

# PREPARATION AND CHARACTERIZATION OF TiO<sub>2</sub> WORKING ELECTRODE AND COUNTER ELECTRODE FOR DYE SENSITIZED SOLAR CELL

SOMPHOP MORADA

## A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

### THE DEGREE OF MASTER OF SCIENCE

### MAJOR IN CHEMISTRY FACULTY OF SCIENCE

### **UBON RATCHATHANI UNIVERSITY**

### **YEAR 2013**

### **COPYRIGHT OF UBON RATCHATHANI UNIVERSITY**



### **UBON RATCHATHANI UNIVERSITY**

### THESIS APPROVAL

### MASTER OF SCIENCE

### MAJOR IN CHEMISTRY FACULTY OF SCIENCE

**TITLE** PREPARATION AND CHARACTERIZATION OF TiO<sub>2</sub> WORKING ELECTRODE AND COUNTER ELECTRODE FOR DYE SENSITIZED SOLAR CELL

AUTHOR MR.SOMPHOP MORADA

### **EXAMINATION COMMITTEE**

| DR. MANTHANA JARIYABOON                | CHAIRPERSON |
|----------------------------------------|-------------|
| ASST. PROF. DR. TAWEESAK SUDYOADSUK    | MEMBER      |
| DR. TINNAGON KEAWIN                    | MEMBER      |
| ASST. PROF. DR. SIRIPORN JUNGSUTTIWONG | MEMBER      |
| ASSOC. PROF. DR. VINICH PROMARAK       | MEMBER      |

ADVISOR

T. Sudgagda L

(ASST. PROF. DR. TAWEESAK SUDYOADSUK)

Utith dyorast

H. Julhamas

(ASSOC. PROF. DR. UTITH INPRASIT) DEAN, FACULTY OF SCIENCE (DR. JUTHAMAS HONGTHONG) ACTING FOR VICE PRESIDENT FOR ACADEMIC AFFAIRS

**COPYRIGHT OF UBON RATCHATHANI UNIVERSITY** 

**ACADEMIC YEAR 2013** 

### ACKNOWLEDGMENTS

This work was carried out at Center for Organic Electronic and Alternative Energy (COEA) during September 2010 - March 2014. I would like to thank Asst. Prof. Dr. Taweesak Sudyoadsuk, my supervisor, for his excellent suggestions, supervision, and understanding throughout my study. I wish to acknowledge Dr. Manthana Jariyaboon, Dr. Tinnagon Keawin and Asst. Prof. Dr. Siriporn Jungsuttiwong for constructive comments and suggestion. I would also like to thank many people who contributed their time, instrumentation, and advice to this project. In particular, Asst. Prof. Dr. Aranya Pimmongkol for SEM experiment, Asst. Prof. Dr. Anuson Niyompan for XRD experiment, Assoc. Prof. Dr. Vinich Promarak for providing ideas and special guidelines.

Thanks so much to Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Ubon Ratchathani University for financial support. My sincere thankful the Department of Chemistry, Faculty of Science, Ubon Ratchathani University for providing a wonderful academic environment during the course work.

I would also like to thank Dr. Tanika Khanasa, Dr. Kanokkorn Sirithip, Mrs. A-monrat Tankthong and Mr. Sakravee Punsay for synthesis of organic dye molecules. I feel thankful to my friends, sisters and brothers particularly Dr. Narid Prachumrak, Dr. Pongsathorn Tongkasee, Mr. Theerawat Naowanont and Miss. Niparat Tidutit. Most of all, I feel appreciate and grateful to my beloved family for their inculcation and encouragement that found me to be a fortitude person.

5. Morada

(Mr. Somphop Morada) Researcher

### บทคัดย่อ

| ชื่อเรื่อง | : การเตรียมและพิสูจน์เอกลักษณ์ขั้วไฟฟ้าทำงานไททาเนียมไดออกไซด์<br>และขั้วไฟฟ้าเกาน์เตอร์สำหรับเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง |
|------------|------------------------------------------------------------------------------------------------------------------------------|
| โดย        | : สมภพ มรคา                                                                                                                  |
| ชื่อปริญญา | : วิทยาศาสตรมหาบัณฑิต                                                                                                        |
| สาขาวิชา   | : เคมี                                                                                                                       |
| ประธานกรรม | มการที่ปรึกษา : ผู้ช่วยศาสตราจารย์ คร.ทวีศักดิ์ สุดยอดสุข                                                                    |

ศัพท์สำคัญ : ขั้วไฟฟ้าทำงานไททาเนียมไดออกไซด์ / ขั้วไฟฟ้าช่วยงาน /
 เซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง

ประสิทธิภาพการเปลี่ยนพลังงานแสงเป็นพลังงานไฟฟ้าของเซลล์แสงอาทิตย์ชนิคสี ข้อมไวแสงสามารถพัฒนาได้ โดยการศึกษาสมบัติโฟโตโวลทาอิกของสีย้อมไวแสง งานวิจัยนี้มุ่ง ศึกษาสภาวะที่เหมาะสมสำหรับการขึ้นรูปเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงได้เลือกใช้ กวามหนาแผ่นประสาน 30 ไมโครเมตร กวามหนาชั้นฟิล์มไททาเนียมไดออกไซด์ 11 ไมโครเมตร ปริมาณโลหะแพลทินัม 8 ไมโครกรัมต่อตารางเซนติเมตร การปรับสภาพด้วยไททาเนียม เททระกลอไรด์สำหรับสร้างเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงที่มีประสิทธิภาพที่ดี

สึกษาสมบัติโฟโตโวทาอิกของสีข้อมอินทรีย์ TPA (2D-D-p-A) และDPA (D-D-p-A) ถูกตรวจพิสูจน์ พบว่าก่ากวามหนาแน่นกระแสไฟฟ้า และประสิทธิภาพการเปลี่ยนแปลงพลังงาน แสงเป็นพลังงานไฟฟ้าเพิ่มขึ้น เมื่อเพิ่มจำนวนหมู่ให้อิเล็กตรอนด้วยหมู่การ์บาโซล และแถบการ ดูดกลืนแสงกว้างขึ้น โดยขยับไปทางกลื่นแสงสีแดง เมื่อมีการเพิ่มความขาวคอลจูเกตด้วยหมู่ ไธโอฟีน เซลล์แสงอาทิตย์ชนิดสีข้อมไวแสงที่ใช้สีข้อม DPA3 และ TPA3 แสดงประสิทธิภาพการ เปลี่ยนพลังงานแสงเป็นพลังงานไฟฟ้ากิดเป็นร้อยละ 76 และร้อยละ 84 ตามลำคับ โดยเฉพาะเซลล์ แสงอาทิตย์ที่ใช้สีข้อม CCT3A กิดเป็นร้อยละ 94 เมื่อเปรียบเทียบกับประสิทธิภาพที่ได้จากสีข้อม มาตรฐาน N3

Π

### ABSTRACT

TITLE : PREPARATION AND CHARACTERIZATION OF TiO<sub>2</sub> WORKING ELECTRODE AND COUNTER ELECTRODE FOR DYE SENSITIZED SOLAR CELL

| BY     | : SOMPHOP MORADA                         |
|--------|------------------------------------------|
| DEGREE | : MASTER OF SCIENCE                      |
| MAJOR  | : CHEMISTRY                              |
| CHAIR  | : ASST. PROF. TAWEESAK SUDYOADSUK, Ph.D. |

# KEYWORDS : TIO<sub>2</sub> WORKING ELECTRODE / COUNTER ELECTRODE / DYE SENSITIZED SOLAR CELL

The power conversion efficiency (%PCE) of DSSC devices can be improved by development of novel sensitizer which have good photovoltaic characteristic. This research has focused on the optimization condition for fabrication of dye-sensitized solar cell. A 30  $\mu$ m sealant thickness, 11  $\mu$ m TiO<sub>2</sub> film thicknesses, 8  $\mu$ g/cm<sup>2</sup> platinum loading, TiCl<sub>4</sub> treatment and device masking were applied to obtain the good photovoltaic characteristic of DSSC devices. This method was applied to evaluated photovoltaic characteristic of novel organic dye.

The photovoltaic properties of DSSC device based on TPA (2D-D-p-A) and DPA (D-D-p-A) organic dyes were investigated. The  $J_{sc}$  and %PCE of DSSC devices increased when increased the carbazole electron donor unit. The bathochromically red shift and broad extended the IPCE spectra were observed when extend the conjugate lengths with thiophene unit. The DSSC device based on DPA3 and TPA3 dye exhibited the %PCE of 76% and 84%, respectively, particularly DSSC devices base on CCT3A dye, which 94% compared with the standard N3 dyes.

III

### CONTENTS

IV

| ACKNOWLEDGMENTS       | I    |
|-----------------------|------|
| ABSTRACT THAI         | п    |
| ABSTRACT ENGLISH      | ш    |
| CONTENTS              | IV   |
| LIST OF TABLES        | VII  |
| LIST OF FIGURES       | VIII |
| LIST OF ABBREVIATIONS | XI   |

### CHAPTER

÷

G

÷

7

.

÷

### **1 INTRODUCTION**

| 1.1 Photovoltaic technology                                     | 1  |
|-----------------------------------------------------------------|----|
| 1.2 Dye sensitized solar cells                                  | 3  |
| 1.3 Objective of this thesis                                    | 4  |
| 2 THE THEORY AND LITERATURE REVIEWS                             |    |
| 2.1 The DSSCs configuration and component                       | 6  |
| 2.2 The basic principle of DSSCs operation                      | 7  |
| 2.3 The properties of sun light and simulate sun light          |    |
| 2.3.1 The solar radiation at the earth surface                  | 9  |
| 2.3.2 Air Mass                                                  | 10 |
| 2.3.3 Standard solar spectrum and solar irradiation             | 11 |
| 2.4 The evaluation of photovoltaic characteristic               |    |
| 2.4.1 Overall power conversion efficiency of DSSCs              | 12 |
| 2.4.2 Incident photon to current conversion efficiency of DSSCs | 13 |

### **CONTENTS (CONTINUED)**

### PAGES

### 2.5 The literature reviews

| 2.5.1 Preparation of the infrastructure of DSSCs      |      |
|-------------------------------------------------------|------|
| 2.5.1.1 Preparation of the working electrode of DSSCs | s 14 |
| 2.5.1.2 Preparation of the counter electrode of DSSCs | 23   |
| 2.5.1.3 Preparation of the electrolyzed of DSSCs      | 25   |
| 2.5.1.4 Preparation of dye or sensitizer of DSSCs     | 30   |
| 2.5.2 Device assembly for DSSCs                       | 32   |

### **3 EXPERIMENTAL**

4

2

2

| 3.1 List of materials                                             | 35 |
|-------------------------------------------------------------------|----|
| 3.2 List of chemical and reagents                                 | 36 |
| 3.3 List of chemical and reagents                                 | 37 |
| 3.4 Preparation of DSSCs components                               |    |
| 3.4.1 Preparation the conducting glass substrate                  | 38 |
| 3.4.2 Cleaning conducting glass substrate                         | 39 |
| 3.4.3 Preparation the counter electrodes                          | 39 |
| 3.4.4 Preparation the TiO <sub>2</sub> working electrode          | 39 |
| 3.5 The DSSCs device assembly                                     | 40 |
| 3.6 The DSSCs characterization                                    |    |
| 3.6.1 The J-V measurement                                         | 42 |
| 3.6.2 The IPCE measurement                                        | 43 |
| 3.6.3 The X-ray diffraction measurement                           | 44 |
| 3.6.4 The scanning electron microscopy measurement                | 44 |
| 4 RESULTS AND DISCUSSION                                          |    |
| 4.1 Device fabrication and photovoltaic characterization of DSSCs |    |
| 4.1.1 The effect of sealant thickness                             | 46 |
| 4.1.2 The effect of $TiO_2$ film thickness                        | 48 |
| 4.1.3 The effect of $TiCl_4$ treatment                            | 51 |

# **CONTENTS (CONTINUED)**

-

-

÷

Ŧ

4

2

VITAE

VI

| 4.1.4 The effect of device masking                              | 52 |
|-----------------------------------------------------------------|----|
| 4.1.5 The effect of platinum loading                            | 53 |
| 4.1.6 Method validation                                         | 54 |
| 4.2 Photovoltaic characterization of organic dyes for DSSCs     |    |
| 4.2.1 Photovoltaic characterization of carbazole triphenylamine |    |
| dyes for DSSCs                                                  |    |
| 4.2.1.1 Target dye molecular and aim                            | 56 |
| 4.2.1.2 Photovoltaic characteristic of DSSC devices             |    |
| based on TPA1-3 dyes                                            | 57 |
| 4.2.2 Photovoltaic characterization of carbazole diphenylamine  |    |
| dyes for DSSCs                                                  |    |
| 4.2.2.1 Target dye molecular and aim                            | 60 |
| 4.2.2.2 Photovoltaic characteristic of DSSC devices             |    |
| based on DPA1-3 dye                                             | 61 |
| 4.2.3 Photovoltaic characteristic characterization of carbazole |    |
| carbazole dye for DSSCs                                         |    |
| 4.2.3.1 Target dye molecular and aim                            | 64 |
| 4.2.3.2 Photovoltaic characteristic of DSSC devices             |    |
| based on CCT1-3A dye                                            | 65 |
| 5 CONCLUSIONS                                                   | 68 |
| REFERENCES                                                      | 69 |
| APPENDIX                                                        | 78 |
| ХЛТАЕ                                                           | 90 |

# LIST OF TABLES

2

ĩ

2

2

| TABLE | PA                                                                                 | GES |
|-------|------------------------------------------------------------------------------------|-----|
| 2.1   | The partial literatures reported on the DSSCs with ILs electrolytes                | 27  |
| 2.2   | The performance of solid-state DSSCs utilizing different HTMs                      | 28  |
| 2.3   | The photovoltaic performance of quasi-solid-state DSSCs with different gelators    |     |
|       | and ionic liquid electrolytes                                                      | 29  |
| 3.1   | List of commercial materials                                                       | 35  |
| 3.2   | List of chemical and reagents                                                      | 36  |
| 3.3   | List of equipment                                                                  | 37  |
| 4.1   | The short circuit current of DSSC devices as a function of sealant thickness       | 47  |
| 4.2   | The thickness of TiO <sub>2</sub> film with difference screen printing time        | 50  |
| 4.3   | The photovoltaic characteristic of DSSC devices as a function of $TiO_2$ thickness | 50  |
| 4.4   | The photovoltaic characteristic of DSSC devices with and without TiCl4 treatment   | 51  |
| 4.5   | The photovoltaic characteristic of DSSC devices with and without device masking    | 52  |
| 4.6   | The photovoltaic characteristic of DSSC devices as a function of platinum loading  | 53  |
| 4.7   | The physical properties of TPA1-3 dye                                              | 57  |
| 4.8   | The photovoltaic characteristic of DSSC devices base on TPA1-3 dye                 | 58  |
| 4.9   | The physical properties of DPA1-3 dye                                              | 61  |
| 4.10  | The photovoltaic characteristic of DSSC devices base on DPA1-3 dye                 | 62  |
| 4.11  | The physical properties of CCT1-3A dye                                             | 65  |
| 4 12  | The photovoltaic characteristic of DSSC devices base on CCT1-3A dye                | 66  |

VII

### LIST OF FIGURES

1

7

1

| FIGURE |                                                                                    | PAGES  |
|--------|------------------------------------------------------------------------------------|--------|
| 1.1    | The renewable energy: (a) solar cell, (b) biomass and (c) wind technology          | 1      |
| 1.2    | The average quarterly global isoflux contour plots for each quarter in the year    | 2      |
| 1.3    | Schematic basic composition of single-junction silicon solar cell                  | 3      |
| 1.4    | Schematic basic compositions of DSSCs                                              | 4      |
| 1.5    | The development chart in conversion efficiencies of photovoltaic device            | 5      |
| 2.1    | The schematic drawing of the DSSCs key components                                  | 6      |
| 2.2    | The schematic operation of DSSCs                                                   | 8      |
| 2.3    | The interaction of solar radiation at the earth atmosphere                         | 10     |
| 2.4    | The schematic diagram of solar air mass                                            | 11     |
| 2.5    | Standard spectra for AM 1.5                                                        | 12     |
| 2.6    | The voltage-current and power-voltage characteristics of the photovoltaic cell     | 13     |
| 2.7    | The IPCE spectra obtained with the N3 and the black dye as sensitizer              | 14     |
| 2.8    | The schematic drawing principle of operation of photo-electrochemical cells b      | ase on |
|        | n-type semiconductors                                                              | 15     |
| 2.9    | The incident photon to current conversion efficiency of (a) bare $TiO_2$ electrode | es and |
|        | (b) $TiO_2$ with sensitized by the surface-anchored ruthenium complex              | 16     |
| 2.10   | The scanning electron micrograph of a meso-porous anatase $TiO_2$ film surface     |        |
|        | (a) colloidal suspension and (b) hydrothermally technique                          | 17     |
| 2.11   | Flow chart of preparation $TiO_2$ particle from hydrothermally technique           | 18     |
| 2.12   | (a) transmittance spectra and (b) photograph of screen-printing paste prepared     | form   |
|        | commercial available TiO <sub>2</sub> powder                                       | 18     |
| 2.13   | Flow chart of paste preparation from commercially available $TiO_2$ powder         | 20     |
| 2.14   | The schematic conceptual of screen printing technique                              | 21     |
| 2.15   | A photograph of the DSSCs working electrode technology                             | 22     |
| 2.16   | The SEM photograph of platinum counter electrodes surface prepared by elect        | tro    |
|        | deposition technique                                                               | 24     |

VIII

# LIST OF FIGURES (CONTINUED)

| FIG | URE | P                                                                                    | AGES |
|-----|-----|--------------------------------------------------------------------------------------|------|
| 2   | .17 | The dependence of sheet resistance of platinized counter electrodes on platinum      |      |
|     |     | film thickness                                                                       | 25   |
| 2   | .18 | Dependence of $J_{sc}$ (a) and $V_{oc}$ (b) of DSSCs on the donor number of solvents | 26   |
| 2   | .19 | The chemical structures of commercialize ruthenium based metal dye                   | 31   |
| 2   | .20 | The chemical structures of coumarin, indoline and triphenylamine organic dyes        | 32   |
| 2   | .21 | The layout of DSSCs in sand-wish type cell design                                    | 33   |
| 2   | .22 | The photograph of layer by layer DSSCs configuration                                 | 34   |
| 3   | .1  | Flow chart of the fabrication and characterization of DSSCs device                   | 38   |
| 3   | .2  | The FTO glass used as (a) working and (b) counter electrode                          | 39   |
| 3   | .3  | The temperature programs to treatment the working electrode                          | 40   |
| 3   | .4  | The photograph of the electrolyte-filling machine                                    | 40   |
| 3   | .5  | The photograph and schematic drawings cross section of the DSSCs test cell           |      |
|     |     | (a) top view and (b) side view                                                       | 41   |
| 3   | .6  | The key equipment of J-V tester                                                      | 42   |
| 3   | .7  | The photograph of <i>J-V</i> workstation                                             | 43   |
| 3   | .8  | The photograph of Incident photon to current conversion efficiency tester            | 44   |
| 3   | .9  | The photograph of (a) JSM-5410LV scanning electron microscope, (b) Philips           |      |
|     |     | X'pert MDP X-ray diffractometer                                                      | 45   |
| 4   | .1  | The cross section SEM photograph of sealant materials                                | 46   |
| 4   | .2  | The photograph of monolayer N3 sensitizer covers on titanium dioxide film            |      |
|     |     | support on FTO conducting glass surface                                              | 48   |
| 4   | .3  | The photograph of X-ray diffraction pattern of TiO <sub>2</sub> particle             | 49   |
| 4   | .4  | The SEM image of the $TiO_2$ film coated on the FTO glass                            | 49   |
| 4   | .5  | The J-V curves of DSSCs with and without solid mask                                  | 52   |
| 4   | .6  | The $J-V$ of DSSC devices in same process                                            | 54   |
| 4   | .7  | The chemical structure of target dyes (TPA1-3)                                       | 56   |
| 4   | .8  | The photograph of (a) DSSC devices and (b) dve solution based on TPA1-3 dve          | 57   |

### LIST OF FIGURES (CONTINUED)

ź

ę

•

| FIGURE | PAG                                                                                | GES |
|--------|------------------------------------------------------------------------------------|-----|
| 4.9    | (a) the J-V characteristics and (b) photocurrent action spectra of DSSCs based on  |     |
|        | TPA1-3 sensitizer measured under irradiance of 100 mW/cm <sup>2</sup> AM 1.5G      | 58  |
| 4.10   | The chemical structure of target dyes (DPA1-3)                                     | 60  |
| 4.11   | The photograph of (a) DSSC devices and (b) dye solution based on DPA1-3 dye        | 61  |
| 4.12   | (a) the J-V characteristics and (b) photocurrent action spectra of device based on |     |
|        | DPA1-3 sensitizer measured under irradiance of 100 mW/cm <sup>2</sup> AM 1.5G      | 62  |
| 4.13   | The chemical structure of target dyes (CCT1-3A)                                    | 64  |
| 4.14   | The photograph of (a) DSSC devices and (b) dye solution based on CCT1-3A dye       | 65  |
| 4.15   | (a) the J-V characteristics and (b) photocurrent action spectra of device based on |     |
|        | CCT1-3A sensitizer measured under irradiance of 100 mW/cm <sup>2</sup> AM 1.5G     | 66  |

Х

### LIST OF ABBREVIATIONS

### ABBREVIATION FULL WORD

4

7

12

| А            | Ampere                                           |
|--------------|--------------------------------------------------|
| AcN          | Acetronitrites                                   |
| AM           | Air mass                                         |
| CB           | Conduction band                                  |
| CE           | Counter electrode                                |
| DMSO         | Dimethylsulphoxide                               |
| DSSCs        | Dye sensitized solar cells                       |
| eV           | Electron volt                                    |
| FF           | Fill factor                                      |
| FTO          | Fluorine doped tin oxide                         |
| G            | Global                                           |
| GBL          | Gamma-butyrolactone                              |
| h            | Hour/hours                                       |
| НОМО         | Highest occupied molecular orbital               |
| HTM          | Hole transporting materials                      |
| Ι            | Current (A)                                      |
| Ils          | Ionic liquids                                    |
| IPCE         | Incident photon to current conversion efficiency |
| IR           | Infrared                                         |
| $I_{\rm sc}$ | Short circuit current                            |
| $J_{\rm sc}$ | Short circuit current density                    |
| $J_{\max}$   | Maximum current density                          |
| LHE          | Light harvesting efficiency                      |
| LUMO         | Lowest unoccupied molecular orbital              |

# LIST OF ABBREVIATIONS (CONTINUED)

### ABBREVIATION FULL WORD

7

-

| М                | Molar concentration        |
|------------------|----------------------------|
| mA               | Milliampare                |
| min              | Minutes                    |
| mg/mL            | Milligram per milliliter   |
| mmol             | Millimoles                 |
| mol              | Mole                       |
| nm               | Nanometers                 |
| NMP              | N-methyl-2-pyrrolidone     |
| ppm              | Parts per million          |
| Pt               | Platinum                   |
| PV               | Photovolatics              |
| S                | Second                     |
| R <sub>ct</sub>  | Charge transfer resistance |
| R <sub>s</sub>   | Series resistance          |
| UV               | Ultra violet               |
| v                | Voltage (V)                |
| V <sub>max</sub> | Maximum voltage            |
| V <sub>oc</sub>  | Open circuit voltage       |
| w                | Watt                       |
| WE               | Working electrode          |
| Wp               | Watt peak                  |

### LIST OF ABBREVIATIONS (CONTINUED)

### ABBREVIATION FULL WORD

-

Angstrom (10<sup>-10</sup>m) Å °C Degree of celsius Molar extinction coefficients 3 Overall light to electric power conversion efficiency (%PCE) η Micrometers μm Percentage volume by volume %v/v λ Wavelength (nm)  $S^+$ Excited dye s Original state

### **CHAPTER 1**

### INTRODUCTION

This chapter describes the photovoltaic technology, dye-sensitized solar cells technology and the objective of this work.

### 1.1 Photovoltaic technology

Advancement in technology and global economic growth has led to a boom in energy demand over the past years. There is high consumption and need for more energy.

Presently, the energy economy is still highly dependent on three forms of fossil fuels - oil, natural gases and coal with percentages of 36.4%, 23.5% and 27.8%, respectively. However, in the near future there will be a replacement of fossil fuels as the world's primary energy resource. With an annual consumption of 82.5 millionbarrels/years, oil might run out in around 40 years at current reserves-to-production (R/P) ratio. A better synopsis is for natural gases that can last for 60 years and coal being the most abundant for 150 years [1].

Meanwhile, there is increasing awareness that environmental pollution arises from the combustion of these fossil fuels. This necessitates urgent promotion of alternatives in renewable energy sources to cover the substantial deficit left by fossil fuels. Figure 1.1 shows all the available technologies for producing renewable energy.



Figure 1.1 The renewable energy: (a) solar cell, (b) biomass and (c) wind technology [2-4].

However, photovoltaic or solar technology is a hot topic in current research. One simple reason is that the Earth receives  $1.2 \times 10^{17}$  W insolation or  $3 \times 10^{24}$  J of energy per year from the Sun and this means covering only 0.13% of the Earth's surface with solar cells with an efficiency of 10% would satisfy our present needs. Figure 1.2 shows the isoflux contour plots, the worldwide solar radiation measurements could give an indication of solar insolation across the world. The unit are in MJ/m<sup>2</sup> and give the solar insolation falling on a horizontal surface per day.





Apart from the abundance of potentially exploitable solar energy, photovoltaic cells also have other competitive advantages such as little need for maintenance, off-grid operation and silence, which are ideal for usage in remote sites or mobile applications. Therefore, the world strategies energy perspective on how various solar technologies has been suffice to global energy demand. The photovoltaic cells are a promising technology to capture the sunlight and turn it into electric power. The photovoltaic cell is also sometimes called "solar cell".

The solar cell production has grown at 30% per annum over the past 30 years. A selling price of \$2/Wp. The conventional cell of today, the first generation solar cells was based on a crystalline silicon (c-Si) technology (Figure 1.3). A second generation of solar cells, based on thin film technologies includes amorphous silicon (a-Si), CIGS and CdTe. The advantages of such solar cells include ease of manufacturing, a wider range of applications with attractive appearance, and possibilities of using flexible substrates [6].



Figure 1.3 Schematic basic composition of single-junction silicon solar cell [7].

However, both the first and second generation solar cells are based on single-junction devices and the fabrication process was requires high energy intensive (high temperature and high vacuum processes) [8]. Therefore, the photovoltaic sell price was very expensive. The theoretical maximum efficiency for such cells is 31% - the so-called Shockley-Queissar limit.

These limitations were overcomed by third-generation solar cells technologies. That is utilizing the nano-scale properties of devices. In principle, sunlight can be converted to electricity at efficiency close to the Carnot limit of around 94%. The primary goal for the third generation solar cells is to produce electricity at a price that is competitive with conventional fossil fuel sources: that is, less than \$0.5/Wp [9].

### 1.2 Dye-sensitized Solar cells

In 1991 O'Regan and Grätzel published a breakthrough of an alternative solar harvesting device, yielding a solar energy conversion to electricity of 7%, based on a sensitizer and mesoscopic inorganic semiconductor (see Figure 1.4). The sensitized nanocrystalline photovoltaic device was new comer name the dye-sensitized solar cells (DSSCs) [10].





With the discovery of the N3 dye and the later panchromatic "black dye", the power to electricity conversion efficiency was pushed well over 10% [12-13]. An interesting modification to this classic system was replacing the electrolyte with a solid hole conductor, yielding an all-solid state dye-sensitized device [14-17]. Recent achievements of long time stability under accelerated experiments with quasi-solid molten salt (ionic liquid) [18-19], polymer gel [20-21] electrolyte greatly promoted the practical application of this third generation photovoltaic technology and put it currently right at the start of commercialization stage. Therefore, DSSCs are interesting choices for a third generation technology. Figure 1.5 shows development chart of photovoltaic technology as recorded by the national renewable energy laboratory [22].

#### 1.3 Objectives of this thesis

The objectives of this work are as follow;

- (1) To investigation the fabricated condition of DSSC devices.
- (2) To characterization physical properties and photovoltaic characteristic of DSSCs
- (3) To characterization photovoltaic characteristic of novel organic dye.





### **CHAPTER 2**

### THE THEORY AND LITERATURE REVIEWS

The theoretically and literature reviews of device fabrication of dye sensitized solar cells were described in this chapter.

#### 2.1 The DSSCs configuration and component

The dye-sensitized solar cell (DSSCs) generate electric power from light without suffering any permanent chemical transformation. The DSSCs main components consist of working electrode, a counter electrode and a liquid redox electrolyte (see Figure 2.1).



Figure 2.1 The schematic drawing of the DSSCs key components. The configuration consist of
(a) Working electrode (WE): porous TiO<sub>2</sub> attached to a fluorine doped tin oxide (FTO),
(b) Counter electrode (CE): platinum nano particle attached to a fluorine doped tin oxide (FTO),
(c) Light absorbing layer: adsorbed sensitizing dye/ chromophore and
(d) Redox system: liquid electrolyte containing the iodide/tri-iodide (I<sup>'</sup>/I<sub>3</sub>) [23].

Figure 2.1 shows the schematic drawing of basic composition of DSSCs, commonly in four parts. The working electrode (WE) usually is nanocrystalline semiconductor such as  $TiO_2$ , although alternative wide band gap oxides such as ZnO. A monolayer of the sensitizer is attached

to the surface of the semiconductor. Photoexcitation of the sensitizer results in the injection of an electron into the conduction band of the semiconductor.

The counter electrode (CE) usually is fluorine-doped tin oxide (FTO) glass coated with platinum to afford more reversible electron transfer. It is the interfaced where the oxidized species in the electrolyte (or holes) is reduced and an equally important component of DSSCs.

The chromophore are the key component to light harvesting of the sun light. In addition, chromophore in some time calls the sensitizers or dye. The best chromophore relates to some basic criteria. The HOMO potential of the dye should be sufficiently positive to match the potential of the electrolyte redox potential for efficient dye regeneration. The LUMO potential of the dye should be sufficiently negative to match the potential of the conduction band edge of the semiconductor (TiO<sub>2</sub>) and the broadening the absorption light in the visible to near infrared region [24].

The electrolyte was combined with two redox mediators such as  $I/I_3$ , usually dissolved in an organic solvent. The electrolyte was operated in series of transport the positive and negative charges to regenerate the dye. The electron donation to the chromophore by iodide is compensated by the reduction of tri-iodide at the counter electrode and the circuit is completed by electron migration through the external load.

### 2.2 The basic principle of DSSCs operation

The DSSC devices are brought together to generate electric power from light without suffering any permanent chemical transformation. Figure 2.2 shows a scheme of dynamics processes involved in such a DSSCs device. The conceptual of basic operation start with sunlight enters the cell through the transparent FTO top contact, striking the dye on the surface of the  $TiO_2$ . Photons striking the dye with enough energy to be absorbed create an excited state of the dye, from which an electron can be "injected" directly into the conduction band of the  $TiO_2$ . From there it moves by diffusion (as a result of an electron concentration gradient) to the clear anode on top. Meanwhile, the dye molecule has lost an electron and the molecule will decompose if another electron is not provided. The dye strips one from iodide in electrolyte below the  $TiO_2$ , oxidizing it into triiodide. This reaction occurs quite quickly compared to the time that it takes for the injected electron to recombine with the oxidized dye molecule, preventing this recombination

reaction that would effectively short circuit the solar cell. The triiodide then recovers its missing electron by mechanically diffusing to the bottom of the cell, where the counter electrode re-introduces the electrons after flowing through the external circuit [25, 26].



Figure 2.2 The schematic operation of DSSCs [8].

Upon illumination, the sensitizer is photo excited (1) and electron injection is ultrafast from S\* to TiO<sub>2</sub> (2) on the sub pico-second time scale (intramolecular relaxation of dye excited states might complicate the injection process and change the timescale, where they are rapidly (less than 10 fs) thermalized by lattice collisions and phonon emissions. The nanosecond ranged relaxation of S<sup>•</sup> (3) is rather slow compared to injection, ensuring the injection efficiency to be unity. The ground state of the sensitizer is then recuperated by I<sup>•</sup> in the microsecond domain (4), effectively annihilating S<sup>+</sup> and intercepting the recombination of electron in TiO<sub>2</sub> with S<sup>+</sup> (5) that happens in the millisecond time range. This is followed by the two most important processes electron percolation across the nanocrystalline film and the redox capture of the electron by the oxidized relay (back reaction, 6), I<sub>3</sub><sup>•</sup>, within milliseconds or even seconds. The similarity in time constants of both processes induces a practical issue on achieving high conversion efficiencies in DSSCs [27, 28].

$$\begin{split} & S|TiO_2 + hv & \longrightarrow S'|TiO_2 & Photo excitation & (1) \\ & S'|TiO_2 & \longrightarrow S'|TiO_2 + e_{cb}'(TiO_2) & Charge injection & (2) \\ & S'|TiO_2 & \longrightarrow S|TiO_2 + hv' & Relaxation & (3) \\ & 2S'|TiO_2 + 3I^- & \longrightarrow 2S|TiO_2 + I_3^- & Regeneration & (4) \\ & S''|TiO_2 + e'(TiO_2) & \longrightarrow S|TiO_2 & Recombination & (5) \\ & 2e'(TiO_2) + I_3^- & \longrightarrow 3I_2^- & Back reaction & (6) \\ \end{split}$$

### 2.3 The properties of sun light and simulate sun light

### 2.3.1 The solar radiation at the earth surface

The earth continuously receives about  $174 \times 10^{15}$  W of incoming solar irradiation at the upper atmosphere. When it meets the atmosphere, 6% of the irradiation is reflected and 16% is absorbed. The sun ray outside the earth's atmosphere travel parallel to each other. The interaction of solar radiation with earth's atmosphere is shown in Figure 2.3.

As the sunlight travels through the atmosphere, chemicals interact with the sunlight and absorb certain wavelengths. Perhaps the best-known example is the stripping of ultraviolet light by ozone in the upper atmosphere, which dramatically reduces the amount of short-wavelength light reaching the Earth's surface. A more active component of this process is water vapor, which results in a wide variety of absorption bands at many wavelengths, while molecular nitrogen, oxygen and carbon dioxide add to this process.

The atomic and molecular oxygen and nitrogen absorb very short wave radiation effectively blocking radiation with wavelengths <190 nm. When molecular oxygen in the atmosphere absorbs short wave ultraviolet radiation, leads to the production of ozone. Ozone strongly absorbs longer wavelength ultraviolet in the band from 200 - 300 nm and weakly absorbs visible radiation. The water vapor, carbon dioxide, and to a lesser extent, oxygen, selectively absorb in the near infrared. These effects were several impacts on the solar radiation at the Earth's surface. The major effects for photovoltaic applications are reduced power of the solar radiation due to absorption, scattering and reflection by water vapour, clouds and pollution. It is loss of solar radiation and changing terrestrial solar spectrum at earth surface [29].

9





#### 2.3.2 Air Mass

The Air Mass is the path length which light takes through the atmosphere normalized to the shortest possible path length (that is, when the sun is directly overhead). The Air Mass quantifies the reduction in the power of light as it passes through the atmosphere and is absorbs by air and dust. The Air Mass (AM) is defined as

$$AM = \frac{1}{\cos(\theta)} \tag{7}$$

Where  $\theta$  is the angle from the vertical (zenith angle). The AM 1 is that the sun directly overhead. The air mass number is thus dependent on the sun's elevation path through the sky and therefore varies with time of day and with the passing seasons of the year, and with the latitude of the observer. The schematic diagram of solar air mass is shown in Figure 2.4.

The estimation of air mass coefficient are considered to be effectively concentrated into around the bottom 9 km, i.e. essentially all the atmospheric effects are due to the atmospheric mass in the lower half of the Troposphere. This is a useful and simple model when considering the atmospheric effects on solar intensity [30, 31].



Figure 2.4 The schematic diagram of solar air mass [30].

### 2.3.3 Standard solar spectrum and solar irradiation

The efficiency of a solar cell is sensitive to variations in both the power and the spectrum of the incident light. To facilitate an accurate comparison between solar cells measured at different times and locations, a standard spectrum and power density has been defined for both radiations outside the earth's atmosphere and at the earth's surface.

The standard spectrum outside the earth's atmosphere is called AM 0, because at no stage does the light pass through the atmosphere. This spectrum is typical by used to predict the expected performance of cells in space.

The standard spectrum at the earth's surface is usually used AM 1.5G, which the G stands for global and includes both direct and diffuse radiation. The most widely used standard spectra are those published by the Committee Internationale d'Eclaraige (CIE), the world authority on radiometric and photometric nomenclature and standards. The American Society for Testing and Materials (ASTM) publish three spectra, AM 0 AM 1.5 direct and AM 1.5 global for a 37° tilted surface [5, 30, 31].

Figure 2.5 shows typical of AM 1.5 in standard direct and global spectra. These curves are from the data in ASTM standards, E891 in direct spectrum and E892 for global, a turbidity of 0.27 and a tilt of 37° facing the sun and a ground albedo of 0.2. The standard AM 1.5G spectrum (radiation at sea level) has been normalized to give 1 kW/m<sup>2</sup> [32].



Figure 2.5 Standard spectra for AM 1.5 [32].

#### 2.4 The evaluation of photovoltaic characteristic

#### 2.4.1 Overall power conversion efficiency of DSSCs

The overall power conversion efficiency of the photovoltaic cell (%PCE) was investigated by current-voltage (J-V) measurement. The measurement are monitored under illumination white light irradiation by varying an external load from zero load (short circuit condition) to infinite load (open-circuit condition). The photovoltaic characteristic are illustrated by a J-V curve (Figure 2.6). The power conversion efficiency is defined as

$$\%PCE = \eta = \frac{P_{out}}{P_{in}} = \frac{J_{sc} \times V_{oc} \times FF}{P_{in}}$$
(8)

The maximum power is generated when the product of the maximum current density  $(J_{max})$  and maximum voltage  $(V_{max})$ , since the electrical power is given by current  $(J_{sc})$  times voltage  $(V_{oc})$ , i.e P = IV. The degree of the squared shape of the curve is given by the fill factor (FF), the ratio of current  $(J_{max})$  and voltage  $(V_{max})$  at the maximum power point by short circuit current density  $(J_{sc})$  and open circuit voltage  $(V_{oc})$  [25, 33-34]. The fill factor is defined as

$$FF = \frac{J_{\max} \times V_{\max}}{J_{sc} \times V_{\infty}}$$
(9)



Figure 2.6 The current-voltage and power-voltage characteristics of photovoltaic cell [34].

### 2.4.2 Incident photon to current conversion efficiency of DSSCs

Quantum efficiency (QE) is the ratio of the number of charge carriers collected by the solar cell to the number of photons of a given energy shining on the solar cell. The QE relates to the response of a solar cell to the various wavelengths in the spectrum of light shining on the cell. The QE is also sometimes called IPCE, which stands for Incident Photon to electron Conversion Efficiency [25, 35-36]. The IPCE reveals how efficient the numbers of absorbed photons are converted into current as a specific wavelength. The IPCE is defined as

$$IPCE(\%) = \frac{I_{sc}}{I_0} \times \frac{1240}{\lambda} x100$$
(10)

Where  $I_{sc}$  is short circuit current,  $I_0$  is illuminate current of incidents light (Silicon photo diode measurement base),  $\lambda$  is the wavelength of the incident light. The IPCE are related trough the Light harvesting efficiency (LHE) of device. If the amount of dye present on the surface is enough to yield close to 100% LHE, the IPCE will be equal. Therefore, the IPCE are powerful tool to explore the sensitizer absorption behavior and significantly to design the sensitizer molecule. Figure 2.7 shows the spectral response of the photocurrent of the N3 and the black dye sensitizers. Both dyes show very high IPCE values in the visible range. However, the response of the black dye extends 100 nm farther into the IR than that of N3.

13



Figure 2.7 The IPCE spectra obtained with the N3 and the black dye as sensitizer [34].

#### 2.5 The literature survey

#### 2.5.1 Preparation of the infrastructure of DSSCs

#### 2.5.1.1 Preparation of the working electrode of DSSCs

The photovoltaic effect takes advantage of the fact that photons falling on a semiconductor can create electron hole pairs, and at a junction between two different materials, this effect can set up an electric potential difference across the interface. Figure 2.8 shows first type of the regenerative cell, which converts light to electric power leaving no net chemical change behind. Photons exceed generate the electron hole pairs, which are separates by the electric field present in the space-charge layer. The negative charge carriers move through the bulk of the semiconductor to the current collector and the external circuit. The positive holes are driven to the surface where they are scavenged by the reduced form of the redox relay molecule (R), oxidizing it:  $h^+ + R \rightarrow O$  The oxidized form **Ox** is reduced back to Red by the electrons that reenter the cell from the external circuit [8].



Figure 2.8 The schematic drawing principle of operation of photo-electrochemical cells base on n-type semiconductors [25].

The heart of the system is a wide band gap oxide semiconductor which is placed in contact with a redox electrolyte or an organic hole conductor. The material of choice has been  $TiO_2$  (anatase), although alternative wide band gap oxides such as ZnO and Nb<sub>2</sub>O<sub>5</sub> have also given promising results. The overall device generates electric power from light without suffering any permanent chemical transformation. Accelerated endurance tests have shown that ruthenium based charge transfer sensitizers can sustain 100 million turnovers without decomposition, corresponding to 20 years of cell operation under natural light conditions. The DSSCs have maintained their performance over 14,000 h of continuous light soaking [26].

The astounding photo electrochemical performance of nanocrystalline semiconductor junctions is illustrated in Figure 2.9, which compare the photo-response of an electrode made of single-crystal anatase, one of the crystal forms of  $TiO_2$ , with that of a mesoporous  $TiO_2$  film. The electrodes are sensitized by the ruthenium complex cis-RuL<sub>2</sub>(SCN)<sub>2</sub> (L is 2,28-bipyridyl-4-48-dicarboxylate), which is adsorbed as a monomolecular film at the titania surface. The electrolyte consisted of a solution of 0.3 M LiI and 0.03 M I<sub>2</sub> in acetonitrile. The IPCE value obtained with the single-crystal electrode is only 0.13% near 530 nm, where the sensitizer has an absorption maximum, whereas it reaches 88% with the nanocrystalline electrode more than 600 times as great [8].



Figure 2.9 The incident photon to current conversion efficiency of (a) bare TiO<sub>2</sub> electrodes and(b) TiO<sub>2</sub> with sensitized by the surface anchored with ruthenium complex [8].

Consequently, titanium dioxide became the semiconductor of choice. The  $TiO_2$  has many advantages for sensitized photochemistry and photo electrochemistry: it is a low cost, widely available, non-toxic and biocompatible material, and as such is even uses in health care products as well as domestic applications such as paint pigmentation.

However, the mesoporous  $TiO_2$  for DSSCs working electrode are require: (a) the inherent conductivity of the film is very low, (b) small size of the nanocrystalline particles do not support a built-in electrical field and (c) the electrolyte penetrates the porous film all the way to the back contact making the semiconductor/electrolyte interface essentially three dimensional. Therefore, controlling the nanocrystalline structure of  $TiO_2$  powders is very important for the application to DSSCs because the efficiency of DSSCs is considerable influenced on the change of the  $TiO_2$  nanostructures. The nanoporous structure permits the specific surface concentration of the sensitizing dye to be sufficiently high for total absorption of the incident light, necessary for efficient solar energy conversion, since the area of the monomolecular distribution of adsorbate is 2 - 3 orders of magnitude higher than the geometric area of the substrate [37]. Figure 2.10 shows the surface of mesoporous  $TiO_2$  film prepared from a colloidal suspension processed and by the conventional sol-gel method [33]. The comparison the surface morphology of  $TiO_2$  film, the result indicates that. The  $TiO_2$  films from sol-gel chemical methods, which evidently provides a much more reproducible and controlled particle size, porous, high surface area texture.



Figure 2.10 The scanning electron micrograph of a meso-porous anatase TiO<sub>2</sub> film surface: (a) colloidal suspension and (b) hydrothermally technique [8, 33].

Figure 2.11 shows the schematic flow chart of hydrothermal technique. That are involves the hydrolysis of the titanium alkoxide precursor producing an amorphous precipitate followed by peptisation in acid or alkaline water to produce a sol, which is a subject to hydrothermal Ostwald ripening in an autoclave. This method yield was 20 nm  $TiO_2$  nano-particles with anatase or a mixture of anatase and rutile phase. This technique are ease to control the particle size, hence of nanostructure and porosity of the resultant semiconductor substrate [12].

The sol-gel chemical methods, since it is compatible with screen printing technology, while commercially, available titania powders produced by a pyrolysis route from a chloride precursor have been successfully employed. It anticipates future production requirements. Therefore, the available commercial titanium dioxide powder was used to make screen-printing pastes i.e. P25, ST21 and ST41 [38-41].



Figure 2.11 Flow chart of preparation TiO, particle from hydrothermally technique [12].

Figure 2.12 shows the photograph and transmittance spectra of screen printed commercial available nanocrystalline  $TiO_2$  layers. The measurements was performed with cover glass plates, which were attached on the surface of  $TiO_2$  layer, and the pores in nanocrystalline- $TiO_2$  layers were filled with butoxyacetonitrile to decrease the light scattering effect [40].



Figure 2.12 (a) transmittance spectra and (b) photograph of screen-printing paste prepared form commercial available TiO<sub>2</sub> powder [40].

The paste composition was influent on properties of screen-printing paste. The TRITON<sup>TM</sup> X with a carboxylic terminal group as a dispersant was employed to prepare nc-TiO<sub>2</sub> photoanode films. It was found that simply introducing TRITON<sup>TM</sup> X-based surfactants with an octyl phenol ethoxylate (OPE) backbone and various chain ends the [nc-TiO<sub>2</sub>/ethyl cellulose/terpineol] paste is helpful to increase the powder loading and make it possible to produce nc-TiO<sub>2</sub> films with higher surface uniformity and particle density after sintering process [42]. The screen-printed nanoporous TiO<sub>2</sub> thin films with large size pores due to the addition of PS balls, cellulosic polymer (PEG Mw 20,000) [41-44]. The TiO<sub>2</sub> pastes prepare by varying the proportion of TiO<sub>2</sub> powder,  $\alpha$ -terpineol, and ethyl cellulose in their composition. The paste compositions with PEG MW 20,000 use as the binder and pore-forming agent. The viscosity and rheology of paste was control by ethylcellulose. Moreover, acetylacetone and 4-hydroxy-benzoic acid can effectively prevent the aggregation of TiO<sub>2</sub> panoparticles and improve the mechanical stability of film [44]. The paste prepared with 26% TiO<sub>2</sub> powder, 15% ethyl cellulose gel and 59%  $\alpha$ -terpineol found to appropriate for application in DSSCs [45].

Figure 2.13 shows step-by-step preparation the  $TiO_2$  screen-printing past process, which prepared form the commercially available  $TiO_2$  powder. A specific advantage of the procedure is fabricating the nanocrystalline layers without cracking and peeling-off for the photoactive electrodes [40].

The nanoparticle  $TiO_2$  films need to be deposits immediately after paste preparation to avoid agglomeration of the material. Storage paste may be feasible only under controlled conditions as it is more sensitive to environmental conditions than powder storage, resulting to the formation of large aggregates of  $TiO_2$  nanoparticles. Large aggregates of  $TiO_2$ nanoparticles enhance porosity but reduce active surface area for dye adsorption and also reduce the transparency of the film, which enhance evaporation of acetyl acetone and water, thereby reducing cracks. The development of cracks on the film's surface results to a decrease in the efficiency of the cell [46].



Figure 2.13 Flow chart of paste preparation from commercially available TiO, powder [40].

Figure 2.14 shows schematic drawing conceptual of screen printing technique. In addition, the screen characteristics are described specific properties i.e. screen net materials, mesh count (number of fabric line per square inch), mesh open (percentage of open surface), fabric thickness and theoretical paste volume. The deposition of paste was conducted under the following conditions: squeegee speed, distance between screen and substrate, applied squeegee pressure and squeegee angle.

The extremely promising for up-scaling and industrial production, screen-printing is a reliable and cost effective low technology method currently used as deposition technique for thick films of particulate and polymeric materials for use in superconducting, photovoltaic, and electronic devices and sensors.



Figure 2.14 The schematic conceptual of screen printing technique [47].

Figure 2.15 shows the photograph of available commercial DSSCs test cell glass plate supplied by pilot production laboratory. The DSSCs made easy with the test cell kit supplied by Solaronix, Switzerland (Figure 2.15(a)). The available as a laser pre-cut plate of 28 separate electrodes, supplied by Dyesol, Australia. The transparency and opaque  $TiO_2$  coated working electrode was coated by a suite of high quality pastes, containing  $TiO_2$  load of 20 nm (Figure 2.15(b)) and 350-450 nm nano-particulate paste, respectively. The complete Solaronix spot cell kit, which allows scientists and enthusiasts to easily make their own cells. Ready-to-use electrodes and sealing materials allow the experimenter to focus on the chemistry of dyes and electrolytes (Figure 2.15(c)). The homemade education cell kit in ECN laboratory, Netherlands was shown in Figure 2.15(d) [48-50].

In the pilot manufacturing production plant of DSSCs, screen printer is typically used for screen of an electrical conductor to form a busbar, a catalyst paste to form the counter electrode and a semiconductor paste to form the working electrode (see Figure 2.15(e)). The flexible nature of this piece of equipment allows users to experiment with application of other cell components such as electrolytes and sealants. Figure 2.15(f) shows the photograph of screen-printing technology, which controllable squeegee speed and pressure, allow for precise repeatable prints for both small and large production runs.




# 2.5.1.2 Preparation of the counter electrode of DSSCs

The task of the counter electrode (CE) is the reduction of the redox species used as a mediator in regenerating the sensitizer after electron injection, collection of the holes from the hole conducting material in solid-state DSSCs. At present, several different kinds of CEs has been introduced, for example: platinized transparent, carbon, and conductive polymer.

However, Platinum-loaded on the conducting glass has already been widely used as the standard for DSSCs counter electrodes. The reactions at the CE depend on the type of redox shuttle used to transfer charge between the photo-electrode and the CE. In many cases the iodide triiodide couple has been employed as the redox mediator. The kinetics of reduction of triiodide at the CEs have been studied with a symmetric two electrode system and the mass transfer limitation on the photocurrent. The electrochemical potential of CE was determine by the catalytic activity.

The catalytic activity was expressed in terms of the exchange current density  $(J_0)$ , which is calculated from the charge-transfer resistance  $(R_{ct})$  using the  $R_{ct} = RT/nFJ_0$ , which R, T, n, and F are the gas constant, temperature, number of electrons transferred in the elementary electrode reaction (n = 2) and Faraday constant, respectively [51].

Several methodologies to produce the platinized counter electrode were reported one has self-assembly deposit method. The Pt hydrosol was prepared by adding the acrylic solution in precursor solution, ageing and nitrogen gas bubbled was flow to reduction the platinum ions. Solution of dodecanethiol and stearic acid were transferred to FTO surface, which used to generate the monolayer of dodecanethiol. Follow the last step by immersed in platinum colloidal solution the nanoparticles were covalently coordinated to the thiol group. The time of self-assembly of platinum nanoparticles was about 4 day [52].

Hydrogen reduction combine with screen print method, the  $H_2PtCl_6$  as a precursor mixed as antimony doped tin dioxide powders, After evaporating the solvent, the impregnated platinum precursor was reduced by preheated hydrogen at 120 °C during 60 min. Afterwards each 1 g of catalytic powder was mixed with 8 g of binder ( $\alpha$ -terpineol+10 wt.% ethyl cellulose 45cP). The mixture was stirred at 8,000 rpm for 25 min. The cell area was 2.5 cm<sup>2</sup>. After film deposition, the master plats were dried at 150 °C and annealed at 630 °C [53].

Figure 2.16 show a SEM photograph of platinum counter electrodes surface prepared by the electro deposition method. The platinum colloid was prepared by the reaction between  $H_2PtCl_6$  and  $NaH_2Cyt$ . The conductive glass sheet was immersed in dodecanethiol ethanol solution for 10 min. The 2 volt direct current was applied and follow with sintered at 450°C for 30 min. Using such a counter electrode, DSSCs showed 6.40% of overall energy conversion efficiency [54].



Figure 2.16 The SEM photograph of platinum counter electrodes surface prepared by electro deposition technique [54].

The Pt counter electrode was prepared by the sputtering method. The Pt film's thickness was controlled by deposition time. It was found that the counter electrodes sheet resistance (Rs) decreased as the Pt film thickness increased (Figure 2.17). however, when the Pt film thickness exceeds 100 nm, there has no significant effect on the conductivity improvement [55-56]. Usually, the Pt counter electrode for DSSCs was prepared by the thermal decomposition method of  $H_2PtCl_6$  solution. The Pt solution was deposited on FTO substrates by several techniques such as spin coating, drop casting and screen-printing.



Figure 2.17 The dependence of sheet resistance of platinized counter electrodes on Platinum film thickness [56].

#### 2.5.1.3 Preparation of the electrolyte of DSSCs

The electrolyte is one of key components for DSSCs, effect on the conversion efficiency and stability of the solar cells. The electrolytes can be classified into 3 groups: liquid electrolyte, Ionic liquid electrolyte and quasi - solid state in term of gel, polymer, inoraganic and organic hole conductor electrolyte [57-58].

#### (1) Liquid Electrolytes

The essential constituents of liquid electrolytes are organic solvent, redox couple such as  $31/T_3$  and additives. The organic solvent is a basic component in liquid electrolytes, an environment for iodide/triiodide ions' dissolution and diffusion. The physical characteristics of organic solvent including donor number, dielectric constants, and viscosity was affect to the photovoltaic performance of DSSCs.

Figure 2.18 shows the relation between donor number of solvent shows obvious influence on the open circuit voltage ( $V_{oc}$ ) and short circuit current density ( $J_{sc}$ ). The donor number was variation by change type and ratio of mix solvent: 1: AcN, 2: 10 % THF/90 % AcN, 3: 20 % THF/80 % AcN, 4: 30 % THF/70 % AcN, 5: 50 % THF/50 % AcN, 6: 70 % THF/30 % AcN, 7:10 % DMSO/90 % AcN, 8: 20 % DMSO/80 % AcN, 9: 50 % DMSO/50 % AcN, 10: DMSO, 11: 50 % DMF/50 %AcN, 12: DMF, 13: 10 % NMP/90 % AcN, 14: 20 % NMP/80 % AcN, 15: 30 % NMP/70 % AcN. Electrolyte contains 0.6 M DMPII, 0.1 M LiI, 0.05 M I<sub>2</sub> [59].



Figure 2.18 Dependence of (a)  $J_{sc}$  and (b)  $V_{oc}$  of DSSCs on the donor number of solvents [59].

The additives such as specific cation and compounds are normally introduced into the liquid electrolytes; to enhance the photovoltaic parameters in DSSCs. Two kinds of additives are typically employed in liquid electrolytes for DSSCs. (1) alkali cations or guanidium cations mainly devoted to the enhancement of short circuit photocurrents ( $J_{sc}$ ). The adsorption of specific cation in the electrolytes onto the TiO<sub>2</sub> surface could shift the conduction band of the TiO<sub>2</sub> towards more positive potentials, thus affecting the electron injection dynamics of the excited state of dye molecules [59]. (2) Nitrogen-containing heterocyclic compound, most frequently 4-tert-butylpyridine (4-TBP) is another class additives in DSSCs electrolyte, mainly dedicated to the improvement of the  $V_{oc}$ .

In contrast to the specific cation, Lewis bases, such as 4-TBP, instead are expected to deprotonate the  $TiO_2$  surface, therefore causing a negative shift of the conduction band of the  $TiO_2$ . The effect of 4-TBP has been extensively investigated over the past several years, and several mechanisms have been put forward. It has been proposed that the dramatic increase of the  $V_{oc}$  arising from the introduction of the 4-TBP can be attributed to either the suppression of the dark current at  $TiO_2$ /electrolyte interface or the negative shift of the conduction band in the  $TiO_2$  film or a combination of both [60].

#### (2) Ionic Liquid Electrolytes

Ionic liquids (ILs) are materials which consist only of ions and which are liquid below 100 °C. The ionic liquids was used in many difference such as catalysis, extraction processes, protein synthesis, cellulose processing, electroplating batteries, double layer capacitors, electrochromic windows and dye solar cells (DSSCs) [60]. Table 2.1 was listed the photovoltaic performance of DSSCs based on ionic liquid electrolyte of different composition.

Table 2.1 The partial literatures reported on the DSSCs with ILs electrolytes [61].

| <b>Electrolyzes</b> Composition                                             | Dye  | PCE (%) | Stability                                    |
|-----------------------------------------------------------------------------|------|---------|----------------------------------------------|
| Binary ILs (PMII/EMIDCN) with I/I3                                          | Z907 | 6.6     | N/A                                          |
| IL with SeCN/(SeCN) <sup>3-</sup> , Iodine-free                             | Z907 | 7.5     | N/A                                          |
| Binary ILs (PMII/EMIB(CN) <sub>4</sub> ) with $I/I_3$                       | K77  | 7.60    | 1,000 h at 60 °C, decay 9%                   |
| Binary ILs (PMII/G.CI) with I/I3                                            | D149 | 3.88    | N/A                                          |
| Binary ILs (BMII/BMISO <sub>3</sub> CF <sub>3</sub> ) with I/I <sub>3</sub> | N3   | 4.11    | 576 h at 25 $^{\circ}\mathrm{C},$ decay < 5% |

#### (3) Solid - State electrolytes

There are two kinds of solid-state electrolytes DSSCs, one uses hole transport materials (HTMs) as medium and the other uses a solid state electrolyte containing redox couple as medium. Familiar large band gap HTMs such as SiC and GaN are not suitably used in DSSCs since the high temperature deposition process for these materials will certainly degrade conduction band the sensitized dyes on the surface of nanocrystalline  $TiO_2$  [62].

It was found that a kind of inorganic HTM based on copper compounds such as CuI, CuBr, or CuSCN could be used in DSSCs. These copper-based materials can be casted from solution or vacuum deposition to form a complete hole-transporting layer, the CuI and CuSCN share good conductivity in excess of 10 - 2 S/cm, which facilitates their hole conducting ability. For example, DSSCs based on CuI HTM obtained as high as 2.4% light to electricity power conversion efficiency under irradiation of AM 1.5G, 100 mW/cm<sup>2</sup> [63-65].

However, stability is quite poor, even lower than the traditional organic photovoltaic cell, which is also a common problem existing in DSSCs based on this kind of inorganic HTMs. Therefore, It was paid the attention to organic HTMs. Organic HTMs have already been widely used in organic solar cells, organic thin film transistors, and organic light emitting diodes. Compared with inorganic HTMs, organic HTMs possess the advantages of plentiful sources, easy preparation, and low cost.

Table 2.2 lists the photovoltaic performance of DSSCs based on typical inorganic and organic HTMs. The solid-state DSSCs based on organic HTM 2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine) 9,9'-spirobifluorene (OMeTAD) was reported, although overall light-to-electricity conversion efficiency of this DSSCs only reached 0.74% under irradiation of 9.4 mWcm<sup>-2</sup>. It is a pioneer for fabricating DSSCs with organic HTMs by improving the dye adsorption in the presence of silver ions in the dye solution. The efficiency of solid-state DSSCs employing spiro-OMeTAD was enhanced to 3.2%, which is the highest level of the solid state DSSCs by utilizing an organic transport material up to now. However, the overall light to electricity power conversion efficiencies of these DSSCs lower than that of the DSSCs based on liquid electrolytes.

| Type of hole transport materials | Materials             | PCE (%)     |
|----------------------------------|-----------------------|-------------|
| Inorganic HTM                    | CuI                   | 2.4 - 3.8   |
|                                  | CuSCN                 | 1.50        |
|                                  | $4 CuBr_3S(C_4H_9)_2$ | 0.60        |
| Organic HTM                      | OMeTAD                | 0.74 - 2.56 |
|                                  | Spiro-OMeTAD          | 3.20        |
|                                  | Pentacene             | 0.80        |
|                                  | Polyaniline           | 1.15        |

Table 2.2 The performance of solid-state DSSCs utilizing different HTMs [59].

The quasi-solid state, or gel state, is a particular state of matter, neither

liquid, solid, conversely both liquid and solid. Generally, a quasi-solid-state electrolyte is defined as a system which consists of a polymer network (polymer host) swollen with liquid electrolytes. The quasi-solid-state electrolytes are usually prepared by incorporating a large amount of a liquid electrolyte into organic monomer or polymer matrix, forming a stable gel with a network structure via a physical or chemical method. Quasi-solid-state electrolytes show better long-term stability than liquid electrolytes do and have the merits of liquid electrolytes including high ionic conductivity and excellent interfacial contact property. Table 2.3 shows the photovoltaic performance of DSSCs based on different gelators and ionic liquid electrolytes.

| Electrolyzes Composition Gelator            |                              | Dye  | PCE (%) |
|---------------------------------------------|------------------------------|------|---------|
| HMII, I <sub>2</sub> et al.                 | Low-molecular-weight gelator | N719 | 5.01    |
| I <sub>2</sub> , MPII, NMBI                 | PVDF-HFP                     | Z907 | 5.30    |
| $\rm I_2$ and NMBI in MPII                  | Silica Nanoparticles         | Z907 | 6.10    |
| I <sub>2</sub> , GuSCN, NMBI                | Low-molecular-weight gelator | K-19 | 6.3     |
| in PMII/EMINCS (13:7,v/v)                   |                              |      |         |
| EMImI, I <sub>2</sub> , LiI, TBP in EMITFSA | PVDF-HFP                     | N3   | 2.4     |
| TMS-PMII/I <sub>2</sub> in 10:1 ratio       | Self-gelation                | N3   | 3.2     |
| I <sub>2</sub> , LiI, TBP in MPII           | Agarose                      | N719 | 2.93    |
| I <sub>2</sub> , LiI, TBP, DMPII in EMIDCA  | Agarose                      | N719 | 3.89    |
| EMII, LiI, $I_2$ , and TBP in EMITFSI       | Nanoparticles                | N3   | 4.57    |

Table 2.3 The quasi-solid state DSSCs with different gelators and ionic liquid electrolytes [61].

In addition, the iodide/triiodide has been demonstrated as the most efficient redox couple for regeneration of the oxidized dye, its severe corrosion for many sealing materials, especially metals, causes a difficult assembling and sealing for a large area DSSCs and poor long-term stability of DSSCs. Therefore, redox couples such as  $Br/Br_2$ ,  $SCN/SCN_2$ ,  $SeCN/SeCN_2$  bipyridine cobalt(III/II) complexes was investigate. The unmatchable energy with sensitized dyes or their intrinsic low diffusion coefficients in electrolyte, these redox couples show lower conversion efficiencies than the iodide/triiodide redox couple [59].

# 2.5.1.4 Preparation of the dye or sensitizer of DSSCs

The ideal to design molecular of sensitizer for a single junction photovoltaic cell converting standard global AM 1.5 sunlight to electricity should absorb all light below a threshold wavelength of about 920 nm. In addition, it must also carry attachment groups such as carboxylate or phosphonate to firmly graft it to the semiconductor oxide surface. Upon excitation it should inject electrons into the solid with a quantum yield of unity. The energy level of the excited state should be well matched to the lower bound of the conduction band of the oxide to minimize energetic losses during the electron transfer reaction. Its redox potential should be sufficiently high that it can be regenerated via electron donation from the redoxn electrolyte or the hole conductor. Finally, it should be stable enough to sustain about 10<sup>8</sup> turnover cycles corresponding to about 20 years of exposure to natural light [33].

The efficiencies of the sensitizers are related to some basic criteria. The HOMO potential of the dye should be sufficiently positive compared to the electrolyte redox potential for efficient dye regeneration. The LUMO potential of the dye should be sufficiently negative to match the potential of the conduction band edge of the  $TiO_2$  and the light absorption in the visible region should be efficient. However, by broadening the absorption spectra, the difference in the potentials of the HOMO and the LUMO energy levels is decreased. If the HOMO and LUMO energy levels are too close in potential, the driving force for electron injection into the semiconductor or regeneration of the dye from the electrolyte could be hindered. The sensitizer should also exhibit small reorganization energy for excited and ground state, in order to minimize free energy losses in primary and secondary electron transfer step [68].

There have been two kinds of dyes, namely, metal-complexes and metal-free complexes or organic dyes. Up to now, several Ru(III) polypyridyl complexes have achieved light-to-electricity power conversion efficiencies (%PCE) more over 10% in standard global air mass 1.5 and shown favorable stabilities [12-13]. Ruthenium complexes such as the N3, N719 and black dye have been intensively investigated and show record solar energy to electricity conversion efficiencies of 11% (Figure 2.19) [33].



Figure 2.19 The chemical structures of commercialize ruthenium based metal dye [33].

Although Ru complexes show high power conversion efficiencies, the problem of costs and environmental issues will limit the large-scale application of this type of solar cells. Compared with Ru dyes, metal-free organic dyes have many advantages such as high molar absorption coefficient, wide variety of the structures, facile modification, no concern with the noble metal resource, and environment friendly dyes.

However, many organic dyes still present moderately conversion efficiency in DSSCs. There are two major factors for the efficiency: one is due to the sharp and narrow absorption band of organic dyes; the other is the aggregation of dyes on the semiconductor surface. Organic dyes have some advantages over conventional ruthenium based chromophore as photosensitizers. For instance, they exhibit high molar extinction coefficients and are easily modified due to relatively short synthetic routes and especially low cost starting materials. The high extinction coefficients of the organic dyes are suitable for thin  $TiO_2$  films required in solid state devices where mass transport and insufficiently pore filling limit the photovoltaic performance.

The interest in metal-free organic sensitizers has grown in the last few years. Sayama and coworker was published a merocyanine dye (Mb(18)-N), which gave an efficiency of 4.2% [69]. Before this milestone, the organic dyes for DSSCs performed relatively low efficiencies (%PCE < 1.3%). This finding opens new roads for exploring new dye types. In recent years, a great deal of research aimed at finding highly efficient and stable organic sensitizers has been carried out. A number of coumarin, indoline, and triphenylamine-based organic sensitizers have been intensively investigated and some of them have reached efficiencies in the range of 3 - 8% (Figure 2.20).



Figure 2.20 The chemical structures of coumarin, indoline and triphenylamine organic dyes [70].

#### 2.5.2 Device assembly for DSSCs

Generally, DSSCs test cells was designed in sandwich type cell, the shape of device look like sandwich or hamburger structure (Figure 2.21). The algorithm of cell assembly step, when the electrodes are put together, the active sides of the anode and the cathode will be facing each other. In other words, the stained titania will face the platinum counter electrode. The gap left between the two glass plates will be filling with electrolyte.

Depending on the objective, durability of test cell and measurement speed. It was classify to two types of test cell. First, approach an "open cell" because the inner part of the solar cell is exposed to air. The resulting devices won't last as long as in a sealed configuration. The second approach is called "close cell", devices are sealed together with a gasket so that the electrolyte is confined in the cavity by capillary effect. This type is popular used in laboratory research and pilot plant scale [72].





The fabrication process of the close cell DSSCs test cell, the  $TiO_2$  working electrode should be use right after preparation. The sealant gasket was carefully place around the  $TiO_2$  film, which dimensions of the gasket and the stained titania shall match but not overlap. The Pt counter electrode was faced down on top of the gasket, which the alignment of conductive sides of both electrodes was face to face. Apply heat and pressure all over the gasket with the help of a hot press at about softening temperature of sealing materials. The hot melt material should glue the electrodes together, which hot-melt material should match the refractive index of the glass and look completely transparent all over the gasket surface.

The gap between the two electrodes can now be fills with electrolyte. Use a syringe or dropper to flush the electrolyte from one hole, through the cell by capillary effect. Complete filling can be confirms by a visual examination. Wipe off any excess electrolyte left around the filling holes and clean the glass with an acetone wetted paper towel. A small glass cap will be seal on top of each hole with another piece of sealing film. Apply heat and pressure on both seals at softening temperature of sealing materials. The resulting DSSCs test cell is now ready for use [72]. Seigo Ito and coworker was purposed a step to fabrication of DSSCs with solar to electric power conversion efficiency over 10%. The dye covered  $TiO_2$  electrode and Pt counter electrode were assembled into a sandwich type cell and sealed with a hot melt gasket of 25 µm thickness made of the Dupont ionomer Surlyn 1702 (see Figure 2.22). The size of the  $TiO_2$  electrodes used was 0.16 cm<sup>2</sup>. The aperture of the Surlyn frame was 2 mm larger than that of the  $TiO_2$  area and its width was 1 mm. The hole in the counter electrode was sealed by a film of Bynel using a hot iron bar (protectively covered by a fluorine polymer film). A drop of the electrolyte was put on the hole in the back of the counter electrode. It was introduced into the cell via vacuum backfilling. Finally, the hole was sealed using a hot melt ionomer film (Dupont Bynel 4702, 35-µm) and cover glass [12].



Figures 2.22 The photograph of layer by layer DSSCs configuration [12].

# **CHAPTER 3**

# EXPERIMENTAL

The chapter is divided into six parts including list of materials, list of chemical and reagents, list of equipment, preparation of DSSCs components, DSSC devices assembly, physical properties and device measurement.

# 3.1 List of materials.

The dye sensitized solar cell (DSSCs) devices were fabricated by using appropriate amounts of following commercial materials, as shown in Table 3.1.

| Table 3.1 | List of | commercial | material | s. |
|-----------|---------|------------|----------|----|
|-----------|---------|------------|----------|----|

| Materials  | Company    | Material data specification note                        |  |  |
|------------|------------|---------------------------------------------------------|--|--|
| Surlyn®-30 | DYESOL®    | 30 µm film thickness, 110-130°C Temperature for sealing |  |  |
| TCO 30-8   | SOLARONIX® | Soda lime glass, 3.0 mm thickness, FTO conducting layer |  |  |
|            |            | $\sim 8\Omega/sq$ surface resistivity                   |  |  |
|            |            | > 65% from 500 – 1,000 nm Transmission                  |  |  |
| TCO 22-15  | SOLARONIX® | Soda lime glass, 2.2 mm thickness, FTO conducting layer |  |  |
|            |            | $\sim 15\Omega/sq$ surface resistivity                  |  |  |
|            |            | > 80% from 500 – 800 nm Transmission                    |  |  |

All organic dyes were synthesized by Mr. Sakravee Punsay and Mrs. Tanika Khanasa under supervision of Assoc. Prof. Dr. Vinich Promarak.

# 3.2 List of chemical and reagents

÷

The reagents were obtained from various suppliers as shown in Table 3.2. All reagents used were of analytical grade and unless indicated.

Table 3.2 List of chemical and reagents.

| Chemical and Reagents                                    | Purity (%) | Company                      |
|----------------------------------------------------------|------------|------------------------------|
| 3-methoxypropionitrile                                   | 98.0       | Sigma - Aldrich              |
| 4-tert-butylpyridine (TBP)                               | 96.0       | Sigma - Aldrich              |
| Chloroplatinic acid hexahydrate (H2PtCl6. 6H2O)          | 99.9       | Sigma - Aldrich              |
| Guanidine thiocyanate (CH <sub>6</sub> N <sub>4</sub> S) | 97.0       | Sigma - Aldrich              |
| Iodine (I <sub>2</sub> )                                 | 99.9       | Sigma - Aldrich              |
| Titanium tetrachloride (TiCl <sub>4</sub> ) 0.09 M       | 20.0       | Sigma - Aldrich              |
| Ethanol (CH <sub>3</sub> CH <sub>2</sub> OH)             | 99.7       | Acros Organics               |
| Lithium iodide pure analysis (Lil)                       | 99.5       | BDH                          |
| Nitric acid (HNO <sub>3</sub> )                          | 65.0       | <b>EMSURE<sup>®</sup>ISO</b> |
| Hydrochloric acid (HCl)                                  | 37.0       | Carlo Erba                   |
| Isopropanol ((CH <sub>3</sub> ) <sub>2</sub> CHOH)       | 99.5       | Carlo Erba                   |
| EL-HSE-TEL (High Stability Electrolyte batch#2372)       | N/A        | DYESOL™                      |

# 3.3 List of equipment

÷

The equipment used in this work were summarized in Table 3.3.

| Table 3.3 | List of | equipments. |
|-----------|---------|-------------|
|-----------|---------|-------------|

| Apparatus/Instruments        | Model                                          |
|------------------------------|------------------------------------------------|
| X-ray diffractometer         | Phillip X'Pert-MDP                             |
| Scanning electron microscope | JEOL JSM-5410 LV                               |
| Solar Simulator              | Newport 96000 (150 W Xe lamp)                  |
| Source Meter                 | Keithley 2400                                  |
| Pico ammeter                 | Keithley 6485                                  |
| Monochromator                | Oriel Cornerstone <sup>™</sup> 130 1/8 m       |
| Silicon photodiode           | Newport 818UV low power detector 190 - 1100 nm |
|                              | BS 520 (Bunnkoukeiki. Co., Ltd.)               |
| Furnace                      | Intelmats® FT12005                             |
| Ultrasonic bath              | Bransonic® B2200E-3                            |
| Vacuum Oven                  | Isotemp® vacuum oven 282A                      |
| Screen printing net          | polyester; mesh count (230T mesh/inch)         |

#### 3.4 Preparation of DSSCs components

Figure 3.1 shows the schematic diagram of the DSSCs fabrication process. The working electrode and counter electrode were prepared by using screen printing and drop casting technique, respectively. The working and counter electrode were assembled into a sandwich type cell and sealed with a hot-melt gasket of Dupont ionomer Surlyn 17025.



Figure 3.1 Flow chart of the fabrication and characterization of DSSCs device.

# 3.4.1 Preparation the conducting glass substrate

Figure 3.2 show the schematic shape of conducting glass for dye sensitized solar cell. A size of FTO glass used in this work is 1.3 cm x 2.0 cm (see Figure 3.2(a)). The FTO glass was drilled to make a hole with diameter of 1 mm, which used for fill the electrolyze solution in final process (see Figure 3.2(b)).



Figure 3.2 The FTO glass used as (a) working and (b) counter electrode.

#### 3.4.2 Cleaning conducting glass substrate

The substrates (working and counter electrode) were cleaned in order to avoid contamination. The cleaning procedure was (a) 20 %v/v nitric acid, (b) cleaning detergent, (c) deionized water, (d) acetone and (e) isopropanol. The residues metal on FTO surface were cleaned with 20%v/v nitric acid in ultrasonic bath followed by a trough rinse in deionized (DI) water. Then subsequently ultrasonicated in acetone to remove organic contaminate on the substrate surface. Afterwards rinse with isopropanol, a piece of glass was dried and stored in a closed box to protect them from dust.

#### 3.4.3 Preparation the counter electrodes

The cleaned FTO was coated the platinum catalytic layer by thermal decomposition technique. The organic contaminate on FTO surface was removed by heating in air for 15 min at 400 °C. The platinum precursor solution (2 mgPt/mL in isopropanol) was droped on the cleaned FTO glass. Then, the Pt coated FTO glass was dried in an ambient air and subsequently heated at 385 °C for 20 min.

# 3.4.4 Preparation the TiO<sub>2</sub> working electrode

The cleaned FTO was coated with the nanocrystalline  $\text{TiO}_2$  by screen printing technique. The electrodes were gradually heated under an air flow at 325 °C for 5 min, at 375 °C for 5 min, at 450 °C for 15 min and 500 °C for 30 min (see Figure 3.3). The binder and additives in paste were removed during the sintering process. After the sintering process, the active area of the TiO<sub>2</sub> was measured by a digital camera. The TiO<sub>2</sub> film was re-heated again at 450 °C for 30 min. At the 80 °C in cooling process, the TiO<sub>2</sub> working electrode was immersed in a dye solution and kept at room temperature to complete the sensitizer uptake.



Figure 3.3 The temperature programs of the working electrode heat treatment.

# 3.5 The DSSC devices assembly

The dye-covered  $\text{TiO}_2$  electrode and Pt-counter electrode were assembled in sandwich type cell and sealed with a hot melt sealant gasket, which was adapted from Seigo Ito [12]. The assembly process started with an attachment sealant gasket to the working electrode. The aperture of the sealant frame was 2 mm larger than that of the TiO<sub>2</sub> area and width was 1 mm.



Figure 3.4 The photograph of the electrolyte filling machine. (a) entrance of vacuum pressure valve and (b) release pressure knop.

Then platinum counter electrodes was placed on top of the anode electrode. The cell was sealed by apply heating and pressure. A drop of the electrolyte was filled to cavity in the backside of the counter electrode by Electrolyte Filling Machine (EFM see Figure 3.4), the hole was sealed by using a sealant film and a cover glass. The cathodes and anode contact of DSSC devices was established. The FTO surface was contacted with copper foil and painted with silver paint. Finally, the electric wires were soldered on the copper film to ensure the electric contact. A photograph of complete of DSSC devices and schematic drawings cross section of the DSSC devices are shown in Figure 3.5



Figure 3.5 The photograph and schematic drawings cross section of the DSSCs test cell. (a) top view and (b) side view.

#### 3.6 The DSSCs characterization

#### 3.6.1 The J-V measurement

The photovoltaic properties of DSSCs were determined by current voltage workstation. The measurements were performed under the white illuminate light source (AM 1.5G) conditions. Figure 3.6 shows the key equipment of the *J-V* test station. These station was run a *J-V* measurement and calculated critical parameters such as short circuit current ( $I_{sc}$ ), short circuit current density ( $J_{sc}$ ), open circuit voltage ( $V_{oc}$ ), fill factor (FF), maximum output power ( $P_{max}$ ), solar light to electric power conversion efficiency (%PCE), and other standard photovoltaic cell parameters.



Figure 3.6 The key equipment of *J-V* tester: (a) 96000 Oriel solar simulators and (b) front panel of 2400 Keithley source meter [32].

The *J-V* Tester configuration consist of Newport's Oriel 2 x 2 inch a 150 W xenon arc lamp 96000 solar simulator, the band pass filters to adjust the band pass spectral output and heat absorbing, source meter (Keithley model 2400) and computer control (see Figure 3.7). In this work, the photovoltaic characteristic of DSSCs was measured comparing to N3 dye and the photovoltaic characteristic value was reported in term of average value in three replicate (n=3).



Figure 3.7 The photograph of *J-V* workstation. The key component of hardware configuration consist of (a) photovoltaic cell, (b) four point probe clamp and solid wire, (c) sample holder with high performance modular ball bearing linear and rotation stages, (d) solar simulator (Newport Oriel 96000), (e) beam turning (Newport 66245) and (f) multiple filter holder and optional filters.

#### 3.6.2 The IPCE measurement

The incident photon to current conversion efficiency (IPCE) is defined as the number of electrons generated by light in the external circuit divided as a specific wavelength by the number of incident photons. In practice, this is achieved by using a monochromator as a tool to generate specific monochromatic light. The measurements processes were compared the spectral response of the silicon-photodiode and dye-sensitized solar cell devices.

The systems was based on a light source (Newport 96000 150 W Xenon arc lamp), monochromator (Newport Oriel Cornerstone<sup>™</sup> 130 1/8 m), picoammeter (Keithley 6485), and computer control (Figure 3.8).



Figure 3.8 The photograph of IPCE tester. The key components consist of (a) Oriel 96000 solar simulator, (b) Oriel Cornerstone<sup>™</sup> 130 1/8 m monochromator, (c) Keithley 6485 picoammeter, (d) front panel of software control and (e) photovoltaic cell.

### 3.6.3 The X-ray diffraction (XRD) measurement

The XRD was performed to determine crystal phase and crystallite size of TiO<sub>2</sub>. The characterization was conducted by using a Phillip X'Pert - MDP, X - ray diffractometer with Cu K- $\alpha$  radiation ( $\lambda = 1.5418$  Å) with Ni filter (Figure 3.9(a)). The operation was performed at 40 kV and 35 mA. The spectra were scanned in the 2 $\theta$  range of 20 - 90° at a rate of 0.02°/s.

### 3.6.4 The scanning electron microscopy (SEM) measurement

The surface morphology and thickness of  $TiO_2$  film were measured by using a scanning electron microscope (JEOL JSM - 5410 LV) (Figure 3.9(b)). The operation was performed at an acceleration voltage of 15 - 20 kV.





# **CHAPTER 4**

# **RESULTS AND DISCUSSION**

This chapter is divided into two parts including the optimization of fabrication process of dye-sensitized solar cell based on N3 dye, which was described in section 4.1. The photovoltaic characteristic of organic dye-sensitized solar cell fabricated by optimization procedure was reported in section 4.2.

# 4.1 DEVICE FABRICATION AND PHOTOVOLTAIC CHARACTERIZATION OF DYE SENSITIZED SOLAR CELL

#### 4.1.1 The effect of sealant thickness

The redox couple was a basic factor in dye-sensitized solar cell (DSSCs). The part length between electrodes; working electrode and counter electrode was affected on the diffusion and ion migration of redox mediator  $(3I/I_3)$  in the electrolyte.

In order to study the effect of electrolyte layer thickness, the electrolyte layer was controlled by sealant film thickness. The thickness was varied by changing type of sealant materials. The sealant materials used in this study were  $Surlyn^{\text{®}}$  - 30, Para film M and EVA film. The thickness of sealant material was measured by scanning electron microscope (SEM) as shown in Figure 4.1.



**Figure 4.1** The cross section SEM photograph of sealant materials. (a) Surlyn<sup>®</sup> 30, (b) Para film M and (c) EVA film.

| Sealant Materials        | Average thickness (µm) | $J_{\rm sc}$ (mA/cm <sup>2</sup> ) |
|--------------------------|------------------------|------------------------------------|
| Surlyn <sup>®</sup> - 30 | 30                     | 25.49±0.49                         |
| Para film M              | 140                    | 19.20±1.08                         |
| EVA film                 | 520                    | 5.99±0.57                          |

Table 4.1 The short circuit current density of DSSC devices as a function of sealant thickness.

Table 4.1 shows the relationships between short circuit current density  $(J_{sc})$  and thickness of sealant. The short circuits current density  $(J_{sc})$  decreased when increased the sealant thickness. This result can be described by diffusion and ion migration in electrolyte. The ion migration in steady state operation processes sometime called the mass transport [73-74]. The mass transport and charge transfer rates of redox couple  $(3I'/I_3')$  were represented in term of ionic conductivity and charge transfer resistance. The charge transfer resistance or electrolyte resistance ( $R_e$ ) which one fraction of the series resistance ( $R_s$ ), was depended on distance (d) between the two electrodes, the electrolyte conductivity ( $\sigma$ ) and the electrode cross section (A) [75]. The electrolyte resistance ( $R_e$ ) is defined as

$$R_{e} = \frac{d}{\sigma A}$$
(11)

The migration in steady state operation particularly in electrolyte systems with relatively low ionic conductivity display relatively low  $I_3$  diffusion coefficients, which can affect to noticeable limitation of low photocurrents [73, 75-76].

The Surlyn<sup>®</sup> film 30 µm of thickness was chosen as a sealant in this work.

# 4.1.2 The effect of TiO<sub>2</sub> film thickness

Generally, the photo-anode of DSSCs device consists of a nano-porous layer of titanium dioxide  $(TiO_2)$  nanoparticles, which monolayer sensitizer was adsorbed on their surface. In this work, two types of the commercial TiO<sub>2</sub> paste supplied by Solaronix<sup>®</sup> were used to make a TiO<sub>2</sub> working electrode. The transparent nanocrystalline titanium dioxide paste (Ti-Nanoxide T20/SP) contained 18% wt of 20 nm TiO<sub>2</sub> anatase particles. The result of TiO<sub>2</sub> layer after sintering was transparent, as shown in Figure 4.2(a). The reflective nanocrystalline titanium dioxide paste (Ti-Nanoxide R/SP) was contained 20% wt of optically dispersing TiO<sub>2</sub> mixed with small particle. The result of TiO<sub>2</sub> layer after sintering was opaque and reflective, as shown in Figure 4.2(b). The screen printing step was performed by screening of Ti-Nanoxide T/SP to make the photo absorbers layer and followed by Ti-Nanoxide R/SP in final layer to make the light scattering layer.



(a)

(b)

Figure 4.2 The photograph of monolayer N3 sensitizer on titanium dioxide film coated FTO conducting glass surface, (a) Ti-Nanoxide T20/sp and (b) Ti-Nanoxide R/sp.

Figure 4.3 shows the X-ray diffraction patterns of the Ti-Nanoxide 20/SP and Ti-Nanoxide R/SP particle on the working electrode. The results indicated that the major phase of  $TiO_2$  is anatase.



Figure 4.3 The X-ray diffraction pattern of TiO<sub>2</sub> particle.

Figure 4.4 shows the SEM cross section photograph of  $TiO_2$  film on the FTO glass. The thickness as a number of screen printing time are listed in Table 4.2.



Figure 4.4 The SEM image of the  $TiO_2$  film coated on the FTO glass.

| Coating time Details of screen printing step |                                                       | Thickness (µm) |
|----------------------------------------------|-------------------------------------------------------|----------------|
| 2 time :                                     | (1 layer Transparent past + 1 layer reflective paste) | 5              |
| 3 time :                                     | (2 layer Transparent past + 1 layer reflective paste) | 11             |
| 4 time :                                     | (3 layer Transparent past + 1 layer reflective paste) | 16             |
| 5 time :                                     | (4 layer Transparent past + 1 layer reflective paste) | 18             |

Table 4.2 The thickness of TiO<sub>2</sub> film with difference screen printing time.

Table 4.3 shows the current voltage (*J-V*) characteristic as a function of  $TiO_2$  thickness. When the thickness of  $TiO_2$  was increased from 5 µm to 11 µm, the current density of DSSCs increased from 9.07 to 10.40 mA/cm<sup>2</sup> and the power of conversion efficiency (%PCE) increase from 3.5% to 4.2%. The result shows that the power conversion efficiency increased when thickness of  $TiO_2$  increased. This result can be explained by there are more light harvested of sensitizer on  $TiO_2$  film. When  $TiO_2$  film thickness was increased, the amount of  $TiO_2$  particle also increased. Consequently, could absorbed more dye molecules leading to an enhancement the photocurrent of the DSSCs [26, 75, 77, 78].

Table 4.3 The photovoltaic characteristic of DSSC devices as a function of TiO<sub>2</sub> film thickness.

| Thickness (µm) | J <sub>sc</sub> (mA/cm <sup>2</sup> ) | V <sub>oc</sub> (V) | FF        | PCE (%) |
|----------------|---------------------------------------|---------------------|-----------|---------|
| 5              | 9.07±1.30                             | 0.64±0.02           | 0.61±0.03 | 3.5±0.4 |
| 11             | 10.40±1.31                            | 0.64±0.02           | 0.63±0.01 | 4.2±0.7 |
| 16             | 8.77±0.26                             | 0.57±0.04           | 0.49±0.15 | 2.5±1.0 |
| 18             | 8.50±1.31                             | 0.42±0.29           | 0.41±0.16 | 1.8±1.7 |

However, the current density and power of conversion efficiency (%PCE) decreased when thickness of TiO<sub>2</sub> increased greater than 11  $\mu$ m.

The optimal  $\text{TiO}_2$  film thickness was 11  $\mu$ m. The screen print step was 3 time which 2 layer Ti-Nanoxide T/SP as transparent layer and follow with 1 layer Ti-Nanoxide T/SP as reflective layer.

### 4.1.3 The effect of TiCl4 treatment

Generally, the working electrode of DSSCs are requires at least one transparent conductive glass coated with nanocrystalline  $\text{TiO}_2$  film. It was remained of the bare FTO surface around active area which electrolyte directly contract to the FTO glass surface. Therefore, the influence of the interfacial TiO<sub>2</sub> thin layer on the photovoltaic characteristic of DSSCs device was investigated. The TiO<sub>2</sub> thin layer was constructed by immersed FTO glass substrate in 40 mM titanium tetrachloride (TiCl<sub>4</sub>) solution at 70°C for 30 min. After drying at room temperature, the TiO<sub>2</sub> paste was screen printed on TiCl<sub>4</sub> treated FTO substrate. The TiO<sub>2</sub> layer was sintered at  $550^{\circ}$ C.

Table 4.4 exhibits the influence of  $\text{TiCl}_4$  treatment on the photovoltaic properties. The short circuit current density  $(J_{sc})$  and fill factor of  $\text{TiCl}_4$  treatment DSSCs have greater than DSSCs without treatments. The results indicated that, the DSSCs working electrode with  $\text{TiCl}_4$ treatment was enhanced bonding strength between  $\text{TiO}_2$  particle and FTO surface and suppressed the dark current [12, 79].

Table 4.4 The photovoltaic characteristic of DSSC devices with and without TiCl<sub>4</sub> treatment.

| FTO conductive glass                | J <sub>sc</sub> (mA/cm <sup>2</sup> ) | $V_{\rm oc}$ (V) | FF        | PCE (%) |
|-------------------------------------|---------------------------------------|------------------|-----------|---------|
| without TiCl <sub>4</sub> treatment | 9.55±1.76                             | 0.69±0.01        | 0.59±0.01 | 3.9±0.8 |
| with TiCl <sub>4</sub> treatment    | 11.14±0.51                            | 0.69±0.01        | 0.62±0.01 | 4.8±0.1 |

In conclusion, the working electrode with  $TiCl_4$  treatment was applied to increase the photocurrent of the DSSC devices.

#### 4.1.4 The effect of device masking

The DSSCs device requires at least one transparent conductive glass substrate. An overestimation indirect light (absorption, reflection, and scattering et al.) from areas surrounding the active part of the photovoltaic cell are critical point in accurate characteristic of cell performance data. Therefore, the influence of shading or device masking on the photovoltaic characteristic was investigated. The current – voltage of DSSCs device was measured in with and without mask. The aperture area of mask was square 5 mm x 5 mm.



Figure 4.5 The J-V curves of DSSCs device measured with and without mask.

Figure 4.5 shows the J-V curve of DSSCs device measured with and without mask. The photovoltaic characteristics are listed in Table 4.5. The short circuit current density  $(J_{sc})$  of DSSCs device without mask was greater than that of device with solid mask. The overestimation of  $J_{sc}$  was increased around 15% in the device without solid mask.

Table 4.5 The photovoltaic characteristic of DSSC devices with and without device masking

| DSSCs test cell device | $J_{\rm sc}$ (mA/cm <sup>2</sup> ) | $V_{\rm oc}$ (V) | FF        | PCE (%) |
|------------------------|------------------------------------|------------------|-----------|---------|
| with mask              | 8.35±1.64                          | 0.71±0.03        | 0.65±0.01 | 3.8±0.5 |
| without mask           | 9.86±1.12                          | 0.72±0.04        | 0.64±0.01 | 4.5±0.3 |

The phenomena were explained by the lighting collections in measurement condition. The optical artifacts such as light piping reflect, light striking and scattering from surrounding the active area by surface of FTO conducting glass are major of uncertainty light source. Therefore, the lighting condition has been avoided any diffuse or stray light hitting the device which may artificially increase device output. The solid mask should be used to correct the accurately define of the illuminated cell area in the case of a well collimate light beam. It is provided more accurate cell characteristic data [75, 80-81].

The square  $0.25 \text{ cm}^2$  of aperture area masks was placed on the DSSCs device to accuracy the photovoltaic characteristic measurement.

#### 4.1.5 The effect of platinum loading

The Pt film on counter electrodes was usually used as the conter electrode of DSSC device, due to its superior electrocatalytic reduction for redox couple  $(I/I_3)$  in electrolyte. Therefore, the influence of the Pt loading on photovoltaic characteristic of DSSCs device was investigated. The platinum film on DSSCs counter electrode was prepared by drop casting of platinum precursor on a cleaned FTO conductive glass and following by thermal treatment. The content of Pt was controlled by vary the volume, deposition time and concentration of platinum precursor. In this research, the concentration of platinum precursor of 2 mgPt/mL was prepared from chloroplatinic acid hexahydrate (H<sub>2</sub>PtCl<sub>2</sub>.6H<sub>2</sub>O) in ethanolic solution.

| Pt content (µg/cm <sup>2</sup> ) | J <sub>sc</sub> (mA/cm <sup>2</sup> ) | $V_{\rm oc}$ (V) | FF        | PCE (%)  |
|----------------------------------|---------------------------------------|------------------|-----------|----------|
| 0.8                              | 18.16±1.37                            | 0.63±0.03        | 0.32±0.03 | 3.7±0.80 |
| 8.0                              | 20.03±2.34                            | 0.76±0.00        | 0.53±0.03 | 8.0±0.40 |
| 88.0                             | 15.62±3.03                            | 0.76±0.02        | 0.51±0.06 | 6.1±1.00 |

Table 4.6 The photovoltaic characteristic of DSSC devices as a function of platinum loading

Table 4.6 shows the relationship between the Pt loading and J-V characteristics of DSSCs device. When a FTO glass was laminated with a low Pt loading (0.8  $\mu$ g/cm<sup>2</sup>), the J<sub>sc</sub>,  $V_{cc}$ , FF and %PCE of the DSSCs were 18 mA/cm<sup>2</sup>, 630 mV, 0.32 and 3.7% respectively.

The moderately Pt loading  $(8.0\mu g/cm^2)$  gave the  $J_{sc}$ ,  $V_{oc}$ , FF and %PCE of 20.03 mA/cm<sup>2</sup>, 760 mV, 0.53 and 8.0%, respectively. The results indicated that catalytic reactivity increased with increased the Pt loading. It is no significant difference in  $V_{oc}$  and FF value between 8.0 and 88.0  $\mu g/cm^2$  Pt loading. However, the  $J_{sc}$  and %PCE of DSSC devices dramatically decreased as high Pt content of 88.0  $\mu g/cm^2$  [54, 55, 56, 82].

The platinum counter electrode of DSSCs device was prepared by drop casting combined with thermal decomposition technique. This preparation method was simple, feasible in lab scale and low cost. The optimal platinum loading was  $0.8 \ \mu g/cm^2$ .

#### 4.1.6 Method validation

The fabrication process of DSSC devices consists of the electrolyte layer thickness, thickness of  $TiO_2$  film,  $TiCl_4$  treatment, device masking, and platinum loading. The methods validation of the optimal conditions was investigated by statistically variation of *J-V* characteristic.



Figure 4.6 The J-V of DSSC devices in same process.

The repeatability of the DSSCs assembly process was evaluated based on fabrication of the DSSC device under the optimal condition in one batch (20 cells). The  $J_{sc}$ ,  $V_{oc}$ , FF and %PCE distribution value of DSSC devices are shown in Figure 4.6.

The light-to-electric power conversion efficiency (%PCE) of 15 cells in 20 cells was greater than 5% and the best cell has %PCE of 5.6%. The average %PCE was 5.1%, the relative standard deviation (%RSD) was 0.33% and repeatability was over 75%. The results indicated that repeatability of optimal fabrication process was precise and suffice for evaluate photovoltaic characteristic of the novel organic dye.

# 4.2 PHOTOVOLATIC CHARACTERIZATION OF ORGANIC DYES FOR DYE SENSITIZED SOLAR CELLS

#### 4.2.1 Photovoltaic characterization of carbazole triphenylamine dye for DSSCs

4.2.1.1 Target dye molecular and aim

Due to the promising donor ability of phenylamine, we has designed the target dyes with triphenylamine co-operate with two carbazole for the purpose of prevent dye aggregation and increasing donor ability, oligothiophene (thiophene 1-3 units) as  $\pi$ -conjugated bridge and cyanoacrylic acid as electron accepter for 2D-D- $\pi$ -A sensitizer. The chemical structures of TPA1-3 dye are shown in Figure 4.7.





The TPA1-3 dyes have been designed by Assoc. Prof. Dr.Vinich Promarak, The compound were synthesized and characterized by Dr. Tanika Khanasa. The physical properties of TPA1-3 dye are listed in Table 4.7 [83].

Therefore, the objectives of this part are to fabrication DSSC devices based on the organic (TPA1-3) dyes and evaluated their photovoltaic characteristic performance.

| Table 4.7 The physica | l properties of TPA1-3 dye [83]. |
|-----------------------|----------------------------------|
|-----------------------|----------------------------------|

| Physical Properties                                 | N3                                 | TPA1                  | TPA2                    | TPA3                    |
|-----------------------------------------------------|------------------------------------|-----------------------|-------------------------|-------------------------|
| Chemical formula                                    | $\mathrm{C_{26}H_{16}N_6O_8RuS_2}$ | $C_{66}H_{64}N_4O_2S$ | $C_{70}H_{66}N_4O_2S_2$ | $C_{74}H_{68}N_4O_2S_3$ |
| Molecular weight (g/mole)                           | 705.64                             | 792.12                | 1059.43                 | 1141.55                 |
| Abs <sub>max</sub> <sup>(a)</sup> (nm)              | 530                                | 458                   | 455                     | 464                     |
| Molar absorptivity <sup>(a)</sup> $(M^{-1}cm^{-1})$ | 14,500                             | 25,225                | 29,322                  | 33,926                  |
| Abs <sub>max</sub> <sup>(b)</sup> (nm)              | ÷                                  | 436                   | 442                     | 450                     |
| $T_{5d}^{(c)}(^{\circ}C)$                           | -                                  | 284                   | 285                     | 353                     |
| HOMO <sup>(d)</sup> (eV)                            | -5.52                              | -5.22                 | -5.20                   | -5.16                   |
| LUMO <sup>(e)</sup> (eV)                            | -3.84                              | -2.97                 | -2.99                   | -3.03                   |

<sup>(a)</sup> Absorption measured in  $CH_2Cl_2$  solution. <sup>(b)</sup> Absorption of the dyes adsorbed on  $TiO_2$  film. <sup>(c)</sup> Measured by TGA at heating rate of 10°C/min under N<sub>2</sub>. <sup>(d)</sup> Calculated using the empirical equation: HOMO = -(4.44 + E<sup>ox</sup><sub>onset</sub>). <sup>(c)</sup> Calculated from LUMO = HOMO + E<sub>g</sub>.

4.2.1.2 Photovoltaic characteristic of DSSC devices based on TPA1-3 dyes

The photovoltaic characteristic of the DSSC devices base on TPA1-3 dyes were measured under simulated sunlight AM 1.5G irradiation (100 mW/cm<sup>2</sup>). The DSSC devices were fabricated under the conditions as described in section 4.1. The photograph of completed DSSC devices based on TPA1-3 dye and dye solution are shown in Figure 4.8(a) and Figure 4.8(b), respectively.



Figure 4.8 The photograph of (a) DSSC devices and (b) dye solution based on TPA1-3 dye.
The J-V curves and the incident photon to current conversion efficiencies (IPCE) of all dyes are shown in Figure 4.9(a) and Figure 4.9(b), respectively. The photovoltaic characteristics of DSSC devices base on TPA1-3 dye are listed in Table 4.8.



Figure 4.9 (a) the *J-V* characteristics and (b) photocurrent action spectra of DSSCs device based on TPA1-3 sensitizer measured under irradiance of 100 mW/cm<sup>2</sup> AM 1.5G.

Under standard simulated sunlight irradiation (AM 1.5G, 100 mW/cm<sup>2</sup>), the DSSC devices base on TPA3 dye showed the highest photovoltaic character among three dyes and gave a  $J_{sc}$ ,  $V_{oc}$ , FF and %PCE of 9.73 mA/cm<sup>2</sup>, 0.68 V, 0.65 and 4.3%, respectively.

| Sensitizer | $J_{sc}$ (mA/cm <sup>2</sup> ) | $V_{\rm oc}({ m V})$ | FF        | <b>PCE</b> (%) |
|------------|--------------------------------|----------------------|-----------|----------------|
| TPA1       | 7.31±0.36                      | 0.71±0.02            | 0.69±0.02 | 3.6±0.2        |
| TPA2       | 9.02±0.06                      | 0.71±0.01            | 0.68±0.00 | 4.3±0.1        |
| TPA3       | 9.73±0.32                      | 0.68±0.01            | 0.65±0.01 | 4.3±0.1        |
| N3         | 12.03±0.19                     | 0.64±0.01            | 0.66±0.00 | 5.1±0.1        |

Table 4.8 The photovoltaic characteristic of DSSC devices base on TPA1-3 dye.

In addition, the larger  $J_{\rm sc}$  and %PCE of DSSC devices with TPA3

(2D-D- $\pi$ -A) dye demonstrates the beneficial influence of the red shifted absorption spectrum and the broadening of the IPCE spectrum. The result indicate that additional of carbazole groups as

electron donors and tert-butyl groups as a molecular blocking, which shielding the  $TiO_2$  surface from  $I^{-}/I_3^{-}$  in the electrolyte was enhance the light harvesting and reducing charge recombination or dark reaction, resulting in larger photo current and power conversion efficiency of the DSSC devices. However, the lower efficiency of device base on TPA1 dye was attributed by two manners, firstly poorer of spectral response in photocurrent action spectra, and secondly lower dye content on  $TiO_2$  film, which rationalized by the steric hindrance of the donor moiety around the carboxylic acid anchoring group [83].

The IPEC spectra of the DSSC devices based on TPA1-3 dyes lie in blue/green regions and show maximum IPCE larger than N3 dye. The TPA2 based device with two thiophene units exhibit the best maximum IPCE of 86%. This observation deviates from expectation on the basis of the  $\varepsilon$  values of their absorption spectra. The DSSC devices with TPA3 dyes were exhibit the broadest spectra among three dyes, which almost reach to 750 nm. It is an indicated the high performance of photon absorption, resulting in high photocurrent and power conversion efficiency. The DSSC devices base on TPA3 dye was shown the excellent photovoltaic character which comparing to 84% with N3 dye. In contrast, the slightly lower IPCE value of DSSC devices base on TPA3 dyes compared with that DSSC devices base on TPA2 dyes is probably due to extended  $\pi$ -conjugation elongation of TPA3 dye, which may lead to decreased electron injection yield. Moreover, the IPCE values of all DSSC devices base on synthesized dyes were higher than that of the N3 dye due to the larger molar extinction coefficients of these organic dyes. However, the N3 dye showed a broader IPCE spectrum, which is consistent with its wider absorption spectrum [83].

It was found that the DSSC devices base on TPA1-3 dye, which an introduction of two carbazole moieties to form the 2D-D- $\pi$ -A configuration brought about superior performance, in terms of bathochromically extended the IPCE spectra, enhanced the light harvesting in term of short circuit current density. These organic dyes based on this type of donor moiety or donor molecular architecture are promising candidates for improved performance DSSCs. This suggests that the DSSC devices base on a novel structural modification of the organic dyes strongly influences electron-injection and power conversion efficiencies of the DSSC devices.

#### 4.2.2 Photovoltaic characterization of carbazole-diphenylamine dye for DSSCs

4.2.2.1 Target dye molecular and aim

Due to the promising donor ability of phenylamine, we has designed the target dyes with diphenylamine-encabed with 3,6-di-*tert*-butylcarbazole as double donor, oligothiophene (thiophene unit = 1-3) as  $\pi$ -conjugated linker and cyanoacrylic acid as electron accepter for D-D- $\pi$ -A sensitizer. The chemical structures of DPA1-3 dye are shown in Figure 4.10.



Figure 4.10 The chemical structure of target dyes (DPA1-3).

The DPA1-3 dyes have been also designed by Assoc. Prof. Dr. Vinich

Promarak, The compound were synthesized and characterized by Dr. Tanika Khanasa. The physical properties of DPA1-3 dye are listed in Table 4.9 [84].

Therefore, the objectives of this part are to fabrication DSSC devices based on the organic (DPA1-3) dyes and evaluated their photovoltaic characteristic performance.

| <b>Physical Properties</b>                          | N3                                 | DPA1                  | DPA2                    | DPA3                    |
|-----------------------------------------------------|------------------------------------|-----------------------|-------------------------|-------------------------|
| Chemical formula                                    | $\mathrm{C_{26}H_{16}N_6O_8RuS_2}$ | $C_{52}H_{61}N_3O_2S$ | $C_{56}H_{63}N_3O_2S_2$ | $C_{60}H_{65}N_3O_2S_3$ |
| Molecular weight (g/mole)                           | 705.64                             | 792.12                | 874.25                  | 956.37                  |
| Abs <sub>max</sub> <sup>(a)</sup> (nm)              | 530                                | 458                   | 463                     | 472                     |
| Molar absorptivity <sup>(a)</sup> $(M^{-1}cm^{-1})$ | 14,500                             | 5,022                 | 5,485                   | 6,024                   |
| Abs <sup>(b)</sup> <sub>max</sub> (nm)              | -                                  | 429                   | 435                     | 452                     |
| $T_{5d}^{(c)}(^{\circ}C)$                           | *                                  | 284                   | 336                     | 362                     |
| HOMO (eV)                                           | -5.52                              | -5.22                 | -5.13                   | -5.08                   |
| LUMO (eV)                                           | -3.84                              | -2.91                 | -2.87                   | -2.84                   |

Table 4.9 The physical properties of DPA1-3 dye [84].

<sup>(a)</sup> Absorption measured in CH<sub>2</sub>Cl<sub>2</sub> solution. <sup>(b)</sup> Absorption of the dyes adsorbed on TiO<sub>2</sub> film. <sup>(c)</sup> Measured by TGA at heating rate of 10°C/min under N<sub>2</sub>. <sup>(d)</sup> Calculated using the empirical equation: HOMO = -(4.44 +  $E_{onset}^{ox}$ ). <sup>(e)</sup> Calculated from LUMO = HOMO +  $E_g$ .

4.2.2.2 Photovoltaic characteristic of DSSC devices based on DPA1-3 dye

The photovoltaic characteristic of the DSSC devices base on DPA1-3 dyes were measured under simulated sunlight AM 1.5G irradiation (100 mW/cm<sup>2</sup>). The DSSC devices were fabricated under the conditions as described in section 4.1. The photograph of complete DSSC devices based on DPA1-3 dye and dye solution are shown in Figure 4.11(a) and Figure 4.11(b), respectively.



Figure 4.11 The photograph of (a) DSSC devices and (b) dye solution based on DPA1-3 dye.

The J-V curves of all dyes are shown in Figure 4.12(a) and IPCE spectra are shown in Figure 4.12(b). The photovoltaic characteristics of DSSC devices base on DPA1-3 dye are listed in Table 4.10.



Figure 4.12 (a) the *J-V* characteristics (b) photocurrent action spectra of cells based on DPA1-3 sensitizer measured under irradiance of 100 mW/cm<sup>2</sup> AM 1.5G.

The photovoltaic characteristic of DSSC devices base on DPA1-3 dye was increase when increased the extension conjugate length of dye molecule. The  $\pi$ -conjugation in thiophene unit was increased the bathochromic shifted (red shifted) absorption. It was similar occurred in DSSC devices base on TPA1-3 dye in section 4.2.1. The DSSC devices base on DPA3 dye showed the excellent photovoltaic character that exhibits a  $J_{sc}$ ,  $V_{oc}$ , FF and %PCE of 9.40 mA/cm<sup>2</sup>, 0.68 V, 0.65 and 4.2%, respectively.

Table 4.10 The photovoltaic characteristic of DSSC devices based on DPA1-3 dye.

| Sensitizer | $J_{sc}$ (mA/cm <sup>2</sup> ) | $V_{\rm oc}({ m V})$ | FF        | PCE (%) |  |
|------------|--------------------------------|----------------------|-----------|---------|--|
| DPA1       | 6.60±0.09                      | 0.72±0.00            | 0.63±0.02 | 3.0±0.1 |  |
| DPA2       | 8.16±1.26                      | 0.70±0.00            | 0.62±0.03 | 3.5±0.4 |  |
| DPA3       | 9.40±1.24                      | 0.68±0.00            | 0.65±0.00 | 4.2±0.5 |  |
| N3         | 11.55±0.49                     | 0.69±0.01            | 0.69±0.02 | 5.5±0.0 |  |

Moreover, comparing photovoltaic characteristic of DSSC devices between TPA1-3 dye (2D-D- $\pi$ -A in section 4.2.1) and DPA1-3 dye (D-D- $\pi$ -A). The dye uptakes of DSSC device based on DPA series can adsorbed on TiO<sub>2</sub> film more than TPA series. This because the TPA dyes have two carbazole unit (2D-D- $\pi$ -A) that increase the steric hindrance of the donor moiety around the carboxylic acid anchoring group whereas DPA dyes (D-D- $\pi$ -A) have less steric effect from one carbazole moiety resulting in more dye uptake [84]. Therefore, the difference observed in photocurrent and power conversion efficiency of DSSC devices related to molecular volume and how much of dye molecule is absorbs.

The light-harvesting efficiency of DPA1 is expects to be less than those of the other dyes leading to a small incident monochromatic photon to current conversion efficiency for the DPA1 based cell. In contrast, higher IPCE value of DPA3 is probably due to its  $\varepsilon$ , which enhances the electron-injection yield in comparison with those of the other dyes. Because of their larger molar extinction coefficients, which the IPCE values of DSSC devices based on DPA1-3 dye are higher than that of the N3 dye based cell. However, DSSC devices with N3 dye shows a broader IPCE spectrum, which is consistent with its wide absorption spectrum [84].

These organic (DPA1-3) dyes exhibits power conversion efficiencies of DSSC devices correspond to overall conversion efficiency of 54 - 76% comparing with the N3 dye based cell. These strategies for designing of dyes molecule are proposed significantly simplified chemical structure.

#### 4.2.3 Photovoltaic characterization of carbazole - carbazole dye for DSSCs

4.2.3.1 Target dye molecular and aim

Due to the promising donor ability of carbazole in D- $\pi$ -A sensitizer, we has designed the target dyes with an organic chromophore based on carbazole as the donor group, with a oligothiophene as linker and a cyanoacrylic acid moiety as acceptor/anchor group for D-D- $\pi$ -A sensitizer. The molecular structures of target CCT1-3A dye are shown in Figure 4.13.



Figure 4.13 The chemical structure of target dyes (CCT1-3A).

The CCT1-3A dyes have been also designed by Assoc. Prof. Dr.Vinich Promarak, The compound were synthesized and characterized by Mr.Sakravee Phunsay. The physical properties of CCT1-3A dye are listed in Table 4.11 [85].

Therefore, the objectives of this part are to fabrication DSSC devices based on the organic (CCT1-3A) dyes and evaluated their photovoltaic characteristic performance.

| Physical Properties                                                   | N3                        | CCT1A                                                           | CCT2A                   | CCT3A                   |
|-----------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|-------------------------|-------------------------|
| Chemical formula                                                      | $C_{26}H_{16}N_6O_8RuS_2$ | C <sub>52</sub> H <sub>59</sub> N <sub>3</sub> O <sub>2</sub> S | $C_{56}H_{61}N_3O_2S_2$ | $C_{60}H_{63}N_3O_2S_3$ |
| Molecular weight (g/mole)                                             | 705.64                    | 790.11                                                          | 872.23                  | 954.36                  |
| Abs <sub>max</sub> <sup>(a)</sup> (nm)                                | 530                       | 432                                                             | 457                     | 443                     |
| Molar absorptivity <sup>(a)</sup> (M <sup>-1</sup> cm <sup>-1</sup> ) | 14,500                    | 17,461                                                          | 20,104                  | 27,866                  |
| Abs <sub>max</sub> <sup>(b)</sup> (nm)                                | -                         | 420                                                             | 440                     | 437                     |
| $T_{5d}^{(c)}(^{\circ}C)$                                             | -                         | 237                                                             | 263                     | 263                     |
| HOMO (eV)                                                             | -5.52                     | -5.33                                                           | -5.28                   | -5.26                   |
| LUMO (eV)                                                             | -3.84                     | -3.01                                                           | -3.11                   | -3.23                   |

 Table 4.11 The physical properties of CCT1-3A dye [85].

<sup>(a)</sup> Absorption measured in  $CH_2Cl_2$  solution. <sup>(b)</sup> Absorption of the dyes adsorbed on  $TiO_2$  film. <sup>(c)</sup> Measured by TGA at heating rate of 10°C/min under N<sub>2</sub>. <sup>(d)</sup> Calculated using the empirical equation: HOMO = -(4.44 + E<sup>ox</sup><sub>onset</sub>). <sup>(e)</sup> Calculated from LUMO = HOMO + E<sub>g</sub>.

4.2.3.2 Photovoltaic characteristic of DSSC devices based on CCT1-3A dyes

The photovoltaic characteristic of the DSSC devices base on CCT1-3A dyes were measured under simulated sunlight AM 1.5G irradiation (100 mWcm<sup>-2</sup>). The DSSC devices were fabricated under the conditions as described in section 4.1. The photograph of complete DSSC devices based on CCT1-3A dye and dye solution are shown in Figure 4.14(a) and Figure 4.14(b) respectively.



Figure 4.14 The photograph of (a) DSSC devices and (b) dye solution based on CCT1-3A dye.

The J-V curves of all dyes are shown in Figure 4.15(a) and IPCE spectra are shown in Figure 4.15(b). The photovoltaic characteristics of DSSC devices base on CCT1-3A dye are listed in Table 4.12.



Figure 4.15 (a) the *J-V* characteristics (b) photocurrent action spectra of cells based on CCT1-3A sensitizer measured under irradiance of 100 mW/cm<sup>2</sup> AM 1.5G.

The photocurrent and power conversion efficiency of device was increase when increased the extension conjugate path length. The  $\pi$ -conjugation length in thiophene unit increased the bathochromic shifted (red shifted) absorption spectra increased. It was similar in DSSC devices based on TPA1-3 dye in section 4.2.1 and DPA1-3 dye in section 4.2.2. Especially, the photovoltaic characteristic of CCT3A dye gave the  $J_{sc}$ ,  $V_{oc}$ , FF and %PCE of 10.66 mA/cm<sup>2</sup>, 0.71 V, 0.67 and 5.1%, respectively. It was correspond to overall conversion efficiency of 94% comparing with the N3 dye based cell.

Table 4.12 The photovoltaic characteristic of DSSC devices base on CCT1-3A dye

| Sensitizer | $J_{sc}$ (mA/cm <sup>2</sup> ) | $V_{\rm oc}({ m V})$ | FF        | PCE (%) |
|------------|--------------------------------|----------------------|-----------|---------|
| CCT1A      | 7.06±0.41                      | 0.74±0.01            | 0.68±0.01 | 3.6±0.3 |
| CCT2A      | 9.60±0.09                      | 0.74±0.01            | 0.67±0.01 | 4.8±0.1 |
| CCT3A      | 10.66±0.25                     | 0.71±0.01            | 0.67±0.03 | 5.1±0.2 |
| N3         | 11.40±0.31                     | 0.72±0.01            | 0.66±0.01 | 5.4±0.1 |

The CCT3A based devices with three-thiophene units as electron bridge was exhibit the best maximum IPCE of 86%, which presented the broadest spectra among three dyes and almost cover to 650 nm. It is an indicated the high performance of photon absorption, resulting in high photocurrent and power conversion efficiency. Moreover, the IPCE values of all DSSC devices base on synthesized dyes were higher than that of the N3 dye due to the larger molar extinction coefficients of these organic dyes [85]. However, the N3 dye showed a broader IPCE spectrum, which is consistent with its wider absorption spectrum.

The DSSC devices based on CCT1-3A dye exhibited excellent photovoltaic characteristic and photocurrent action spectrum (IPCE). The red shift and broad in IPCE spectrum was observed when increased conjugation path length by the number of thiophene unit, which cover in the blue/green region of solar light. The CCT3A exhibited the highest solar to electric power conversion efficiency of 94% comparing with commercial available ruthenium complex (N3) dye based cell. The results suggest that the DSSC devices based on double carbazole donor moiety (D-D- $\pi$ -A) and three-thiophene electron bridge are promising candidates for improvement of the photovoltaic performance of the DSSCs technology.

#### **CHAPTER 5**

#### CONCLUSIONS

In this work, we have been reported the fabrication condition of DSSCs and characterization of the photovoltaic properties of novel organic dye, which including: TPA (2D-D- $\pi$ -A) dyes, DPA (D-D- $\pi$ -A) dyes and CCTA (D-D- $\pi$ -A) dyes.

The 30  $\mu$ m Dupont ionomer Surlyn<sup>®</sup> was used as the sealant material. The TiO<sub>2</sub> film thickness was 11  $\mu$ m, which the screen-printing of 3 layered of a Ti-Nanoxide T/SP as transparent layer and 1 layered of Ti-Nanoxide R/SP as scattering layer. The interfacial-blocking layer TiO<sub>2</sub> film was introduced by immersed FTO conducting glass in 40 mM titanium tetrachloride (TiCl<sub>4</sub>) at 70°C for 30 min. The square 0.25 cm<sup>2</sup> of masks was place on the front of DSSCs device. The loading of platinum content on counter electrodes was 8.0  $\mu$ g/cm<sup>2</sup>.

The  $J_{sc}$  and %PCE of DSSC devices based on starburst like TPA and DPA organic dye was increased when increased the electron donor by carbazole unit. The bathochromically red shift and broad extended of IPCE spectra were observed when the extension conjugates path length by the thiophene unit. The DSSC device based on DPA3, TPA3 and CCT3A dye exhibited the excellent overall conversion efficiency correspond to 76%, 84% and 94%, respectively, compare with commercial available ruthenium complex (N3) dye based cell. The result indicated that, the strategy capacities of these organic dyes are promising candidates for improvement of the photovoltaic performance in the DSSCs technology.

The further outlook are following as; (1) an increase photocurrent by modified the surface of  $\text{TiO}_2$  film, (2) reduce sheet resistance loss by an integrated current correcting grids, (3) eliminate the oxygen and humidity, that degraded almost any electro-active of organic dye, (4) scale up test cell to module, panel and BIPV in term of pilot production line.

REFERENCES

#### REFERENCES

- Green, M. "Third Generation Photovoltaics: Ultra High Conversion Efficiency at Low Cost", <u>Progress in Photovoltaics: Research and Applications</u>. 9(2): 123-135, 2001.
- [2] Wikipedia. "Solar Cell", Solar Tracker. http://en.wikipedia.org/wiki/solar\_tracker. June 10, 2009.
- [3] Sustainable E. "Renewable", Sustainable Biomass. http://sen.asn.au/renewables/biomass. June 10, 2009.
- [4] Anoalucia. "Ecological Technology", Wind Power. http://www.andalucia.com/ environment/new-ecological-technology.htm. June 10, 2009.
- [5] Solanski, C. "Solar Photovoltaics: Fundamentais Technologies and Application". New Delhi: PHI Learning Prt. Ltd, 2009.
- [6] Greg, S. <u>Progress in Next Generation Photovoltaic Devices</u>. Doctor's Thesis: Iowa State University, 2006.
- [7] Egat. "Solar Cell Technology", Solar Cell. http://www.egat.co.th/gpo/solar cell.html August 17, 2009.
- [8] Grätzel, M. "Photoelectrochemical Cells", Nature. 414(6861): 338-344, 2001.
- [9] Gregory, F. and Wu, J. "Third Generation Photovoltaics", <u>Laser & Photon</u>. 4(3): 394-405, 2009.
- [10] O'Regan, B., and Grätzel, M. "A Low Cost High Efficiency Solar Cell Based On Dye Sensitized Colloidal TiO<sub>2</sub> Films", <u>Nature</u>. 353(6346): 737-740, 1991.
- [11] Festa, P. "Tutte Le Notizie", Summer School Marinella Ferrari. http://www.chimica. unimi.it/ecm/home/aggiornamenti-e-archivi/tutte-le-notizie/ content/summer school-marinella-ferrari.0000.UNIMIDIRE-4434. July 10, 2013.
- Ito, S., et al. "Fabrication of Thin Film Dye Sensitized Solar Cells with Solar to Electric Power Conversion Efficiency Over 10%", <u>Thin Solid Films</u>. 516(14): 4613-4619; 2008.
- [13] Chiba, Y., et al. "Dye Sensitized Solar Cells with Conversion Efficiency of 11.1%". Japanese Journal of Applied Physics. 45(25): L638-L640, 2006.
- [14] Nusbaumer, H., et al. "An Alternative Efficient Redox Couple for the Dye Sensitized Solar Cell System", <u>Chemistry – A European Journal</u>. 9(16): 3756-3763, 2003.

- [15] Deng, J., et al. "Solid State Dye Sensitized Hierarchically Structured ZnO Solar Cells", <u>Electrochimica Acta</u>. 56(11): 4176-4180, 2011.
- [16] Shen, X., et al. "Quasi Solid State Dye Sensitized Solar Cells Based On Gel Electrolytes Containing Different Alkali Metal Iodide Salts", <u>Solid State Ionics</u>. 179(35-36): 2027-2030, 2008.
- [17] Veerappan, G., et al. "Carbon Nanofiber Counter Electrodes for Quasi Solid State Dye Sensitized Solar Cells". Journal of Power Sources. 196(24): 10798-10805, 2011.
- [18] Guo, L., et al. "Novel Hydrophobic Ionic Liquids Electrolyte Based On Cyclic Sulfonium Used in Dye Sensitized Solar Cells", <u>Solar Energy</u>. 85(1): 7-11, 2011.
- [19] Guo, L., et al. "Ionic Liquid Electrolyte Based On s-propyl Tetra Hydrothiophenium Iodide for Dye Sensitized Solar Cells", <u>Solar Energy</u>. 84(3): 373-378, 2010.
- [20] Murai, S., et al. "Quasi Solid Dye Sensitized Solar Cells Containing Chemically Cross Linked Gel: How to Make Gels with a Small Amount of Gelator", <u>Journal of Photochemistry and Photobiology A: Chemistry</u>. 148(1-3): 33-39, 2002.
- [21] Suzuki, K., et al. "A New Alkyl Imidazole Polymer Prepared as an Inonic Polymer Electrolyte by In Situ Polymerization of Dye Sensitized Solar Cells", Journal of Photochemistry and Photobiology A: Chemistry. 164(1-3): 81-85, 2004.
- [22] Wikipedia. "Solar Cell", <u>Solar Cell</u>. http://en.wikipedia.org/wiki/solar cell. October 27, 2013.
- [23] Rühle, S. <u>Electron Transport in Mesoporous TiO<sub>2</sub> Structures and Contact Properties at</u> <u>the TiO<sub>2</sub> /Conductive Substrate Interface</u>. Doctor's Thesis: Rehovot University, 2004.
- [24] Moser, J., et al. "Molecular Photovoltaics", <u>Coordination Chemistry Reviews</u>. 171(1): 245-250, 1998.
- [25] Grätzel, M. "Conversion of Sunlight to Electric Power by Nanocrystalline Dye Sensitized Solar Cells", Journal of Photochemistry and Photobiology A: Chemistry. 164(1-3): 3-14, 2004.
- [26] Grätzel, M. "Perspectives for Dye Sensitized Nanocrystalline Solar Cells", <u>Progress in</u> <u>Photovoltaics: Research and Applications</u>. 8(1): 171-185, 2000.

- [27] Zhang, Z. Enhancing the Open Circuit Voltage of Dye Sensitized Solar Cells: <u>CoadSorbents and Alternative Redox Couples</u>. Doctor's Thesis: École Polytechnique Fédérale De Lausanne, 2008.
- [28] Bisquert, J., et al. "Physical Chemical Principles of Photovoltaic Conversion with Nano Particulate, Mesoporous Dye Sensitized Solar Cells", <u>The Journal of Physical</u> <u>Chemistry B</u>. 108(24): 8106-8118, 2004.
- [29] National Science Foundation. "Solar Radiation at the Earth's Surface", <u>Air mass</u>. http://www.pveducation.org/pvcdrom. June 4, 2010.
- [30] National Science Foundation. "Air Mass", <u>Air Mass2.11</u>. http://www.pveducation.org/ pvcdrom. November 10, 2010.
- [31] Wikipedia. "Air mass", <u>Air mass (solar energy)</u>. http://en.wikipedia.org/wiki. June 4, 2010.
- [32] Oriel. Oriel Product Training: Solar Simulation. California: Newport Corporation, 2007.
- [33] Grätzel, M. "Dye Sensitized Solar Cells", Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 4(2): 145-153, 2003.
- [34] Boonyaves, K. Improving Efficiency of Dye sensitized Solar Cell By Modification of <u>TiO, Electrode</u>. Doctor's Thesis: Chulalongkorn University, 2006.
- [35] Wikipedia. "Quantum Efficiency", <u>Quantum Efficiency</u>. http://en.wikipedia.org/wiki/ quantum efficiency. March 27, 2010.
- [36] Tachibana, Y., et al. "Quantitative Analysis of Light Harvesting Efficiency and Electron Transfer Yield in Ruthenium Dye Sensitized Nanocrystalline TiO<sub>2</sub> Solar Cells", <u>Chemistry of Materials</u>. 14(6): 2527-2535, 2002.
- [37] Grätzel, M. "Sol-Gel Processed TiO<sub>2</sub> Films for Photovoltaic Applications", <u>Journal of Sol-Gel Science and Technology</u>. 22(1): 7-13, 2001.
- [38] Burnside, S., et al. "Deposition and Characterization of Screen Printed Porous Multi Layer Thick film Structures from Semiconducting and Conducting Nanomaterials for Use in Photovoltaic Devices", Journal of Materials Science: Materials in Electronics. 11(4): 355-362, 2000.

- [39] Tsoukleris, D., et al. "2-Ethyl-1-Hexanol Based Screen-Printed Titania Thin Film for Dye Sensitized Solar Cells", <u>Solar Energy</u>. 79(4): 422-430, 2005.
- [40] Ito, S., et al. "Fabrication of Screen Printing Pastes from TiO<sub>2</sub> Powders for Dye Sensitized Solar Cells", <u>Progress in Photovoltaics: Research and Applications</u>. 15(7): 603-612, 2007.
- [41] Han, J., et al. "Dye Sensitized Solid State Solar Cells Fabricated by Screen Printed TiO<sub>2</sub> Thin Film with Addition of Polystyrene Balls", <u>Chinese Chemical Letters</u>. 19(8): 1004-1007,2008.
- [42] Nama, J., et al. "Photovoltaic Enhancement of Dye Sensitized Solar Cell Prepared from [TiO<sub>2</sub>/Ethyl Cellulose/Terpineol] Paste Employing TRITONTM X Based Surfactant with Carboxylic Acid Group in the Oxyethylene Chain End", <u>Materials Chemistry</u> and Physics. 116(1): 46-51, 2009.
- [43] Ito, S., et al. "Facile Fabrication of Mesoporous TiO<sub>2</sub> Electrodes for Dye Solar Cells: Chemical Modification and Repetitive Coating", <u>Solar Energy Materials and</u> <u>Solar Cells</u>. 76(1):3-13, 2003.
- [44] Fan, K., et al. "Effects of Paste Components on the Properties of Screen Printed Porous TiO<sub>2</sub> Film for Dye Sensitized Solar Cells", <u>Renewable Energy</u>. 35(2): 555-561, 2010.
- [45] Dhungel, S., et al. "Optimization of Paste Formulation for TiO<sub>2</sub> Nanoparticles with Wide Range of Size Distribution for Its Application in Dye Sensitized Solar Cells", <u>Renewable Energy</u>. 35(12): 2776-2780, 2010.
- [46] Syrrokostas, M., et al. "Effects of Paste Storage on the Properties of Nanostructured Thin Films for the Development of Dye Sensitized Solar Cells", <u>Renewable Energy</u>. 34(7): 1759-1764, 2009.
- [47] Dyesol. "Materials Application", <u>Screens Printer Large</u>. ttp://www.dyesol.com/products/ equipments/materials-application/screen-printers/screen-printer-large.html. January 19, 2012.
- [48] Toby, M. Solaronix Catalogue. Aubone Switzerland: Solaronix, 2010.
- [49] Tulloch, G. Dyesol Catalogue. Queanbeyan Australia: Dyesol Global HQ, 2010

- [50] Libre, I. "Sustainable Colorado", <u>Irish Company Solar Print</u>. http://sustainable colorado. blogspot.com/2011 01 01 archive.html. July 22, 2012.
- [51] Takurou, N., et al. "Counter Electrodes for DSC: Application of Functional Materials as Catalysts", <u>Inorganica Chimica Acta</u>. 361(3): 572–580, 2008.
- [52] Jinmaol, C., et al. "A Novel Method for Preparing Platinized Counter Electrode of Nano Crystalline Dye Sensitized Solar Cells", <u>Chinese Science Bulletin</u>. 50(1): 11-14, 2005.
- [53] Khelashvili, G., et al. "Preparation and Characterization of Low Platinum Loaded Pt:SnO<sub>2</sub> Electrocatalytic Films for Screen Printed Dye Solar Cell Counter Electrode", <u>Thin Solid Films</u>. 515(7-8): 4074-4079, 2007.
- [54] Li, P., et al. "Improvement of Performance of Dye Sensitized Solar Cells Based on Electrodeposited Platinum Counter Electrode", <u>Electrochimica Acta</u>. 53(12): 4161-4166, 2008.
- [55] Fang, X., et al. "Performances Characteristics of Dye Sensitized Solar Cells Based on Counter Electrodes with Pt Films of Different Thickness", <u>Journal of Photochemistry</u> and Photobiology A: Chemistry. 164(1): 179-182, 2004.
- [56] Fang, X., et al. "Effect of the Thickness of the Pt Film Coated on a Counter Electrode on the Performance of a Dye Sensitized Solar Cell", <u>Journal of Electroanalytical</u> <u>Chemistry</u>. 570(2): 257-263, 2004.
- [57] Hagfeldt, A., et al. "Dye Sensitized Solar Cells", <u>Chemical Reviews</u>. 110(11): 6595-6663, 2010.
- [58] Jena, A., et al. "Dye Sensitized Solar Cells: a Review", <u>Transactions of the Indian</u> <u>Ceramic Society</u>. 71(1): 1-16, 2012.
- [59] Wu, J., et al. "Progress on the Electrolytes for Dye Sensitized Solar Cells", <u>Pure and Applied Chemistry</u>. 80(11): 2241-2258, 2008.
- [60] Yu, Z. Liquid Redox Electrolytes for Dye Sensitized Solar Cells. Doctor's Thesis: Kth Chemical Science and Engineering, 2012.
- [61] Kong, F., et al. "Review of Recent Progress in Dye Sensitized Solar Cells", Advances in OptoElectronics. 2007(1): 1-13, 2007.

- [62] Li, B., et al. "Review of Recent Progress in Solid State Dye Sensitized Solar Cells", <u>Solar Energy Materials and Solar Cells</u>. 90(5): 549-573, 2006.
- [63] Tennakone, K., et al. "A Dye Sensitized Nano Porous Solid State Photovoltaic Cell", <u>Semiconductor Science and Technology</u>. 10(12): 1689-1693, 1995.
- [64] Kumara, G., et al. "Dye Sensitized Solar Cell with the Hole Collector p-CuSCN Deposited from a Solution in N-Propyl Sulphide", <u>Solar Energy Materials and Solar Cells.</u> 69(2): 195-199, 2001.
- [65] Regan, O., et al. "Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye Sensitized Heterojunction TiO<sub>2</sub>/RuLL'NCS/CuSCN: Initiation and Potential Mechanisms", <u>Chemistry of Materials</u>. 10(6): 1501-1509, 1998.
- [66] Tennakone, K., et.al. "Dye Sensitized Solid State Photovoltaic Cell Based On Composite Zinc Oxide/tin (IV) Oxide Films", Journal of Physics D. 32(4): 374, 1999.
- [67] Kong, F. T., et al. "Review of Recent Progress in Dye Sensitized Solar Cells", <u>Advances in OptoElectronics</u>. 2007(01): 1-13, 2007.
- [68] Kim, S. "Molecular Engineering of Organic Sensitizers for Solar Cell Application", Journal of the American Chemical Society, 128(51): 16701-16707, 2006.
- [69] Kazuhiro, K. "Photo Sensitization of a Porous TiO<sub>2</sub> Electrode with Meroyanine Dyes Containing a Carboxyl Group and a Long Alkyl Chain", <u>Chemical Communications</u>. 261(13): 1173-1174, 2000.
- [70] Hara, K., et al. "Oligothiophene Containing Coumarin Dyes for Efficient Dye Sensitized Solar Cells", <u>The Journal of Physical Chemistry B</u>. 109(1): 15476-15482, 2005.
- [71] Solaronix. "Buying Guide for Newcomers" <u>How to Start with Dye Solar Cells</u>. <u>http://www.solaronix.com/products/device bulid - up</u>. June 7, 2011.
- [72] Martineau, D. Dye Solar Cells for Real. Aubonne Switzerland: Solaronix, 2010.
- [73] Papageorgiou, N. "On the Relevance of Mass Transport in Thin Layer Nanocrystalline Photoelectrochemical Solar Cells", <u>Solar Energy Materials and Solar Cells</u>. 44(1): 405-438, 1996.

- [74] Nelson, J., et al. "Mass Transport of Poly Pyridyl Cobalt Complexes in Dye Sensitized Solar Cells with Meso Porous TiO<sub>2</sub> Photo Anodes", <u>The Journal of Physical</u> Chemistry C. 112(46): 18255-18263, 2008.
- [75] Desilvestro, H. <u>What Physical Factors Affect Current Voltage Characteristics of</u> <u>Dye Solar Cells.</u> Queanbeyan Australia: Dyesol, 2008.
- [76] Bisquert, J., et al. "Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye Dye Sensitized Solar Cells by Open Circuit Photo voltage Decay Method", <u>Journal of the American Chemical Society</u>. 126(41): 13550-13559, 2004.
- [77] Wang, M., et al. "Enhanced Light Harvesting Amphiphilic Ruthenium Dye for Efficient Solid State Dye Sensitized Solar Cells", <u>Advanced Functional Materials</u>. 20(11): 1821-1826, 2010.
- [78] Baglio, V., et.al. "Influence of TiO<sub>2</sub> Film Thickness on the Electrochemical Behavior of Dye Sensitized Solar Cells", <u>International Journal of Electrochemical Science</u>. 6(1): 3375-3384, 2011.
- [79] Brian C., et al. "Influence of the TiCl<sub>4</sub> Treatment on Nanocrystalline TiO<sub>2</sub> Films in Dye Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit", <u>The Journal of Physical Chemistry C</u>. 111(37): 14001-14010, 2007.
- [80] Ito, S., et al. "Photovoltaic Characterization of Dye Sensitized Solar Cells: Effect of Device Masking on Conversion Efficiency", <u>Progress in Photovoltaics: Research and</u> <u>Applications</u>. 14(7): 589-601, 2006.
- [81] Won, J., et al. "Dye Sensitized Solar Cells: Scale Up and Current Voltage Characterization", <u>Solar Energy Materials & Solar Cells</u>. 91(18): 1676-1680, 2007.
- [82] Khelashvili, G., et al. "Catalytic Platinum Layers for Dye Solar Cells: A Comparative Study", <u>Thin Solid Films</u>. 512(1): 342-348, 2006.

- [83] Khanasa, T., et al. "Synthesis and Characterization of 2D-D-π-A-Type Organic Dyes Bearing Bis(3,6-di-tert-butylcarbazol-9-ylphenyl)aniline as Donor Moiety for Dye-Sensitized Solar Cells", <u>European Journal of Organic Chemistry.</u> 2013(13): 2608-2620, 2013.
- [84] Namuangruk, S., et al. "D-D-π-A-Type Organic Dyes for Dye-Sensitized Solar Cells with a Potential for Direct Electron Injection and a High Extinction Coefficient: Synthesis, Characterization, and Theoretical Investigation", <u>The Journal of Physical Chemistry C</u>. 116(49): 25653-25663, 2012.
- [85] Phansay, S. <u>Synthesis and Characterization of Carbazole Derivatives for Optoelectronic</u> <u>Devices</u>. Master's Thesis: Ubon ratchathani University, 2011.

APPENDIX

## International Congress for Innovation in Chemistry (PERCH-CIC Congress VII)

## "Chemistry, Environment and Society'

#### May 4-7, 2011

Jomtien Palm Beach Hotel & Resort, Pattaya, Thailand

Abstract Submission Deadline: January 31, 2011 Registration Online at www.perch-cic.org



#### Topics

- Alternative Energy
- Analytical Technologies
- Catalysis
- Chemical Biology and Biophysical Chemistry
- Chemical Education
- Computational and Theoretical Chemistry
- Cosmeceuticals, Nutraceuticals and Pharmaceuticals
- Environmental Chemistry
- Food Safety
- Materials Science and Nanotechnology

PERCH-CIC Center of Excellence for Innovation in Chemistry

Natural Products and Synthesis



#### 🏽 😸 🔕 🚱 🥯 🚇 🔕 🔕 🔔 🛦 🈂 🕲

For more information, please contact the Center of Excellence for Innovation in Chemistry Tel: +66(0)2-201-5180, +66(0)2-644-5126 Fax: +66(0)2-644-5126 Email: scvrt@mahidol.ac.th Website: http://www.perch-cic.org

#### Effect of Large Particle TiO<sub>2</sub> Content in Light Scattering Layer on the Efficiency of Dye-sensitized Solar Cell

<u>Somphop Morada</u>, Siriporn Jungsuttiwong, Tinnagon Keawin, Sayant Saengsuwan, Vinich Promarak, Taweesak Sudyoadsuk

Center for Organic Electronics and Alternative Energy, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchumrap, Ubon Ratchathani 34190, Thailand.

#### Introduction and Objective

Dye-sensitized solar cells (DSC) have recently emerged as a promising inexpensive alternative to conventional p-n junction solar cells. Light management is some choices to optimization the DSC. In preliminary study, the effect of large particle  $TiO_2$  content in scattering layer (SL) on the DSC efficiency was investigated.

#### Methods

The multilayered TiO<sub>2</sub> nanostructure films for DSC were fabricated by screen-printing method. The nanocrystalline TiO<sub>2</sub> (nc-TiO<sub>2</sub>) paste was prepared as reference [1] by using 21-nm TiO<sub>2</sub> powder (P-25, Evonik). The mixture of 21 nm-TiO<sub>2</sub> and 400 nm-TiO<sub>2</sub> (Fluka) powers were used for light scattering (SL) paste preparation. The measurement are carried out in sealed cell with the glass/SnO<sub>2</sub>:F/nc-TiO<sub>2</sub>/SL-TiO<sub>2</sub>/T/I<sub>3</sub>/SnO<sub>2</sub>:F (Pt)/glass composition under AM1.5 G (100 mW/cm<sup>2</sup>) illumination.

#### Results

Figure 1 shows the dependence of power conversion efficiency (PCE) on the 400 nm-TiO<sub>2</sub> particle content in the light scattering layer, which varied in the rage from 10-40 wt%. The PCE is decreased by increase in large particle TiO<sub>2</sub> content. The highest PCE of  $3.2\pm0.3$  % was achieved when using the 10 wt% 400 nm-TiO<sub>2</sub> particle as a light scattering layer.



Figure 1. Power conversion efficiency of DSC with difference 400 nm-TiO<sub>2</sub> content.

#### Conclusion

In this preliminary studied, it found that the 10wt% 400 nm-TiO<sub>2</sub> particle is suitable for the light scattering layer of DSC. The improvement DSC performance is under investigated.

Keywords: DSC, Light Scattering layer

#### Selected References:

- 1. Ito, S.; Murakami, T.N.; Comte, P. Thin Solid Films, 2008, 516, 4613-4619.
- 2. Koo, H.J.; Park, J.; Yoo, B. Inorganica Chimica Acta, 2008, 361, 677-683.



#### Mr.Somphop Morada M.Sc. Student 1984 in Bangkok, Thailand

Ubon Ratchathani University, Thailand, Chemistry, B.Sc. 2006 Research field: Dye-sensitized solar cell, Photovoltaic cell, Optoelectronics

#### PERCH-CIC Congress VII (CONTINUED)



#### The 5<sup>th</sup> UBU Conference





ประชุมวิชาการ มอบ.วิจัย ครั้งที่ 5 เอกสารสืบเนื่องจากการประชุม

## สาขา วิทยาศาสตร์และเทคโนโลยี

### 4 - 5 สังหาคม 2554

ณ โรงแรมสุนีย์ แกรนด์ แอนด์ คอนเวนชั่น เซ็นเตอร์ จังหวัดอุมสราชธานี

#### The 5<sup>th</sup> UBU Conference (CONTINUED)

343 The 5th UBU Conference Proceeding | 4-5 August 2011

#### Investigation Assembly Process And Application Of Low Cost Carbonaceous Materials For Counter Electrode In Dscs

Somphon Morada, Siriporn Jungsuttiwong, Tinnagon Keawin, Sayant Saengsuwan, Vinich Promarak, Taweesak Sudyoadsuk

Center for Organic Electronics and Alternative Energy,

Department of Chemistry Faculty of Science, Ubon Ratchathani University

E-mail : Bangrang.pri@gmail.com

#### บทกัดย่อ

งานวิจัยนี้ทำการศึกษาเทคนิคการเตรียมฟิล์มไททาเนียมไดออกไซด์สำหรับขั้วไฟฟ้าทำงานในเซลล์แสงอาทิตย์ ชนิดสีย้อมไวแสง ประกอบไปด้วยการศึกษาการปรับสภาพขั้วไฟฟ้าทำงานด้วยไททาเนียมเตตระคลอไรด์ การออกแบบ และความหนาของฟิล์มไททาเนียมไดออกไซด์ที่เหมาะสม การติดหน้ากากสำหรับเซลล์แสงอาทิตย์ในขณะวัด ประสิทธิภาพ และการประยุกต์ใช้งานผงคาร์บอนสำหรับขั้วไฟฟ้าช่วยงานในเซลล์แสงอาทิตย์ในขณะวัด ประสิทธิภาพ และการประยุกต์ใช้งานผงคาร์บอนสำหรับขั้วไฟฟ้าช่วยงานในเซลล์แสงอาทิตย์ในขณะวัด และประสิทธิภาพ และการประยุกต์ใช้งานผงคาร์บอนสำหรับขั้วไฟฟ้าช่วยงานในเซลล์แสงอาทิตย์ให้กระแสไฟฟ้า และประสิทธิภาพการเปลี่ยนพลังงานแสงเพิ่มขึ้น การออกแบบและความหนาของขั้นไททาเนียมไดออกไซด์ พบว่าทั้ง สองปัจจัยส่งผลต่อค่ากระแสและศักย์ไฟฟ้าของเซลล์ และการติดหน้ากากสำหรับเซลล์แสงอาทิตย์ในขณะวัด ประสิทธิภาพช่วยให้ลดการประมาณค่ากระแสไฟฟ้าที่เกินความเป็นจริงช่วยให้ได้รับข้อมูลของเซลล์ที่มีความแม่นยำ มากกว่า เซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงที่ใช้กราไฟต์และคาร์บอนแบล็ค ในการประยุกต์ใช้ในขั้วฟ้าช่วยงานให้ ประสิทธิภาพการเปลี่ยนพลังงานแสงที่ 4.2% เทียบเคียงได้กับการใช้งานชั้วไฟฟ้าช่วยโดยทั่วไปภายใต้แสงอาทิตย์ จำลองที่ความเข้มแสง AM1.5 (1000 W/m<sup>2</sup>)

กำลำคัญ : เซลล์แสงอาทิตย์ชนิดสียอมไวแสง ขั้วไพ่พ้าช่วยชนิดการ์บอน กระบวนการขึ้นรูป

#### Abstract

In this research, techniques of TiO<sub>2</sub> film fabrication technologies consist of pre-treatment of the working electrode by TiCl<sub>4</sub>, variations in design and layer thickness of nano-crystalline TiO<sub>2</sub>, device masking and application of carbon material as counter were investigated. The result was found that the J<sub>sc</sub> and PCE of DSCs increases with TiCl<sub>4</sub> treatments. Optimization of the design and thickness of the TiO<sub>2</sub> layer as the working electrode, influence both the J<sub>sc</sub> and V<sub>oc</sub> of the devices. DSCs device with solid mask were eliminated the overestimated the photocurrents, provide more accurate cell performance data. DSCs employing graphite carbon black composite as counter electrode achieve efficiency as 4.2% which quite attractive to conventional counter electrode under illumination of AM1.5 (1000 W/m<sup>2</sup>) simulated sunlight

Keywords : Dye-sensitized solar cells (DSCs), Carbon Counter Electrode, Fabrication process

#### Introduction

Dye-sensitized solar cells (DSCs) have recently emerged as a promising inexpensive alternative to conventional p-n junction solar cells. The highly efficient photovoltaic conversions,

#### The 5<sup>th</sup> UBU Conference (CONTINUED)

Investigation of assembly process and application of low cost carbonaceous materials for counter electrode in DSCs Somphop Moreda, Siriporn Jungsuttwong, Tinnagon Keawin, Sayant Saengsuwan

at 16

Vinich Promarak, Tawaesak Sudyoadsuk Alternative Energy, Department of Cl a, Ubon Reinheithent University, Werte and Alle terry and Contac o memp, Moon Enter sity of S

Introduction

In this research, techniques of TiO2 film fabrication technologies consist of pre-treatment of the working electrode by TiCl<sub>4</sub>, variations in design and layer thickness of nano crystalline TiO<sub>2</sub> and application of carbon material as counter were investigated.

#### D Experimental

The commercial available TiO2 paste (20T/SP and R/SP, Solaronix) and modified paste was deposited on SnO2:F glass as a photo anode electrodes by screen-printing method [1].



The measurement are carried

out in sandwich sealed cell with the Fig. 1. 3D DSC component. glass/SnO2:F/nc-TiO2/SL-TiO2/I'/I3'/(Pt)/SnO2:F/glass (Fig.1) composition under AM1.5 G (100 mW/cm<sup>2</sup>) illumination [2].



#### **Optimum thickness**

The thin film TiO<sub>2</sub> layer was in sufficient TiO2 would not adsorb enough dye and thus the cellwould not absorb sufficient light resulting in low photocurrents.

The thick film TiO<sub>2</sub> layer were increased the length of the electron pathways, recombination and diffusion length of I-/I3species. Which effect to decrease ff and Voc and in extreme cases even Jsc. Therefor, the optimum TiO<sub>2</sub> thickness was approximately 11 µm (Fig. 2).

#### Optimum structural design

Fig. 3 shows the photograph of two different TiO<sub>2</sub> photo anode electrode. The DSCs device consisting of nano b crystalline TiO2 cover with light scattering layer gave photo current (12.05 mA/cm<sup>2</sup>) greater than that only nano-crystalline electrode (8.88 mA/cm<sup>2</sup>). The result

indicated that, large particle in top layer was promoted to recapture a part of the Active Opaque (b) TiO<sub>2</sub> as a light, which to enhance the light harvesting of the DSCs device.



Fig. 2. The current density as a function of TiO2 thickness.



photo anode electrode



IPCE curves (c) of DSC device with platinum and graphite carbon black composites counter electrodes

#### Carbon counter electrode

The DSCs device with graphite carbon black composites as counter electrodes was shown surprising potential (~ 80%) comparison with platinum counters electrodes. Which function of the graphite was electronic conduction as well as catalytic activity, the high-surface area carbon black was added for increased catalytic effect. The result was enhancing of DSCs technology in three areas such as costs applicability and sustainability, which attractive to conventional PV technologies.



Fig. 5. Histogram depicting reproducibility of DSCs conversion efficiencies. Reported values of 20 DSCs devices produced with same condition

#### Reproducibility of fabrication process

The conversion efficiencies greater than 5.3±0.2% were obtained with optimum fabrication condition. The statistical graph shows convincingly the excellent reproducibility of the method elaborated here for the fabrication of moderate efficient dye sensitized solar cells.

#### References

1. Ito, S.; Chen, P.; Khaja, M. Prog. Photovolt: Res. Appl., 2007, DOI: 0.1002/pip. 768 2. Ito, S.; Murakami, T.N.; Comte, P. Thin Solid Films, 2008, 516, 4613-4619.

#### Acknowledgements

1. Center of Excellence for Innovation in Chemistry (PERCH - CIC) 2. Center for Organic Electronics and Alternative Energy, Department of Chemistry Faculty of Science, Ubon Ratchathani University



#### THE JOURNAL OF PHYSICAL CHEMISTRY

# $D-D-\pi$ -A-Type Organic Dyes for Dye-Sensitized Solar Cells with a Potential for Direct Electron Injection and a High Extinction Coefficient: Synthesis, Characterization, and Theoretical Investigation

Supawadee Namuangruk,<sup>†</sup> Ryoichi Fukuda,<sup>‡,§</sup> Masahiro Ehara,<sup>\*,‡,§</sup> Jittima Meeprasert,<sup>†</sup> Tanika Khanasa,<sup>||</sup> Somphob Morada,<sup>||</sup> Tinnagon Kaewin,<sup>||</sup> Siriporn Jungsuttiwong,<sup>||</sup> Taweesak Sudyoadsuk,<sup>||</sup> and Vinich Promarak<sup>\*,||,1</sup>

<sup>†</sup>National Nanotechnology Center (NANOTEC), Thailand Science Park, Patumthani 12120, Thailand

<sup>‡</sup>Institute for Molecular Science and Research Center for Computational Science, 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan

Japan Science and Technology Agency CREST, Sanboncho-5, Chiyoda-ku, Tokyo 102-0075, Japan

<sup>II</sup>Center for Organic Electronic and Alternative Energy, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchumrap, Ubon Ratchathani 34190, Thailand

Supporting Information

ABSTRACT: A series of organic sensitizers with the direct electron injection mechanism and a high molar extinction coefficient comprising double donors, a  $\pi$ -spacer, and anchoring acceptor groups  $(D-D-\pi-A \text{ type})$  were synthesized and characterized by experimental and theoretical methods for dye-sensitized solar cells. (E)-2-Cyano-3- $(5''-(4-((4\cdot(3,6\cdotdi-tert)\cdotbuty)carbazol-9-y))phenyl)dodecylamino)-phenyl)-<math>[2,2':5',2''$ -terthiophene]-5-yl)acrylic acid showed performance with a maximal incident photon to electron conversion efficiency of 83%,  $J_{sc}$  value of 10.89 mA cm<sup>-2</sup>,



 $V_{oc}$  value of 0.70 V, and fill factor of 0.67, which correspond to an overall conversion efficiency of 5.12% under AM 1.5G illumination. The molecular geometry, electronic structure, and excited states were investigated with density functional theory, time-dependent density functional theory, and the symmetry-adapted cluster-configuration interaction method. The double donor moleties not only contribute to enhancement of the electron-donating ability, but also inhibit aggregation between dye molecules and prevent iodide/trilodide in the electrolyte from recombining with injected electrons in TiO<sub>2</sub>. Detailed assignments of the UV-vis spectra below the ionization threshold are given. The low-lying light-harvesting state has intramolecular charge transfer character with a high molar extinction coefficient because of the long  $\pi$ -spacer. Our experimental and theoretical findings support the potential of direct electron injection from the dye to TiO<sub>2</sub> in one step with electronic excitation for the present D- $D-\pi$ -A sensitizers. The direct electron injection, inhibite aggregation, and high molar extinction coefficient may be the origin of the observed high efficiency. This type of  $D-D-\pi$ -A structure with direct electron injection would simplify the strategy for designing organic sensitizers.

#### INTRODUCTION

Since the report on dye-sensitized solar cells (DSSCs) with a dramatic increase in the light-harvesting efficiency by O'Reagan and Grätzel in 1991,<sup>1</sup> this type of solar cell has attracted considerable and sustained attention as it offers the possibility of low-cost conversion of the photoenergy.<sup>2</sup> To date, a DSSC with a validated efficiency ( $\eta$ ) record of >11% has been obtained with ruthenium complex dyes such as the black dye.<sup>3</sup> Though there is still room for improvement of the efficiency of ruthenium-based DSSCs,<sup>4</sup> ruthenium dyes are nevertheless costly and hardly attained and normally have a moderate absorption intensity.<sup>5</sup> Enormous effort is also being dedicated to developing efficient dyes suitable for their modest cost, ease

of synthesis and modification, large molar extinction coefficient, and long-term stability. Ruthenium-free dyes or organic dyes meet all these criteria; therefore, there has been remarkable development in organic dye-based DSSCs in recent years,<sup>6</sup> and efficiencies exceeding 12% have been achieved using dyes which have broad, red-shifted, and intense spectral absorption in the visible light region, 400–800 nm.<sup>7</sup>

Although remarkable progress has been made in the organic dyes as sensitizers for DSSCs, optimization of their chemical

Received: May 9, 2012 Revised: November 15, 2012 Published: November 20, 2012

ACS Publications 0 2012 American Chemical Society

25653

dx.doi.org/10.1021/jp304489t1J. Phys. Chem. C 2012, 116, 25653-25663

pubs.acs.org/JPCC

Article

#### Journal article II

Tetrahedron Letters 54 (2013) 2435-2439



Contents lists available at SciVerse ScienceDirect Tetrahedron Letters



iournal homepage: www.elsevier.com/locate/tetlet

#### Synthesis and characterization of β-pyrrolic functionalized porphyrins as sensitizers for dye-sensitized solar cells

Kanokkorn Sirithip<sup>a</sup>, Somphob Morada<sup>a</sup>, Supawadee Namuangruk<sup>b</sup>, Tinnagon Keawin<sup>a</sup>, Siriporn Jungsuttiwong<sup>a</sup>, Taweesak Sudyoadsuk<sup>a</sup>, Vinich Promarak<sup>c,\*</sup>

\* Center for Organic Electronic and Alternative Energy, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University,

Ubon Ratchathani 34190, Thailand

Upon Rautmutam 94 199, Inauana <sup>9</sup> National Nanotechnology Center (NANOTEC), 130 Thailand Science Park, Kiong Luang, Pathumthani 12120, Thailand <sup>9</sup> School of Chemistry and Center for Innovation in Chemistry, Institute of Science, Suranaree University of Technology, Muang District, Nakhon Ratchasima 30000, Thailand

ARTICLE INFO

Article history: Received 19 October 2012 Revised 22 February 2013 Accepted 8 March 2013 Available online 15 March 2013

Keywords:

Porphyrin

**B**-Pyrrolic position Donor-n-acceptor Thiophene Dve-sensitized solar cell ABSTRACT

New  $\beta$ -pyrrolic functionalized porphyrins with donor- $\pi$ -acceptor character were synthesized and characterized as dye sensitizers for dye-sensitized solar cells. Two types of  $\pi$ -conjugated spacers, namely benzene and thiophene rings, with cyanoacrylic acid as an acceptor were linked to the porphyrin ring at the β-pyrrolic position. These porphyrins showed high thermal and electrochemical stability. As sensitizers, the porphyrin dye bearing a thiophene ring as the  $\pi$ -conjugated spacer gave better cell performance with a short-circuit photocurrent density ( $J_{sc}$ ) of 4.57 mA cm<sup>-2</sup>, an open-circuit voltage ( $V_{\infty}$ ) of 0.59 V, and a fill factor (ff) of 0.59, corresponding to an overall conversion efficiency ( $\eta$ ) of 1.94%.

© 2013 Elsevier Ltd. All rights reserved.

Dye-sensitized solar cells (DSSCs) have attracted considerable and sustained attention as they offer the possibility of low-cost conversion of photoenergy.1 To date, DSSCs with a validated efficiency record of >11% have been obtained with Ru complex dyes.<sup>2</sup> More recently, a DSSC submodule of 17 cm<sup>2</sup> consisting of eight parallel cells with conversion efficiency of >9.9% was fabricated by Sony.3 Though there is still room for improvement of the efficiency of Ru-based DSSCs, Ru dyes are nevertheless costly, hard to obtain, and normally have moderate absorption intensity.<sup>2,4</sup> Significant effort is being dedicated to develop new and efficient dyes being suitable for their modest cost, ease of synthesis and modification, large molar extinction coefficients, and long-term stability.<sup>5</sup> Organic dyes with donor- $\pi$ -acceptor  $(D-\pi-A)$  character meet all these criteria. Remarkable progress has been made in the pursuit of organic dyes as sensitizers for DSSCs<sup>6</sup> and efficiencies exceeding 11% have been achieved.<sup>7</sup> Most of the efficient dyes have a cyanoacrylic acid unit as acceptor and anchoring groups.6

Among these dyes, porphyrin has attracted a great deal of attention because of its natural role in photosynthesis, its intense absorption in the visible region, its high stability and the relative ease with which functional groups can be attached to its

0040-4039/S - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.03.037

framework.8 Furthermore, its inherent LUMO level is situated above the conduction band of TiO2, and its HOMO level is below the redox couple of the electrolyte solution required for charge separation at the semiconductor-dye-electrolyte surface, which makes it a good donor moiety.<sup>9</sup> A large number of porphyrins have been developed as sensitizers for DSSCs such as carboxyphenyl metalloporphyrins,<sup>10</sup> thiophene-, olefin-, and acetylene-linked porphyrins,<sup>11</sup> quinoxaline-fused porphyrins,<sup>12</sup> a Zn-Zn porphyrin dimer,<sup>13</sup> oligo(phenylethynyl)-linked porphyrins,<sup>14</sup> and bacteriochlorin.15

From the Goutermann orbital model of porphyrin (Fig. 1), in the ground state, the HOMOs  $(a_{1u} \text{ or } a_{2u})$  have the orbital density mostly on the porphyrin meso-positions and the nitrogens with a small amount of electron density on the  $\beta$ -pyrrolic positions. In the excited state, the electrons go into the LUMO orbitals  $(E_{\rm g})$ which have electron density on the β-pyrrolic and meso-positions. This means that a porphyrin functionalized at the  $\beta$ -pyrrolic positions would be expected to show strong excited state communication. Therefore, incorporation of  $\pi$ -conjugated spacers with cyanoacrylic acid as an acceptor at the β-pyrrolic position of porphyrin would potentially offer strong excited state electron transfer from the porphyrin dye to TiO2, consequently resulting in a highly efficient dye for DSSCs.

In this work, we present the synthesis and characterization of new functionalized porphyrins bearing two types of  $\pi$ -conjugated spacers, namely benzene and thiophene rings, with cyanoacrylic

<sup>\*</sup> Corresponding author. Tel.: +66 44 224 207; fax: +66 44 224 185. E-mail address: pvinich@sut.ac.th (V. Promarak).

#### FULL PAPER

DOI: 10.1002/ejoc.201201479

#### Synthesis and Characterization of 2D-D-π-A-Type Organic Dyes Bearing Bis(3,6-di-tert-butylcarbazol-9-ylphenyl)aniline as Donor Moiety for Dye-Sensitized Solar Cells

## Tanika Khanasa,<sup>[a]</sup> Nittaya Jantasing,<sup>[a]</sup> Somphob Morada,<sup>[a]</sup> Nararak Leesakul,<sup>[b]</sup> Ruangchai Tarsang,<sup>[a]</sup> Supawadee Namuangruk,<sup>[c]</sup> Tinnagon Kaewin,<sup>[a]</sup> Siriporn Jungsuttiwong,<sup>[a]</sup> Taweesak Sudyoadsuk,<sup>[a]</sup> and Vinich Promarak\*<sup>[d]</sup>

Keywords: Donor-acceptor systems / Dyes / Sensitizers / Conjugation

A series of novel 2D-D-π-A-type organic dyes, namely CCTTnA (n = 1-3), bearing bis(3,6-di-tert-butylcarbazol-9ylphenyl)aniline as an electron-donor molety (2D-D), oligothiophene segments with a number of thiophene units from one to three units as  $\pi$ -conjugated spacers ( $\pi$ ), and cyanoacrylic acid as the electron acceptor (A) were synthesized and characterized as dye sensitizers for dye-sensitized solar cells (DSSCs). These compounds exhibit high thermal and electrochemical stability. Detailed investigations of these dyes reveal that both peripheral carbazole donors (2D) have beneficial influence on the red-shifted absorption spectrum of the dye in solution and dye adsorbed on  $\mathrm{TiO}_2$  film, and the

#### Introduction

Since the report by O'Reagan and Grätzel in 1991 on dye-sensitized solar cells (DSSCs) with dramatically increased light harvesting efficiency,[1] this type of solar cell has attracted considerable and sustained attention because it offers the possibility of low-cost conversion of photoenergy.<sup>[2]</sup> To date, DSSCs with a validated efficiency record of more than 11% have been obtained with Ru complexes such as the black dye.<sup>[3]</sup> More recently, a DSSC submodule of 17 cm<sup>2</sup> consisting of eight parallel cells with a conversion efficiency of more than 9.9% was fabricated by Sony.[3] Although there is still room for improvement of the efficiency

- [a] Center for Organic Electronic and Alternative Energy, Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
- Ubon Ratchathani 34190, Thailand
  [b] Department of Chemistry, Faculty of Science, Prince of Songkhla University, Hat Yai, Songkhla 90110, Thailand
  [c] National Nanotechnology Center, 130 Thailand Science Park, Paholyothin Rd, Klong Luang Pathumthani 12120, Thailand
  [d] School of Chemistry and Center of Excellence for Innovation in Chemistry, Institute of Science, Suranaree University of Technology

- Technology, Muang District, Nakhon Ratchasima 30000, Thailand Fax: +66-44-224648
- E-mail: pvinich@sut.ac.th Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201201479.

2608

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

broadening of the incident monochromatic photon-to-current conversion efficiency (IPCE) spectra of the DSSCs, leading to enhanced energy conversion efficiency  $(\eta)$ . Among these dyes, CCTT3A shows the best photovoltaic performance, and a maximal incident monochromatic photon-to-current conversion efficiency (IPCE) value of 80%, a short-circuit photocurrent density  $(J_{sc})$  of 9.98 mA cm<sup>-2</sup>, open-circuit voltage  $(V_{oc})$  of 0.70 V, and fill factor (FF) of 0.67, corresponding to an overall conversion efficiency  $\eta$  of 4.6% were achieved. This work suggests that organic dyes based on this type of donor molety or donor molecular architecture are promising candidates for improved performance DSSCs.

of Ru-based DSSCs,<sup>[4]</sup> Ru dyes are nevertheless costly, difficult to attain, and normally have only moderate absorption intensity.[9] Enormous effort is also being dedicated to the development of new and efficient dyes that are suitable with respect to their modest cost, ease of synthesis and modification, large molar extinction coefficient, and long-term stability. Organic dyes meet all these criteria. Thus, there have been remarkable developments in organic dye-based DSSCs in recent years,<sup>[6]</sup> and efficiencies exceeding 10% have been achieved by using dyes that have broad, red-shifted, and intense spectral absorption in the visible light region.[7] Although remarkable progress has been made in the development of organic dyes as sensitizers for DSSCs, their chemical structures still require optimization for further improvement in performance. Most of the developed organic dyes are composed of donor, π-conjugation, and acceptor moleties, thereby forming a D-n-A structure, and broad ranges of conversion efficiencies have been achieved.[6-8] Most of the highly efficient DSSCs based on organic dyes have long  $\pi$ -conjugated spacers between the donor and acceptor, resulting in broad and intense absorption spectra, aromatic amines as donor moieties, a strong electron-withdrawing group (cyanoacrylic acid) as acceptor, and anchoring moieties. However, the introduction of long  $\pi$ -conjugated segments results in rod-like molecules, which can lead to recombination of the electrons to the triiodide and magnify

87

Eur. J. Org. Chem. 2013, 2608-2620

#### Journal article IV

Tetrahedron Letters 54 (2013) 4903-4907



#### Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet



( CrossMark

## An organic dye using N-dodecyl-3-(3,6-di-*tert*-butylcarbazol-N-yl) carbazol-6-yl as a donor moiety for efficient dye-sensitized solar cells

Taweesak Sudyoadsuk<sup>b</sup>, Janeeya Khunchalee<sup>b</sup>, Sakrawee Pansay<sup>b</sup>, Pongsathorn Tongkasee<sup>b</sup>, Somphob Morada<sup>b</sup>, Tinnagon Kaewin<sup>b</sup>, Siriporn Jungsuttiwong<sup>b</sup>, Vinich Promarak<sup>a,\*</sup>

\*School of Chemistry and Center of Excellence for Innovation in Chemistry, Institute of Science, Suranaree University of Technology, Muang District, Nakhon Ratchasima

30000, Thailand <sup>b</sup> Center for Organic Electronic and Alternative Energy, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

#### ARTICLE INFO

Article history: Received 12 March 2013 Revised 14 June 2013 Accepted 28 June 2013 Available online 4 July 2013

Keywords: Organic dye  $D-D-\pi-A$ Carbazole Oligothiophene Dye-sensitized solar cell

#### ABSTRACT

New organic dyes, namely **CCTA** and **CFTA** using *N*-dodecyl-3-(3,6-di-tert-butylcarbazol-*N*-yl)carbazol-6yl and 2-(3,6-di-tert-butylcarbazol-*N*-yl)-9,9-bishexylfluoren-7-yl as donor moieties, respectively, were synthesized, characterized, and employed as a dye sensitizer in dye-sensitized solar cells (DSSCs). The **CCTA**-sensitized solar cell produces higher device performance with an overall conversion efficiency of 5.69% [a short circuit current ( $J_{sc}$ ) = 11.31 mA cm<sup>-2</sup>, an open-circuit voltage ( $V_{ox}$ ) = 0.71 V, and a field factor (FF) = 0.71] reaching >96% of the reference N719-based device (overall conversion efficiency = 5.92%). © 2013 Elsevier Ltd. All rights reserved.

Dye-sensitized solar cells (DSSCs) have attracted considerable and sustained attention due to the potential of low-cost conversion of the photoenergy that they offer.<sup>1</sup> To date, a DSSC with a validated efficiency of >11% has been obtained with Ru complex dyes.<sup>2</sup> More recently, a DSSC submodule of 17 cm<sup>2</sup> made up of eight parallel cells possessing a conversion efficiency of >9.9% was fabricated by Sony.<sup>3</sup> Though there is still room for improvement of the efficiency of Rubased DSSCs, Ru dyes are nevertheless costly, are difficult to prepare and normally have moderate absorption intensity.24 Significant effort is also being dedicated to develop new and efficient dyes which are suitable for their modest cost, ease of synthesis and modification, large molar extinction coefficient, and long-term stability.5 Ru-free dyes or organic dyes meet all these criteria. Although remarkable progress has been made in the field of organic dyes as sensitizers for DSSCs,6 efficiencies exceeding 11% have been achieved,7 optimization together with simplification of their chemical structures for further improvement in their performance is still necessary. To this end, we have prepared a new, simple donor- $\pi$ -acceptor (D- $\pi$ -A) type organic dye, namely (E)-5"-(N-dodecyl-3-(3,6-di-tert-butylcarbazol-N-yl)carbazol-6-yl)-2,2':5',2"-terthiophene-5-cyanoacrylic acid (CCTA), bearing an N-dodecyl-3-(3,6-di-tert-butylcarbazol-Nyl)carbazol-6-yl as a donor moiety for DSSCs (Fig. 1). In our design,

3,6-di-*tert*-butylcarbazole is employed as an additional donor to *N*-dodecylcarbazole, thereby forming a donor-donor moiety (D–D). Recently, many groups have reported that DSSCs using carbazole-based dyes have shown a conversion efficiency ( $\eta$ ) up to 9,1%, indicating the importance of their further investigations in DSSCs.<sup>8</sup>

In addition, carbazole derivatives have stimulated interest in their excellent hole-transport ability and have become classic hole-transporting materials.<sup>9</sup> Moreover, the bulky, nonplanar structure of the designed moiety may prove to be valid in solving



Figure 1. Chemical structures of the target dyes.

<sup>\*</sup> Corresponding author. Tel.: +66 44 224 277; fax: +66 44 224 648. E-mail address: pvinich@sut.ac.th (V. Promarak).

<sup>0040-4039/5 -</sup> see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.06.143

#### FULL PAPER

DOI: 10.1002/ejoc.201300373

#### Synthesis and Characterization of D-D- $\pi$ -A-Type Organic Dyes Bearing Carbazole-Carbazole as a Donor Moiety (D-D) for Efficient Dye-Sensitized Solar Cells

Taweesak Sudyoadsuk,<sup>[a]</sup> Sakravee Pansay,<sup>[a]</sup> Somphob Morada,<sup>[a]</sup> Rattanawalee Rattanawan,<sup>[a]</sup> Supawadee Namuangruk,<sup>[b]</sup> Tinnagon Kaewin,<sup>[a]</sup> Siriporn Jungsuttiwong, [a] and Vinich Promarak\*[c]

Keywords: Dyes / Dye-sensitized solar cell / Sensitizers / Photochemistry / Energy conversion / Oligothiophenes

A series of new D-D- $\pi$ -A-type organic dyes - CCTnA (n = 1-3), CCT3N and CCT2PA, bearing the 3-(3',6'-di-tert-butylcarbazol-N'-yl)-N-dodecylcarbazol-6-yl system as an electron donor moiety (D-D) - were synthesized by convenient methods and successfully utilized as dye sensitizers for dyesensitized solar cells (DSSCs). The central π-conjugated bridges were made of oligothiophene and oligothiophene-phenylene units, whereas the acceptor groups were either cyanoacrylic acid or cyanoacrylamide. Detailed investigation into the relationship between the structures, spectral and electrochemical properties, and performances of the DSSCs is described. The DSSC devices performed remarkably well, with typical overall conversion efficiencies of 3.60-5.69%, and op-

#### Introduction

Dye-sensitized solar cells (DSSCs) have attracted considerable, sustained attention because they offer the possibility of low-cost conversion of photoenergy.[1] To date, DSSCs with validated efficiency records of >11% have been obtained with Ru complex dyes.<sup>[2]</sup> More recently, a 17 cm<sup>2</sup> DSSC submodule consisting of eight parallel cells and displaying a conversion efficiency of >9.9% was fabricated by Sony.<sup>[3]</sup> Although there is still room for efficiency improvement in Ru-based DSSCs, Ru dyes are costly, difficult to produce and normally display only moderate ab-

- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University,
- (b) National Nanotechnology Center (NANOTEC), 130 Thailand Science Park, Klong Luang, Pathumthani 12120 Thailand
- [c] School of Chemistry and Center of Excellence for Innovation in Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 Thailand

- Fax: +66-44224648
- E-mail: pvinich@sut.ac.th
- pvinich@gmail.com
   Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201300373.

Eur. J. Org. Chem. 2013, 5051-5063

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

WILEY 🖗 5051

(IPCEs) exceeding 80%. The devices containing oligothiophene bridging groups performed better than those with oligothiophene-phenylene bridging groups. Of solar cells based on these dyes, the CCT3A-based one gave a maximum IPCE value of 84 %, a short-circuit photocurrent density  $(J_{sc})$ of 11.31 mA cm<sup>-2</sup>, an open-circuit voltage ( $V_{oc}$ ) of 0.71 V and a fill factor (FF) of 0.71, corresponding to an overall conversion efficiency ( $\eta$ ) of 5.69% (>96% of that of the reference N719-based cell,  $\eta = 5.92$  %). This work suggests that the organic dyes based on donor molecular architectures of this type are promising candidates for improvement of the performances of DSSCs.

timal incident photon-to-current conversion efficiencies

sorption intensity.[2,4] Enormous effort is also being dedicated to the development of new and efficient dyes featuring modest cost, ease of synthesis and modification, large molar extinction coefficients, and long-term stability.[5]

Ru-free organic dyes meet all of these criteria. Although remarkable progress has been made in the use of organic dyes as sensitizers for DSSCs, with efficiencies exceeding 11% having been achieved, [6] the optimization and simplification of their chemical structures for further improvements in performance is still needed. In terms of electronic structure, the LUMO energy level of a dye has to be higher than the energy of the conductive band (CB) of a TiO2 electrode for efficient electron injection, whereas the LUMO energy level of the dye has to be lower than the iodide/triiodide (I-/ I3) redox potential for oxidation and regeneration of dye, respectively. Additionally, a high absorption coefficient over a wide range of visible light wavelength is required for lightharvesting efficiency.

In terms of molecular structure, avoidance of unfavourable aggregation of dyes is also necessary to achieve high efficiency. n-n Aggregation can lead not only to selfquenching and reduction of electron injection into TiO2, but also to instability of the organic dye, due to the formation of excited triplet states and unstable radicals under light irradiation conditions.[7] Stability of the dye in its ex-