrm{H} / 1 \mathrm{l}$ media ตามลำดับ ซึ่ง ต่ำกว่าเปอร์เซ็นก๊าซไฮโคเจนที่เชื้อ $\mathrm{KRS4B} / 5$ และเชื้อ $\mathrm{KRS} 4 \mathrm{C} / 6$ สร้างได้เมื่อเลี้ยงที่ $45^{\circ} \mathrm{C}$ ซึ่งคิคเป็น 85.71% และ 83.34% ตามลำดับ แต่เมื่อเปรียบเทียบกับก๊าซที่ผลิตได้ที่ $45^{\circ} \mathrm{C}$ ซึ่งคิคเป็นเพียง $40 \mathrm{ml} \mathrm{H}_{2} / 1$ media และ $5 \mathrm{C} \mathrm{ml} \mathrm{H}_{2} / 1$ media

4. ลักษณะทางสัณฐานวิทยา

1. KRS4B/5

เชื้อรหัส KRS4B/5 เป็น Facultative Anaerobe ซึ่งคัดแยกได้กายใต้ Anaerobic Condition ใน อาหาร NA บ่มที่อุณหภูมิห้อง เป็นเวลา 24 ชั่วโมง โคโลนีมีขนาคเส้นผ่านศูนย์กลางประมาณ $2-5 \mathrm{~mm}$ สี ขาวขุ่น ลักษณะเซลส์ติดสี Gram positive รูปร่างเซลล์ Long Rod ซึ่งมีขนาค $0.8-1.0 \times 2-3.5 \mu \mathrm{~m}$ (ภาพที่3) อยู่ในลักษณะ Single Cell หรือ Pairs เชื้อมีการสร้าง Spore และ Motile

ภาพที่3 ลักษณะโคโลนี และเซลล์ของเชื้อ KRS4B/5
2. KRS4C/6

เชื้อรหัส KRS4C/6 เป็น Facultative Anaerobe ซึ่งคัคแยกภายใต้ Anaerobic Condition ไนอาหาร NA บ่มที่อุณหภูมิห้อง เป็นเวลา 24 ชั่วโมง โคโลนีมีขนาคเส้นผ่านศูนย์กลางประมาณ $1-2 \mathrm{~mm}$ สีขาวขุ่น เมื่อ sub-culture ลักษณะโคโลนีที่ได้จะเปลี่ยนไป คือ โคโลนีจะมีลักษณะแผ่ลาม ใส ลักษณะเซลล์ติคสี Gram positive รูปร่างเซลล์ Long Rod ซึ่งมีขนาด $1-1.2 \times 3-4 \mu \mathrm{~m}$ (ภาพที่4) อยู่ในลักษณะ Single Cell หรือ Pairs เชื้อมีการสร้าง spore และ Motile

ภาพที่ 4 ลักษณะโคโลนีและเซลล์ของเชื้อ $\mathrm{KRS} 4 \mathrm{C} / 6$
5. ความสามารถในการต้านทานต่อยาปฏิชีวนะของรชื้อ KRS 4B/5 และ KRS 4C/6

เชื้อ	Clear Zone (cm)		
	Penicillin	Streptomycin	Chloramphenicol
KRS4B/5	4.5	2.5	4.2
KRS4C/6	3.4	1.9	3.2

ตารางที่ 8 ความสามารถในการต้านทานต่อยาปฏิชีวนะของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$

6. ผลการทดสอบทางชีววเคมี

Biochemical test	KRS4B/5	KRS4C/6
Catalase	+	+
Oxidase	-	-
Citrate	-	-
Starch hydrolysis	-	-
Phenol	+	+
Urea	-	-
Nitrate	Alk Alk	A G
TSI	+	+
Motility		+

Utilisation of sugar

Glucose	-	+
Manitol	-	+
Fructose	\cdots	+
Mannose	+	+
Galactose	-	+
Raffinose	-	+
Arabinose	-	+
Xylose	-	+
Sucrose	+	+
Lactose		+

ตารางที่ 9 ผล Biochemical test ของเชื้อ $\mathrm{KF}: \mathrm{S} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$

เชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ เป็นแบคทีเรียที่เคลื่อนที่ได้ มี Catalase activity แต่ไม่มี Oxidase activity ไม่ สามารถใช้ citrate เป็นแหล่ง Carbon ได้ ไม่สามารถ่ยยแเป้งได้ แต่ใช้น้ำตาลทุกชนิดที่ทดสอบเป็นแหล่ง อาหารได้ ได้ยกเว้น Arabinose, Xylose, Sucrose และ Lactose ไม่สามารถใช้ ureaได้ รีดิวส์ nitrate เป็น nitrite ได้

เชื้อ $\mathrm{KRS4C/6}$ เป็นแบคทีเรีที่ให้ผลการทคสอบทางช์วเคมีเหมือนกับเชื้อ $\mathrm{KRS4B/5}$ ยกเว้นเชื้อ KRS4C/6 สามารถใซ้ Arabinose, Xylose, Sucrose และ Lactose ได้

7. 16S rRNA Gene Analysis

ผลการสกัด Genomic DNA โดยใช้ วิธี $\mathrm{CTAB} / \mathrm{NaCl}$
เลี้ยงเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ ในอาหาร NB ที่อุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 24 ชั่วโมง จากนั้น สกัด Genomic DNA โดยใช้วิธี $\mathrm{CTAB} / \mathrm{NaCl}$ จากนั้นนำมาตุรวจดูว่ามีหรือไม่โดยการแยกด้วขวิธี agarose gel electrophoresis เทียบกับ DNA Marker ผลปรากฎว่าพบ Genomic DNA ของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS4C/6}$ โดยพบในเถถวที่ 3 และ 4 ตามลำคับ แสดงว่าการสกัด Genomic DNA โดยวิธี $\mathrm{CTAB} / \mathrm{NaCl}$ ประสบความสำเร็จ

แกวที่ 1 คือ DNA Marker
แกวที่ 2 คื่อ DNA ของเหื้อ $\mathrm{KRS4B//5}$ १น1ริทตตร $50 \mu 1$
แกวที่ 3 คือ DNA ของงื้้อ $\mathrm{KRSAB} / 5$ १นปริมาตร $100 \mu 1$
แกวที่ 4 คือ DNA ของเหื้อ $\mathrm{KRS4C/6}$ ในปริิมิาตร $50 \mu 1$

ภาพที่ร ภาพ agarose gel electrophoresis ของ Genomic DNA สกัดจากเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ . $\mathrm{KRS} 4 \mathrm{C} / 6$ ด้วยวิธี $\mathrm{CTAB} / \mathrm{NaCl}$

ผลการเพิ่มจำนวน $16 s$ rRNA gene ด้วยเทคนิค polymerase chain reaction (PCR)

ภาพ \mathbf{A}
แถวที่ 1 คือ DNA Marker แถวที่ 2 คือ แถบ DNA ของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$

ภาพ B
แถวที่ 3 คือ DNA Marker แถวที่ 4 คือ แถบ DNA ของเชื้อ KRS4C/6

ภาพที่ 6 PCR product จากการเพิ่มปริมาณ 16 S rRNA gene ๘セองเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$

ผลการอ่านลำดับบบส16S rRNA gene บางส่วน (Partial Sequence) ของเชื้อ KRS4B/5 และ KRS4C/6 ลำดับเบส 16 S rRNA gene บางส่วนของเชื้อ KRS4B/5 TTAGAAGCTTGCTTCTAAATAACCTAGCGGCGGACGGGTGAGTAACACGTAGGCAACCTG CCCTCAAGACAGGGATAACTACCGGAAACGGTAGCTAATACCCGATATATCCTTTTCCTGC ATGGGAGAAGGAGGAAAGACGGAGCAATCTGTCACTTGTGGATGGGCCTGCGGCGCATTA GCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGA TCGGCCACACTGGGACTGAGACACGGGCCAGACTCCTACGGGAGGCAGCAGTAGGGAAT CTTCCGCAGTGGGCGAAAGCCTGACGGAGCAACCCCGCGTGAGTGATGAAGGTTTTCGGA TCGTAAAGCTCTGTTGNCCAGGGAAGAACGTCTTGTAGAGTAACTGCTANCAAGAGTGAC GGTACCTGAGAAGAGAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGG GACAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGCTCTTTAAGTCTGG TGTTTAATCCCGAGGCTCAACTTCGGGTCGCACTGGAAACTGGGGAGCTTGAGTGCAGAA GAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACANCCA GTGGCGAATGGCGACTCTCTGGACTGTAACCTGAACGCTGATGGCGC

ถำดับเบส 16 S rRNA บางส่วนของเชื้อ KRS4C/6
TCATGTAGAAGCTTGCTTCTAAATGACCTAGCGGCGGACGGGTGAGTAACACGTAGGCAA CCTGCCCACAAGACAGGGGATAACTACCGGAAACGGTAGCTAATACCCCGATACATCCTT TTCCTGCATGGGAGAAGGAGGAAAGACGGAGCAATCTGTCACTTGTGGATGGGCCTGCGG CGCATTAGCTAGTTGGTGGGGTAAAGGCCTACCCAAGGCGACGATGCGTAGCCGACCTGA GAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAG TAGGGAATCTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCGTGAGTGATGAAG GTTTTCGGATCGTAAAGCTCTGTTGCCAGGGAAGAACGCTTGGGAGAGTAACTGCTCTCAA GGTGACGGTACCTGAGAAGAAAGCCCCGGCTAACTACGTGCCGACAGCCGCGGTAATACG TAGGGGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGCTCTTTAAG TCTGGTGTTTAATCCCGAGGCTCAACTTCGGGTCGCACTGGAAACTGGAGAGCTTGAGTGC AGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACA CCAGTGGCGAAGGCGACTCTACTGGGCATGTAACTGACGCTGA

ผลการวิเคราะห์ลำดับเบสฺบางส่วนของเชื้อ KRS4B/5 และ KRS4C/6
หลังจากตรวงสอบแก้ไขลำดับเบสของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ โดยใช้โปรแกรม BioEdit เพื่อให้ได้ลำดับเบสที่มีความสมบูรณ์มากที่สุด นำลำดับเบสที่ได้เทียบเคียงกับฐานข้อมูลของ RDP โดยใช้ โปรแกรม Blastn จากการวิเคราะห์ลำคับเบสของ 16 S rRNA กับฐานข้อมูลของ RDP เชื้อ $\mathrm{KRS4B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ มีความใกล้เคียงกับเชื้อคังต่อไปนี้

การเปรียนเทียบลักษมะของเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS4C/6}$ กับชื้อใน genus Paenibacillus

Characteristic	1	2	3	4	5	6	7	8
Nitrate reduction	+	+	+	+	-	-	v	$+$
Casein hydrolysis	NT	NT	$+$	+	v	v	+	-
1Starch hydrolysis	-	-	+	+	NT	NT	NT	+
Growth at 45	+	+	$+$	NT	NT	NT	NT	-
Acid produced from:								
Inositol	NT	NT	-	+	-	+	-	$+$
D-Fructose	+	$+$	+	+	+	+	+	$+$
D-Galactose	+	$+$	$+$	+	$+$	+	+	$+$
D-Glucose	+	+	+	-	+	+	+	+
D-Mannose	+	$+$	+	+	+	-	$+$	+
D-Maltose	NT	NT	+	-	+	+	$+$	+
D-Ribose	NT	NT	+	+	+	+	+	+
2 D-Sucrose	-	+	+	-	+	+	$+$	+
3 D-Arabinose	-	+	-	-	$+$	+	-	+
4 D-Xylose	-	+	$+$	+	$+$	+	+	+
5 D-Manitol	$+$	+	-	+	$+$	NT	NT	+
6 Lactose	-	+	+	-	+	+	+	+

Strains: 1, isolate $\mathrm{KRS} 4 \mathrm{~B} / 5 ; 2$, isolate $\mathrm{KRS} 4 \mathrm{C} / 6 ; 3, P$. polymyxa; $4, P$. amylolyticus; 5, P. lautus; $6, P$.
pabuli; 7, P. peoriae; 8, P. macerans; +, Positive; -, negative; v, variable reaction; NT, not tested; NR, no reaction;
ตรรางที่ 11 เปรียบเทียบลักษณะเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ กับเชื้อที่ทราบชนิดแล้วใน genus

Paenibacillus

จากข้อมูลทางสัณฐานวิทยา รวมทั้งการเปรียบเทียบข้อมูล Biochem test (ตารางที่ 7) และการ วิเคราะห์ลำคับเบส และพบว่าเชื้อทั้ง 2 isolates สามารถเทียบเคียงชนิดได้กับ Genus Paenibacillus โดย เชื้อ $\mathrm{KRS4C} / 6$ มีลำคับเบสเทียบเคียงชนิดได้กับเชื้อ Paenibacillus polymyxa ถึง 98% และลักษณะทาง สัณฐานวิทยาและชีวเคมีก็สอคคล้อง ส่วนเชื้อ $\mathrm{KRS4B} / 5$ ถึงแม้จะมีลำดับเทียบเคียงชนิดได้กับเชื้อ P. polymyxa ถึง 97% แต่มีลักษณะทางสัณฐานวิทยาและชีวเคมีที่แตกต่างจาก P. polymyxa

สรุปผลการวิจัย

จากการคัดแยแเชื้อแบคทีเรียจากตัวอย่งงแม่น้ำโขงและน้ำพุร้อน สามารถคัดแยกได้ทั้งหมด 47 isolates เป็นเชื้อที่สร้างก๊าซได้ 10 isolates (คัดแยกจากตัวอย่างแม่น้ำโขงทั้ง 10 isolates) และเป็นเชื้อที่ สร้างก็าซได้คีมี 2 isolates คือ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ สร้างก๊าซได้ 2.5 ml และ 4.0 ml ตามลำคับ เมื่อ เลี้ยงที่ถุณหภูมิหิองเป็นเวลา 144 ชั่วโมง จากการศึกษาสภาวะที่เหมาะสมต่อการเงริญ พบว่าเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ เเริญได้ในช่วง $\mathrm{pH} 4.0-8.0$ (pH growth range) และช่วงอุณหภูมิ $20-50^{\circ} \mathrm{C}$ (temperature growth range) (ที่1 $15^{\circ} \mathrm{C}$ และ $55^{\circ} \mathrm{C}$ เชื้อไม่เริญและไม่สร้างก๊าซ) ส่วนสภาวะที่เช้อทั้ง 2 isolate สร้างก๊าซได้ปริมาตรมากที่สุดคือ ที่ pH 7.0 และที่อุณหภูมิ $35^{\circ} \mathrm{C}$ โดยเชื้อ $\mathrm{KRS} 4 \mathrm{~B} / 5$ สร้างได้ 5.4 ml และ $\mathrm{KRS} 4 \mathrm{C} / 6$ สร้างได้ 5.2 ml ในఠาหาร NB 30 ml อย่างไรก็ตาม สัคส่วนของก๊าซไฮโดรเจนที่ผลิต ได้นั้น คิดเป็นเพียง 74.07% และ 73.07% ตามลำคับ

เชื้อ $\mathrm{KRS4B} / 5$ เป็นเชื้อประเภท Facultative anaerobe เซลล์มีลักษณะเป็น rod-shape, motile ขนาคเซลล์กว้าง $0.8-1.0 \mu \mathrm{~m}$ ยาว $2.0-3.5 \mu \mathrm{~m}$ เซลล์ติคสี Gram -positive สปอร์มีลักษณะรี และอยู่กึ่งกลาง เซลล์ (central) ลักษณะการเจริญใน NA โคโลนีมืขนาค $2-5 \mathrm{~mm}$ สืขาวขุ่น โคโลนีเรียบนูนแบบ umbonate ผลการทคสอบทางชีวเคมีคือ Catalase positive, Oxidase negative รีดิวส์ nitrate ไปเป็น nitrite ได้ ไม่สามารถย่อยแป้งหรือใช้น้ำตาล Xylose, Arabinose, Sucrose และ Lactoseได้ แต่ใช้น้ำตาล Glucose, Manitol, Fructose, Mannose, Calactose และ Raffinose ได้ ส่วนประสิทธิภาพในการสร้างก๊าซ ไฮโครเจนในสภาวะต่างๆ พบว่าในช่วง pH ต่างๆ ที่อุณหภูมิห้อง มีประสิทธิภาพสูงสุดที่ pH 6.0 สร้าง ก๊าซไฮโดรเจนได้ 1.9 ml จากปริมาณก๊าซรวม 2.2 ml คิคเป็น 86.36% และทดสอบที่อุณหภูมิต่างๆ ที่ pH 7.0 มีประสิทธิกาพสูงสุคที่อุณหภูมิ $45^{\circ} \mathrm{C}$ คือสร้างก็าซไฮโครเจนได้ 1.2 ml จากก๊าซรวม 1.4 ml คิดเป็น 85.71\%

เชื้อ KRS4C/6 เป็นเชื้อประเภท Facultative anaerobe เซสล์มีกักษณะเป็น rod-shape, motile, ขนาค กว้าง $1.0-1.2 \mu \mathrm{~m}$ ยาว $3.0-4.5 \mu \mathrm{~m}$ ซซลล์คิคสี Gram-positive สปอร์มีลักษณะรี ลักษณะการเจริญใน NA โคโลนีขนาค $1-2 \mathrm{~mm}$ สีขาวบุ่น โคโลนีเรียบนูนแบบ umbonate เมื่อ sub-culture โคโลนีจะเปลี่ยน รูปร่างจากโคโลนีเดี่ยวๆเป็นโคโลนีแบบเเผ่ลาม ใส ผลการทคสอบทางชีวเคมีคือ Catalase positive, Oxidase negative รีดิวส์ nitrate ไปเป็น nitrite ได้ ไม่สามารถใช้ citrate เป็นแหล่ง carbon ได้ ไม่สามารถ ใช้ urea ได้ ไม่สามารถย่อยแป้งได้ แต่ใช้น้ำตาล Glucose, Manitol, Fructose, Mannose, Galactose, Raffinose, Xylose, Arabinose, Sucrose และ Lactose ได้ ส่วนประสิทธิภาพในการสร้างก๊าซไฮโครเจน ในสภาวะต่างๆ พบว่าในช่วง pH ต่างๆ ที่อุณหภูมิห้อง มีประสิทธิภาพสูงสุคที่ pH 6.0 และ 7.5 สร้างก๊าๆธ ไฮโดรเจนได้ 3.0 ml จากปริมาณก๊าซรวม 3.7 ml คิคเป็น 81.08% และทคสอบที่อุณหภูมิต่างๆ ที่ pH 7.0 มีประสิทธิภาพสูงสุดที่อุณหภูมิ $45^{\circ} \mathrm{C}$ คือสร้างก๊าซไฮโดรเจนได้ 1.5 ml จากก๊าซรวม 1.8 ml คิดเป็น 83.34\%

การจัดจำแนกเชื้อแบคทีเรีย พบว่าเชื้อ KRS4B/5 และ KRS4C/6 จัดอยู่ใน Genus Paenibacillus จากการวิเคราะห์ลำดับเบสบางส่วนของยีน 16 s rRNA พบว่าเชื้อ $\mathrm{KRS4C} / 6$ มีลำคับเบสเทียบเคียงได้กับ เชื้อ Paenibacillus polymyxa ถึง 98% และลักษณะทางสัณฐานวิทยาและชีวเคมีก็สอดคล้อง ส่วนเชื้อ KRS4B/5 ถึงแม้จะมีลำดับเบสเทียบเคียงได้กับเชื้อ P. polymyxa ถึง 97% แต่มีลักษณะทางสัณฐานวิทยา และชีวเคมีที่แตกต่างจาก P. polymyxa อย่างไรก็ตามการจัดจำแนกเชื้อแบคทีเรียทั้งสองยังต้องการข้อมูล เพิ่มอีกสองส่วน คือ ผลการวิเคราะห์ลำดับเบสที่สมบูรณ์ของยีน 16 s rRNA และ ค่า $\% \mathrm{G}+\mathrm{C}$ ของทั้งสอง Strain ในการยืนยันผลการจัดจำแนกเบื้องต้นนี้

ข้อวิจารณ์

สรุปท้ายสุด งานวิจัยนี้บรรลุจุดประสงค์ของโครงการตามที่ได้วางไว้ทั้ง 3 ข้อ นอกจากนี้จากผล การศึกษาที่ได้ ยังพบว่ามีความเป็นไปได้สูง ที่แบคทีเรียที่แยกได้จะเป็นสปีชีส์ใหม่ที่ยังไม่มีรายงาน การศึกษามาก่อน อย่างไรก็ตาม การจัดจำแนกเชื้อแบคทีเรีย Strains $\mathrm{KRS} 4 \mathrm{~B} / 5$ และ $\mathrm{KRS} 4 \mathrm{C} / 6$ ยังไม่ สมบูรณ์นัก หากยังต้องการข้อมูลจำเป็นอีกสองส่วนในการยืนยันผลการจัดจำแนกเบื้องต้นนี้คีอ ผลการ วิเคราะห์ลำดับเบสที่สมบูรณ์ของยีน 16 s rRNA และ ค่า $\% \mathrm{G}+\mathrm{C}$ ของทั้งสอง Strains นอกจากนี้แล้วยัง ต้องมีการตีพิมพ์เผยแพร่ผลการศึกษาในวารสารนานาชาติ พร้อมทั้งต้องส่งเชื้อเข้าไปเก็บในธนาคารเก็บ เชื้อ (Deposition in Culture Collection) อย่างน้อยสองแห่งอีกด้วย จึงจะถือว่าเป็นการจัดจำแนรเชื้อที่เป็น ที่ยอมรับในกลุ่มนักวิจัยอย่างสมบูรณ์ ซึ่งงานดังกล่าวนี้จะถูกดำเนินการต่อไป

ข้อเสนอแนะ (Suggestion and Future Direction)

1. ควรมีการศึกษาการผลิตก๊าซไฮโดรเจนในขนาด (Scale) ที่ใหญ่ขึ้น เพื่อศึกษาความเป็นไปได้ในการ ผลิตในระดับอุตสาหกรรม
2. ควรทำการอ่านลำคับเบสของยีน 16 s rRNA ให้สมบูรณ์ และหาค่า $\% \mathrm{G}+\mathrm{C}$ ของทั้งสอง Strains เพื่อให้ได้ข้อมูลมากพอในการจัดจำแนกเชื้ออย่างถูกต้อง
3. ควรทำการตีพิมพ์เผยแพร่ผลการศึกษาในวารสารนานาชาติ พร้อมทั้งต้องส่งเชื้อเข้าไปเก็บในธนาคาร เก็บเชื้อ (Deposition in Culture Collection) เพื่อให้เป็นที่ยอมรับในกลุ่มนักวิจัยอย่างสมบูรณ์ และเป็น ข้อมูลให้กับนักวิจัยกลุ่มอื่นๆ นำไปใช้

บรรณานุกรม

ดวงพร คันธโชติ. (2545).นิเวศน์วิทยาของงุลินทรีย์, โอ.เอส. พริ้นติ้ง เอ้าส์, โอเดียนสโตร์, กรุงเทพมหานคร.
ควงพร คันธโชติ. (2537). อนุกรมวิธานของแบคทีเรียและปฏิบัติการ, โอ.เอส. พริ้นติ้ง เฮ้าส์, โอเดียนสโตร์, กรุงเทพมหานคร.
วราพรณ์ ปานอย่่. (2545). การแยกและการหาลักษณะเฉพาะของการทนอุณหภูมิสูงของสาหร่าย สีเขียวแกมน้ำเงินจากน้ำพุร้อนบางแหล่งบริววณภาคเหนือตอนบนของประเทศไทย. วิทยานิพนธ์. มหาวิทยาลัยเชียงใหม่.
สุรินทร์ ปียะโชคณากุล. (2545). จีโนมและเดรื่องหมายคีเอ็นเอ: ปฏิบัติการอาร์เอพีคีและเออฝแอลพี. สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
Elo, S., I. Suominen, P. Kampfer, J. Juhanoja, M. Salkinoja-Salonen and K. Haahtela I. (2001).
Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. International Journal of Systematic and Evolutionary Microbiology (2001), 51, 535-545
Enright, M., Mclnermey, J. and Griffin, T. (2003). Characterization of endospore-forming bacteria Associated with entomopathogenic nematodes, Heterorhabditis spp., and description of Paenibacillus nematophilus sp. nov.. International journal of Systematic and evolutionary microbiology. 53, 435-441
Heyndrickx, M. et al. (1996). A polyphasic reassessment of the Genus Paenibacillus, Reclassification of Bacillus lautus (Nakamura 1984) as Paenibacillus lautus comb. nov. and of Bacillus peoriae (Montefusco et al. 1993) as Paenibacillus peoriae comb. nov., and emended description of P, lautus and of P, peoriae. International journal of Systematic bacteriology. vol. 46 , no. 4, 988-1003
Kanso, S. (2004). Molecular Studies of Bacterial Communities in the Great Artesian Basin Aquifers. School of Biomolecular and Biomedical Science Faculty of Science and Technology Griffith University, Nathan Campus Queensland, Australia

Tanisho, S. and T. Shimazaki. (2003). Hydrogen Production fron Palm Oil Mill Effluent by Fermentation. Yokohama National University Hodogaya-ku, Yokohama 240, Japan

Ren, N., Wang, X., Xiang, W., Guo. W. (2003). Effects of Iron on H_{2} Production Capacity and Hydrogenosomal Activities of a Novel Fermentative H_{2}-Producing Bacterial strain B49. Pro. of 1st European Hydrogen Energy Conf., Grenoble, France

Schäfer, L., Sackretz, M., Rechenberg, I. (2002). " Three-Step Microbial Hydrogen-Producing System - First Results", Posterpräsentation im Rahmen der,,Biohydrogen 2002"-Conference,

Ede-Wageningen, Niederlande
Suellen, V.O., Yue, P.H., Beer, S. (2002). Thermotoga neapolitana: A microaerophile producing hydrogen in the presence of oxygen. Applied Biochemistry and Biotechnology. vol. 98, no. 1-3, pp. 177-190(14)

Wang,C.C., Chang, C.W., Chu, C.P., Lee, D.J., and Chang, B.V. (2003). Sequẹntial Production of Hydrogen and Methane from Wastewater Sludge Using Anaerobic Fermentation. J. Chin. Inst. Chem. Engrs., Vol. 34, No. 6, 683-687

Sung, S., Dennis, A. and Bazylinski, L.R. (2003). Biohydrogen Production from Renewable Organic Wastes. hydrogen, fuel cells, and infrastructure technologies.

Van Ginkel, S. and Sung, S. (2000). Anaerobic Biohydrogen production using different bacterial seed sources. Iowa State University.

Van Ginkel, S., Sung, S. and Lay, J.J. (2001). Biohydrogen Production as a function of pH and substrate concentration. Environ. Sci. Technol. 35(24): 4726

ภาคผนวก ก
 การเตรียมอาหารเลี้ยงเชื้อและสารเคมี

1. Nutrient Broth (NB)

Peptone from soymeal 5.0 g
Yeast Extract 3.0g
วิธีเตรียม
ละลายส่วนผสมด้วยน้ำกลั่น ปรับ pH เป็น 7.0 ปรับปริมาตรเป็น 1 L ด้วยน้ำกลั่น นึ่งม่าเชื้อที่ อุณหภูมิ $121^{\circ} \mathrm{C}$ นาน 15 นาที
2. NB thermophile

3. Tris- Cl pH 8 ความเข้มข้น 1 M ปริมาตร 1 ลิตร

ชั่ง Tris base มา 121.1 g ละลายในน้ำ (dH 2 O water) ปริมาตร 800 ml ปล่อยใว้ให้เย็นที่ อุณหภูมิห้อง จากนั้นจึงปรับปริมาตรด้วยน้ำให้ครบหนึ่งลิตร ขากนั้นจึงปรับความเป็นกรศด่างภายใน Hood ด้วย concentrated HCl นึ่งฆ่าเชื้อด้วย Autoclave ปล่อยให้เย็นแล้วนำไปเก็บไว้ในตู้เร็น
4. Ethidium Bromide ($10 \mathrm{mg} / \mathrm{ml}$)

ชั่ง Ethidium Bromide จำนวน 1 g ใส่ใน Flask ซึ่งเติมน้ำ $\mathrm{dH}_{2} \mathrm{O}$ จำนวน 100 ml จากนั้นคนด้วย Magnetic Stirrer เป็นเวลาหลายชั่วโมง จนแน่ไจว่า Ethidium Bromide ละลายหมด เทใส่ขวคสีชาเก็บไว้ ที่อุณหภูมิห้อง โดยไม่จำเป็นต้องมีการฆ่าเชื้อ

5. 10\% SDS (Sodium Dodesyl Sulfate)

ชั่ง Electrophoresis - Grade จำนวน 100 g เทลง Flask ที่บรรจุน้ำ (dH2O water) จำนวน 900 ml แล้วให้นำไปต้มที่อุณหภูมิ $68^{\circ} \mathrm{C}$ และคนด้วย Magnetic Stirrer ให้ละลาย จากนั้นปรับความเป็นกรดเป็น ด่างให้เป็น 7.2 ด้วย concentrated HCl แล้วจึงปรับปริมาตรสุคท้ายเป็นหนึ่งลิตรด้วยน้ำ (dH 2 O water) และแบ่งใส่ขวดฝาเกลืยวสีน้ำตาลไว้ โคยไม่ต้องมีการฆ่าเชื้อ

ภาคผนวก ข

Biochemical Test

1. Phenol red glucose broth

1. เพาะเชื้อลงบน Phenol red glucose broth
2. บ่มที่อุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 24 ชั่วโมง ใน Gas Pak anaerobic jar ผลบวก : อาหารขุ่น และเปลี่ยนจากสีเคงเป็นสีเหลือง
ผลลบ : ไม่เปลี่ยนแปลง
3. Nitrate broth
4. . เพาะเชี้อลงบน Nitrate broth
5. บ่มที่อุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 24 ชั่วโมง
6. ทดสอบ Nitrite โคยการเติม 0.25 มิลลิลิตร nitrite test reagent A และ reagent C

ผลบวก : เกิคสีส้ม ภายใน 10 นาที
ผลลบ : ไม่เปลี่ยนแปลง
3. Modified VP medium

1. เพาะเชื้อลงบน Modified VP medium
2. บ่มที่อุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 48 ชั่วโมง
3. ทคสอบการผลิต acetylmethyl- carbinol ปัเปต 1 มิลลิลิตร ลงบนหลอคทตลอง จากนั้น เติม 0.6 มิลลิลิตร alphtol solution และเติม 0.2 มิลลิลิตร 40% Potassium hydroxide เขย่า และเติม crystals of creatine ปริมาณเล็กน้อย
4. ทิ้งไว้ที่อุณหภูมิห้อง 1 ชั่วโมง

ผลบวก : เกิดสีชมพู หรือสีม่วง
ผลลบ : ไม่เปลี่ยนเปลง

4. Catalase test

1. แตะเชื้อจาก โคโลนี ที่ต้องการทดสอบ ลงบนแผ่น Slide
2. หยด $3 \% \mathrm{H}_{2} \mathrm{O}_{2} \quad 1-2$ หยด

ผลบวก : เกิคฟอง
ผลลบ : ไม่เกิดฟอง

5. TSI agar

1. เพาะเชื้อลงบน TSI agar โคยแทงลงไปไนอาหาร และ Streak ลงบนผิวหน้า
2. บ่มที่อุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 24 ชั่วโมง

อ่านผล

- ส่วนเอียงสีแดง คือไม่หมัก ซูโครส และ แล็คโตส
- ส่วนก้นสีเหลือง คือ หมัก กลูโครส
- วุ้น มีรอยแตก คือ สามารถผลิตก๊าซ
- มีสีดำ คือ สามารถผลิต $\mathrm{H}_{2} \mathrm{~S}$

6. Urease test
7. เพาะเชื้อลงบน Urea broth โคยการ Stab
8. บ่มที่อุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 24 ชั่วโมง

ผลบวก : อาหารเปลี่ยนเป็นสีม่วงแดง
ผลลบ : ไม่เปลี่ยนแปลง
7. MR - VP broth

VP test

1. เพาะเชื้อลงบน $\mathrm{MR}-\mathrm{VP}$ broth
2. บ่มที่อุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 48 ชั่วโมง
3. เติม 0.6 มิลลิลิตร alpha-naphol เขย่า จากนั้น เติม 0.2 มิลลิลิตร 40% Potassium hydroxide และเติม crystals of creatine ปริมาณเล็กน้อย อ่านผลหลังจาก 4 ชั่วโมง

ผลบวก : ให้สีชมพูถึงแดง
ผลลบ : ไม่เปลี่ยนสี
MR test

1. ใช้ 5.0 มิลลิลิตร ของ 96 ชั่วโมง $\mathrm{MR}-\mathrm{VP}$ broth
2. เติม 5-6 หยด Methyl red indicator

ผลบวก : ให้สีแตง
ผลลบ : ให้สีเหลือง
8. Lactose gellatine medium

1. Stab เชื้อลงบน Lactose gellatine medium
2. บ่มที่อุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 24 ชั่วโมง

ผลบวก : อาหารเปลี่ยนจากสีแดงเป็นเหลือง
ผลลบ: ไม่เปลี่ยนสี
9. Motility -nitrate medium

1. Stab เชื้อลงบน Motility-nitrate medium
2. บ่มที่ถุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 24 ชั่วโมง
3. เติม 0.5 มิลลิลิตร reagent A และ 0.2 มิลลิลิตร reagent B ลงใน Motility -nitrate medium ผลบวก : เกิคสีม่วงภายใน 5 นาที
ผลลบ : ไม่เปลี่ยนแปลง
4. Indole production
5. เพาะเชื้อลงบน Trytone broth
6. บ่มที่ฮุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 24 ชั่วโมง
7. หยด 0.2-0.3 มิลลิลิตร Kovac reagent เขย่า

ผลบวก : ปรากฏ ชั้นสีแดงลอยที่ผิวยองอาหาร
ผลลบ : ให้สีส้ม
11. Citrate test

1. เพาะเชื้อลงบน Simmon citrate agar
2. บ่มที่ถุณหภูมิ $35^{\circ} \mathrm{C}$ เป็นเวลา 9 ± 2 ชั่วโมง

ผลบวก : อาหารเปลี่ยนเป็นสีน้ำเงิน
ผลลบ : ไม่เปลี่ยนแปลง

ประวัตินักวิจัย

Curriculum Vitae

Name: Miss Sungwan Kanso
Position: Lecturer
Contact Details: Biological Science Department, Faculty of Science, Ubon Ratchathani University,
Warinchamrap, Ubon Ratchathani, Thailand. 34190
Tel: 01-8789032, 66-45-288400 ext. 4493, Fax: 66-45-288380
E-mail: kansosungwan@hotmail.com, ksungwan@sci.ubu.ac.th

Education:

Degrees

Bachelor of Science in Biotechnology

Year completed

1995 Griffith University, Queensland, Australia
Bachelor of Science with Honors (First class) 1996
Ph.D (Molecular Microbiology)

Thesis:
Bachelor of Science with Honours: Studies of recombinant enzymes amylase and rullulanase and their genes from bacterial isolate AB47.

Ph.D: Molecular studies of bacterial communities in the Great Artesian Basin aquifers.

Research Area: 16 S rRNA Gene Analysis, Bacterial Phylogeny, Bacterial Diversity, Thermophiles, Waste Utilisation.

Teaching experience:

1. Bioinformatics
2. Genetic Engineering in Microorganism
3. Microbial Genetics
4. Microbial Ecology
5. Introduction to Microbiology
6. Principle of Research in Science
7. Man and Environment

Publication:

1. Kanso, S and Siriwong, S. (2005). Isolation and Characterization of Hydrogen Producing Bacteria from Thai Noodle Factory Waste Water. The $31^{\text {st }}$ Science and Technology Symposium of Thailand. Nakornratchasima, Thailand: October 18-20.
2. Dasri, K and Kanso, S. (2005). Isolation and Characterization of Hydrogen-producing Bacteria and Optimization of Hydrogen bio-production. The $31^{\text {st }}$ Science and Technology Symposium of Thailand. Nakornratchasima, Thailand. October 18-20.
3. Kanso, S and Patel, B.K.C. (2004). Phenylobacterium lituiforme sp. nov., a moderately thermophilic bacterium from a subsurface aquifer, and emended description of the genus Phenylobacterium. International Journal of Systematic and Evolutionary Microbiology. 54, 2141-2146. Impact factor 3.907 (2000).
4. Kanso, S and Patel, B.K.C. (2003). Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. International Journal of Systematic and Evolutionary Microbiology. 53, 401-406. Impact factor 3.907 (2000).
5. Karıso, S. (2003). Molecular studies of bacterial communities in the Great Artesian Basin equifers. Griffith University, Brisbane Queensland Australia. Ph.D Thesis.
6. Kariso, S, Greene, A. C. and Patel, B.K.C. (2002). Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacteria form a deep subsurface Australian thermal aquifer. International Journal of Systematic and Evolutionary Microbiology. 52, 869-874. Impact factor 3.907 (2000)
7. Kanso, S and Patel, B.K.C. (2001). Studies of Molecular Microbial Ecology of the Great Artesian Basin Aquifer. The $27^{\text {th }}$ Science and Technology Symposium of Thailand. Had-Yai, Thailand. October 16-19.
8. Dowhan, D., Kanso, S., Woo, H., and Patel, B.K.C. (1998). New thermostable amylopullulanases and amylases from the thermoanaerobe Caloramator strain AB 39 , an isolate from the subterranean Great Artesian Basin of Australia aquifer: Cloning, sequencing and sequence analysis. International Conference on Frontiers in Biotechnology. Trivandrum, India, November 26-29.

[^0]: * อาหารเลี่ยงเชื้อ pH 3 อาหารมีความขุ่น ไม่ได้เกิคจากการเจริญของเชื้อ

