รายงานผลการวิจัย
เรื่อง

การศึกษาพืชบำรุงดินต่อการเพิ่มผลผลิตพืชในภาคตะวันออกเฉียงเหนือของ ประเทศไทย

นายภูมิศักดิ่ อินทนนท์
นายมานัส ลอศิริกุล
นายสุวัฒน์ ธีระพงษ์ธนากร

ภาควิชาพืชไร่ คณะเกษตรศาสตร์
มหาวิทยาลัยอุบลราษธานี

คำนำ

การศึกษาวิจัยเกี่ยวกับปุ๋ยพืชสดในครั้งนี้เป็นความพยายามและแสวงหาแนวทางเพื่อปรับปรุง และพัตนาพื้นที่คินทรายจัดซึ่งมีอาณาเขตกว้างขวางโดยเฉพาะในเขตภาคตะวันออกเฉียงเหนือเพื่อให้ สามารถใช้ประโยชน์ทางการเกษตรได้ โดยได้นำปุ๋ยพืชสดจำนวน 5 ชนิดมาทดสอบในบริเวณพื้นที่ดิน ทรายจัดภายในคณะเกษตรมหาวิทยาลัยอุบลราชธานีเพื่อศึกษาถึงความเป็นไปได้ตามที่ได้รายงานไว้ แล้วในรายงานวิจัยฉบับนี้ โครงการวิจัยนี้ ได้รับการสนับสนุนงบประมาณจากงบประมาณประจำปี จากมหาวิทยาลัยถุบลราชษานี รายงานการวิจัยเล่มนี้คณะผู้วิจัยหวังว่าผลการวิจัยคงเป็นประโยชน์และ เป็นอีกแนวทางหนึ่งที่จะช่วยพัฒนาการเกษตรและช่วยเหลือเกษตรกรในเขตรับผิดชอบของ มหาวิทยาลัยอุบลราชธานีต่อไป

ภูมิศักดิ์ อินทนนท์
หัวหน้าโครงการวิจัย

กิตติกรรมประกาศ

การวิจัยครั้งนี้สำเร็จลุล่วงได้ด้วยดีด้วยความร่วมมื่อความช่วยเหลือจากบุคคลและองค์กรหลาย ฝ่ายดังนี้ คณะผู้วัยขอขอบคุณ คุณประสิทธิ์ กาญจนา และคุณนพมาศ นามแดง นักวิชาการเกษตรที่ ให้ความช่วยเหลือในการเก็บข้อมูลและวิเกราะห์ข้อมูลทำให้งานวิจับครั้งนี้บรรลุตามวัตถุประสงค์ได้ ด้วยดี

ขอขอบคุณหั่หน้าภาควิชาพืชไร่ คณบดีคณะเกษตรศาสตร์ และบุคคลกรของคณะงที่ให้การ สนับสนุนในการวิจัยครั้งนี้

ขอขอบคุณงานวิจัยมหาวิทยาลัยอุบลราชธานีซึ่งเป็นองค์กรที่สนับสนุนงานวิจัยทำให้การ คำเนินได้ว้วยดี จึงขอขอบคุณทุกท่านไว้ ณ ที่นี้

ภูมิศักดิ์ อินทนนท์
หัวหน้าโครงการวิจัย

การศืกษาพืชบำรุงดินต่อการเพิ่มผลผลิตพืชในภาคตะวันออกเฉียงหนือของประเทศไทย บทคัดย่อ

การศึกษาเพื่อพัฒนาพื้นที่คินทรายจัด และเพิ่มผลผลิตของพืชโดยใช้ทุ่ยพืชสดซึ่งทำการ ทคลองในแปลงทดลองของคณะเกษตรศาสตร์มหาวิทยาลัขอุบลราชธานี ตั้งแต่เดือนเมษายนถึงงดือน ตุลาคม 2538 โดยวางแผนการทคลองแบบ RCBD จำนวน 6 กรรมวิธี 4 ซ้ำ ในแปลงขนาค 25 ตาราง เมตรซึ่งประกยบด้วขที่ยพืชสคดังนี้ ไมยราพย์ไร้หนาม โสนอัฟริกัน ปอเทือง ถั่วพุ่ม ถั่วพร้า และ แปลงควบคุม ในอัตรา 2 ตันต่อไร่ โดยใช้ข้าวโพคพันธุ์สุวรรณ 3 เป็นพืชทคสอบเก็บข้อมูลตามภูมิ อากาศ ข้อมูลคุมสมบัติด้านกายภาพและเคมีของดิน ทั้งก่อนและหลังปดูก ข้อมูลการเงริญฺติบโตของ พืช และข้อมูลองค์ประกอบผลผลิต และผลผลิตเป็นต้น

ผลการศึกษาพบว่าแปลงทดลองดินทราะจัค มีอนุภาคดินทราย 75.8% เป็นดินกรด pH 5.7 มี ไนโตรเจนไม่ถึง 1% มี ฟอสฟอรัสต่ำมาก และมีการแลกเปลี่ยนประจุบวกต่ำ ภายหลังการใช้ปุยพืชสด และปลูกข้าวโพดแล้วพบว่า สภาพความเป็นกรคเป็นด่างได้ปรับตัวดึขึ้น โดยเฉพาะผิวดิน ความอุดม สมบรูณ์(OM) ของคินเพิ่มขึ้น จาก 0.8 เป็น 1.0% ฐาตุไนโตรเจนและฟอสฟอรัส มีเนวโน้มเพิ่มสูงขึ้น การแลกเปลี่ยนประจุบวกเพิ่มขึ้นและความเข็งของชั้นดินลดลงเป็นต้น

ชนิดของปุ๋ยพืชสดที่มีอิทธิพลต่อการเจริญเติบโตและผลผลิตของข้าวโพดค่อนข้างเค่นชัดใน ด้านความสูง ความยาวใบ จำนวนใบ ขลฯ ได้แก่ ถั่วพุ่ม โสนอัฟริกัน และปอเทืองตามลำดับ ส่วนถั่ว พร้าและไมยราพย์ไร้ดนามให้ผลไม่แตคต่าจจากแปลงควบคุมซึ่งไม่ได้ไส่ปุยพืชสค แต่อย่างไรก็ตาม ปริมาณผลผลิิของข้าวโพดพบว่า ถั่วพุ่ม โสนอัฟริกัน ปอเทือง ถั่วพร้า ไมยราพย์ไร้หนาม และแปลง ควบคุม ให้ผลผลิตสูงตามลำดับ

ปุ๋ยพืชสดจึงปป็นอีกนนวทางหนึ่งในการปรับปรุงบำรุงคินทราขจัดให้มีความถุดมสมบูรณ์และ เพิ่มผลผลิตพืชได้แต่ต้องศึกษาถึงอัตราที่เหมาะสมต่อไป

สารบัญ

สารบัญตาราง
บทคัดย่อ
คำนำ
บทนำ
ความสำคัญและที่มาของปัญหา 1
วัตถุประสงค์ 1
ประโยชน์ที่คาดว่าจะได้รับ 1
ตรวจเอกสาร 2
ระบบการเพวะปลูก 2
ปุ๋ยพืชสดชนิดเดียวเพียงพอหรือไม่ 2
การเพาะปลูกพืชผสมผสานโดยการปลูกผสมกันหรือปลูกเป็นแถว 3
ปริมาณคาร์บอนที่อยู่ในปุ๋ยพืชสด 4
ปริมาณของปุยพืชสด 5
การปรับปรุงสภาพทางเคมีของดิน 5
ปริมาณผลผลิตของปุ๋ยพืชสด 8
ปลูกพืชหมุนเวียนร่วมกับพืชที่จะทำ 10
ข้อเสียของปุ๋ขพืชสด 11
ระเบียบวิธีวิฉัย 13
ผลและวิจารย์ผล 16
สรุป $\quad 28$
เอกสารอ้างอิง
ภาคผนวก

ฮารบัญตาราง

ตาราง หน้า

ตาราง. 1 ข้อมูลด้านภูมิอากาศของแปลงทดลอง 16
ตาราง. 2 คุณสมบัติด้านเคมีของแปลงทดลองก่อนปลูกพืช 18
ตาราง. 3 คุณสมบัติด้านกายภาพของแปลงทดลองก่อนปลูกพืช 18
ตาราง. 4 คุณสมบัติด้านเคมีของแปลงทดลองหลังปลูกพืช 19
ตาราง. 5 คุณสมบัต้ด้านกายภาพของแปลงทดลองหลังปลูกพืช 19
ตาราง. 6 อิทธิพลของปุ๋ยพืชสดต่อความสูงของข้าวโพด 20
ตาราง. 7 อิทธิพลของปุ๋ยพืชสดต่อจำนวนใบ 22
ตาราง. 8 อิทธิพลของปุ๋ยพืชสคต่อความยาวใบ 23
ตาราง. 9 องค์ประกอบผลผลิคและผลผลิต 25

1. บทนำ

1.1 ความสำคัญและที่มาของปัญหา

คินที่เหมาะสมต่อการเพาะปลูกพืชโดยทั่วไปปจะมีระดับของอินทรีย์วัตถุไม่ต่ำกว่า 2% แต่พื้นที่ การเกษตรของประเทศไทยทั่วประเทศมีระดับอินทรีย์วัตถุต่ำกว่า 1.5% และภาคตะวันออกเฉียง เหนือซึ่งเป็นพื้นที่ 1 ใน 3 ของประเทศไทยซึ่งเป็นแหล่งผลิตข้าวที่สำคัญของประเทศ ดินส่วนใหญ่ ขาดอินทรียวัตถุประมาณ 0.5% (เอิบ, 2534) เป็นต้น

ปรัชญา (2536) รายงานว่าพื้นที่คินเสื่อมโทรมของประเทศมีประมาณ 225 ล้านไร่ หรือคิด เป็น 70% ของพื้นที่ทั่วบระเทศ โดยเฉพาะดินภาคตะวันออกเฉียงเหนือ เป็นดินทรายถึงคินทราย จัด หากได้รับการปรับปรุงโดยเพิ่มอินทรียววัตถุที่พียงพอแล้วจะกลายเป็นแหล่งผลิตและสร้างราย ได้ให้กับเกษรกรและประเทศชาติอีเเป็นจำนวนมาก การใช้มุ้ออินทรีย์นอกจากจะช่วยลคการนำ เข้าของงุ๋ไเคมีจากต่างประเทศไค้แล้วังงช่วยปรับปรุงคุณสมบัติของดินให้ดีขึ้น แต่อย่างไรก็ตามใน การใช้ระดับเกษตรกรและผู้ปฏิญัติ ปุยยคอกและปุ๋ยพืชสดมีการใช้หลากหลายชนิดโคยขาคความชัด เจนถึงชนิคและอิทธิพลที่มี่ต่อคินและพืช ดังนั้นในการศึกษาครั้งนี้ จึงได้เลือกปุ๋ยพืชสคที่เป็นที่ นิยมของเกษตรกรมาทำการปรับปรุงพื้นที่ดินทราขจัดในเขตจังหวัดอุบลราชธานีซึ่งเป็นลักษณะดิน ส่วนใหญ่ของภูมิกาคเพื่อใช้ประโยชน์ต่อไป

1.2 วัตถุประสงค์

การศึกษาครั้งนี้มุ่งเน้นเพื่อทราบอิทธิพลของปุ๋ยพืชสคแต่ละชนิดที่มีผลต่อการปรับปรุง คุณสมบัติของดินโดยเฉพาะพื้นที่ดินทราขจัด ในเขตจังหวัดอุบลราชธานี และพื่อทราบประ สิทธิภาพของปุ๋ยพืชสคต่อการเงริญเติบโตและผลผลิตของพืช

1.3 ประโยชน์ที่กาดว่าจะได้รับ

1. ทราบลักษณะการเปลี่ยนแปลงของคุณสมบัติดินทรายจัดเมื่อปรับปรุงโคยปุ๋ยพืชสด
2. ทราบชนิดของปุ๋ยพืชสคที่มีอิทธิพลต่อการเงริญเติบโตและผลผลิตของข้าวโพค
3. ทราบแนวทางในการปรับปรุงดินทราะจัค ซึ่งเป็นพื้นที่ส่วนใหญ่ของภูบิภาค

2. การตรวจเอกสาร

2.1 ระบบการเพาะปจุกที่ช้่ช่ยุพืชสด

ปัญหาสำคัญก์คืคอไม่สามารถจัดหาบุ๋ยหมักจำนวนมากได้ง้ายๆ ชิ่งกว่านั้นเนื่องจากผลร้าย จากกุ๋๋เคมีเลละยาปราบศัศรูพืชได้เพิ่มความรุนแรงขึ้น และคนส่วนมากเห็นความสำคัมของการใช้ อินทรีย์วัตถุ จึงไใค้นำการใช้ปุ๋ยพืชสดกลับมาพิจารณาอีกในหลาขๆด้าน และปุยชืืชสดได้ดูก พิจารณาว่ามีประสิทธิภาพในการเพิ่มปริมาณไนโตรเจนและปริมาณอินทรียวัตดุในดิน เพื่อยับยั้ง โรคและแมลงและเพื่อละลายธาตุอาหารอนินทรีย์ในคินมีวิธีการหลายวิธีที่ถูกนำมาทคลองใช้ใน การไถงุ๋ยพืชสดลงไปในดิน นอกจากนั้นยังได้มีการพิจารณาถึงเรื่องความแตกต่างของผลที่ได้รับ จากการไถพืชที่เป็นปุ่ยพืชสดในช่วงการเจริญฺเติบโตที่แตกต่างกัน อัตราการสลายตัวของปุยชืืชสด หลังจากไถกลบลงในดินและผลอื่นๆที่มีต่อพืช

ในเกษตรธรรมชาติและกกษตรอินทรีย์ ไุ๋ยพืชสดมีความจำเป็นต่อการขยายขนาคของ ไร่นา และจำเป็นจะต้องใช้ปุยยพืชสคที่ดีในกรณีที่เกษตรกรต้องการใช้อินทรียวัตถุอย่างมี ประสิทธิภาพ เพื่อปรับปรุงความอุดมสมบูรม์ของคินและผลผลิคของพืชโดยการเปลี่ยนดินไปเป็น คินหมักสังเคราะห์

ในการใช้ปุ้ยพืชสดอย่างกว้างขวาง การจัดหนมล์คูพันธุ์และต้นกล้าของปุ๋ยพืชสคเป็นสิ่ง สำคัญ การฺุ๋ยพืชสคนั้นเป็นมาตรการที่จะให้ความอุดมสมบูรณ์ของคินกลับคืนมา หลังจากการจัด รูปไร่นา ส่วนใหญ่จะขึ้นอยู่กับการจัดหาเมล็คและต้นกล้า และระบบการจัดหาเมล็คและต้นกล้า ของพืชที่จะนำมาเป็นปุ๋ยพืชสคจะยิ่งกลายมาเป็นสิ่งสำคัญมมื่อขนาคของไร่นาเพิ่มขึ้น

2.2 ปุยพืชสดชนิดเดียวเพียงพอหรือไม่

การนำพืชเพืยงชนิดเดียวมาทำเป็นปุ๋ยพืชสดเช่นนำชอร์โกเพียงอย่างเดียวนำมาปลูกเพื่อ เป็นปุ๋ยพืชสดนั้น เมื่อพิจารฉาจากหลักการของระบบนิเวศวิทยาธรรมชาติและการผสมผสานของ จุลินทรีย์คินแล้ว การปลูกพืชฟุยยืืชสคแเต่เพียงอย่างเคียวยังไม่เพียงพอ

กฎเบื้องต้นในการเตรียมปุ๋ยหมักที่มีคุณภาพสูงคือการใช้วัสคุหลายๆอย่างเท่าที่จะหามาได้ ผสมผสานกัน เช่น เดียวกับความจริงที่ว่า อาหารที่เป็นที่พึงพอใจสำหรับมนุษย์นั้น ประกอบขึ้น ด้วยอาหารหลายชนิด เพื่อให้ธาตุอาหารของอาหารอยู่ในสภาพที่สมคุลตามธรรมชาติ

พืชปุ๋ยสดชนืคเดียวจะเพียงพอ ถ้าเราเชื่อในทฤษฎีที่ว่าพืชไม่สามารถจะดูดซึม
อินทรีย์สารได้ นอกจากมันจะถูกเปลี่ยนไปเป็นอนินทรียสารทั้งหมคก่อนแล้วเท่านั้นตามที่ได้ อธิบายมาแล้ว การผสมวัสคุหลายๆชนิดจะมีความหมายสำคัญมาก ถ้าเราใช้จุสินทรีย์หมักและ สังเคราะห์มาทำหน้าที่หมุนเวียนพลังงานอินทรีย์

แม้ว่าจะไม่ใช้จุลินทรีย์หมักและสังเคราะห์ จุลินทรีย์ในดินมีหลากหลายอยู่แล้วและจะเกิด ผลเป็นอย่างมากถ้าอินทรียสารที่ใส่ลงไปในคินนั้นประกอบด้วยวัสคุหลายชนิด จึงควรตระหนัก ถึงจุคนี้ไว้ไนการเพาะปลูกพืชที่จะนำมาเป็นปุ๋ยพืชสด

2.3 การปลูกพืชผสมผสานโดยการปลูกผสมกันหรือปลูกเป็นแถว

ไม่ว่าจะเป็นการปลูกพืชตระกูลหญ้าและพืชตระกูลผสมกันเพื่อให้เป็นปุ๋ยพืชสด ผลที่ได้ รับการการปลูกนี้จะขึ้นอยู่กับสภาพของการเพาะปลูก โดยเฉพาะอย่างยิ่งถ้าคินไม่มีความอุดม สมบูรณ์แล้วจะทำให้ผลของการปลูกพืชผสมกันล้มเหลว ดังนั้นจึงจำเป็นที่จะต้องปลูกพืชปุ๋ยพืช สคผสมกันให้เป็นแถว

พืชคนละชนิคที่อยู่ในตระกูลเดียวกัน จะสนับสนุนซึ่งกันและกันในการจัครูปแบบและ สร้างความมั่นคง เว้นแต่อัตราการเจริญเติบโตกันอย่างมากมายเนื่องจากพืชแต่ละชนิดมีความ สามารถในการสร้างรูปแบบจุลินทรีย์ของตนในบริเวณรอบรากพืชด้วยตนเอง การร่วมกันทำงาน ของจุลินทรีย์ต่างชนิดกันจะสูงขึ้น ถ้าจุลินทรีย์จำนวนมากที่อาศัยอยู่บริเวณรากพืชได้ถูกจัดเป็นรูป ขึ้น

ในอดีต มีจุลืนทรีย์คินไม่กี่ชนิด เช่น แบคทีเรียตรึงไนโตรเจนและราไมโครโรซ่าที่ถูกนำ มาพิจารณา อย่างไรก็ตามจะเห็นได้ว่าจุลินทรีย์ เช่น trichoderma, penicilium และstreptomyces มีประสิทธิภาพในการยับยั้งโรค ส่วนจำนวนจะเพิ่มขึ้นหรือลคลงนั้นขึ้นอยู่กับสภาพของรากและ ชนิดของพืชที่นำมาปลูก

ดังนั้นการปลูกพืชปุ๋ยพืชสดหลายชนิดโคยการปลูกแบบผสมกัน หรือปลูกเป็นแถวเดียว นั้น จะนำไปสู่การผสมผสานกันไม่เพียงแต่อินทรียวัตถุเท่านั้น แต่จะรวมถึงุุลินทรีย์ในดินและ พวกที่อยู่ในบริเวณรอบรากพืชด้วย เนื่องจากการที่จะได้รับวัสดุมาและแรงงานในการทำปุ๋ยหมัก

ในทุกวันนี้ยงงมีขีดจำกัดอยู่ จึงจำเป็นจะต้องยกระคับมาตรฐานของการใช้ทุ๋ยพืชสคโดยพิจารณา จากสภาพทั่วๆไปดังที่กล่าวมาแล้ว

2.4 ปริมาณคาร์บอนที่ยยู่ในปุ๋ยพืชสด

ได้อธิบายมาแล้วว่า ถ้าสามารถควบคุมดินให้เป็นดินหมักสังเคราะห์อยู่เสมอได้เล้ว พล ผลิตก็จะเพิ่มขึ้นมากกว่าการใส่อินทรียวัตถุ่ที่งงไม่สลายตัวลงไป่ในดิน สิ่งสำคัญในกรณีนี้ไม่ให่ อยู่ที่ปริมาณคาร์บอนที่อยู่ในดิน แต่อยู่ที่ปริมาณที่แท้จริงของอินทรีย์คาร์บอนที่อยู่ในดิน และจะ ไม่ถือว่าอินทรียวัตถุ่ที่มีปริมาณไนโตรเจนสูงที่อู่ในคินเป็นสิ่งจำเป็น

อย่างไรก็ตาม อินทรียัวัตถุที่มีคาร์บอนต่ำจะมีประสิทธิภาพสำหรับการเพาะปลูกพืช เช่น ผักกินใบ ซึ่งไนโตเเจนเป็นปัจจัขหลักที่มีอิทธิพลต่อผลผลิต คุณภาพของพืชและเป็นตัวเร่งความ อุดมสมบูรณ์ของคินในขั้นตอนแรกของการปรับปรุงดิน

ตรงกันข้าม การใช้อินทรียวัตถุในปัจจุบันมักจะหลีกเลี่ยงการใช้อินทรียวัตถุที่มีปริมาณ คาร์บอนสูง เนื่องจากจะทำให้เกิดการขาดไนโตรเจนหรือเป็นอุปสรรคต่อการเชริญเติบโต ถึงแม้ ว่าจะมีการปลูกพืชตระกูลหญู้หรือพืชตระกูลถั่วที่มีปริมาณในโตรเจนสูง แต่มักจะถูกไถกลบลง ไปในดินก่อนที่ตาคอกจะแตกออกมา ซึ่งเป็นขณะที่มีปริมาณคาร์บอนต่ำ

แม้ว่าพืชที่สามารถสลายตัวได้ง่ายเหล่านี้จะมีประสิทถิภาพในการเป็นมุ๋ยให้แก่ดิน แต่มัน ก็ไม่ได้เพิ่มปริมาณของของฮิวมัสในดิน คังนั้นสิ่งที่ต้องการก็คือพืชที่มีปริมาณคาร์บอนสูงและ สลายตัวช้า ซึ่งะนำมาใช้เป็นพืชทำปุ๋ยพืชสดในปริมาณครึ่งหนึ่งของปุ๋ยพืชสดทั้งหมคและจะต้อง ใช้เกลบ ขี้เลื่อย หรือเปลือกไม้ด้วยถ้าสามารถหาได้ง่าย

มีพืชที่จะนำมาทำเป็นปุ๋ยพืชสดหลายชนิด ซึ่งสามารถควบคุมคุณภาพและปริมาณของ อินทรียัวัตถุได้ไดยการปลูกผสมกัน หรือปลูกเป็นแถวเดียว หรือโดยการเปลี่ยนแปลงเวลาของ การไถปุ๋ยพืชสดนั้นลงไปในดิน นอกจจากนั้นปุ๋ยพืชสดขังได้ถูกนำมาใช้เพื่อวัตถุประสงค์หลาย อย่าง เช่น โช้ป้องกันความผิดปกติอันเนื่องมาจากการปลูกพืชติตต่อกัน หรือใช้ยับยั้งโรคและ แมลง และป้องกันความเค็มของคินอย่างได้ผล

เมื่อนำความจริงเหล่านี้มาพิจารณา การใช้ประโยชน์จากกุ๋ยยพืชสคไม่ควรจะทำเพียงเพื่อนำ อินทรียวัตถุกลับลงไปในคินเท่านั้น แต่อังต้องให้มีการพิจารณาอย่างจริงจังในด้านการสร้างระบบ การเพาะปลูกสังครราะห์ โดยการใช้ประโยชน์จากวิธีการเพาะปลูกหลายๆวิธี ซึ่งจะเป็นหัวข้อ สำคัญของการวิจัยในอนาคต

2.5 ปริมาณของปุ๋ยพืชสด

แม้ว่าผลผลิศและคุณภาพของพืชจะสามารถปรับปรุงได้ง่ายโดยเพิ่มปริมาณปุ๋ยพืชสคลง ไปในดิน ถ้ารักษาจุสินทรีย์ดินให้อยู่ในระดับที่เหมาะสม แต่ก็ปรากฎว่ามีลักษณะผิดปกติบางชนิด เกิคขึ้นเมื่อใส่ปุ๋ยพืชสคเกิน 3 ตัน ต่อ 10 ares ดังที่พบในการปลูก milk vetches

อาการผิดปกติที่เกิดขึ้นนี้ขึ้นอยูกับสภาพของน้ำในดินและความอุดมสมบูรณ์ของคิน ใน คินที่ชื้นและอุดมสมบูรณ์ ความผิดปกติอันเกิดจากโรคหรือความผิดปกติอื่น (เนื่องจากก๊าซและ ความร้อน) ของรากในช่วงแรกๆของการปลูกพืชมักจะเกิคขึ้น

ในทางตรงกันข้าม ถ้าคินค่อนข้างแห้งแล้งและไม่อุดมสมบูรณ์จะได้ผลดี อย่างไรก็ตาม ถ้าไถกลบพืชที่จะทำเป็นปุ๋ยพืชสดที่มีปริมาณคาร์บอนสูงลงไปในดิน ก็จะยิ่งเร่งให้เกิดอาการขวด ไนโตรเจนเร็วขึ้นการจัดการความอุดมสมบูรณ์ของคินเป็นการปฏิบัติต่อดินเพื่อรักษาและควบคุม ความเป็นประโยชน์ ของธาตุอาหารพืชในดินให้อยู่ในระดับที่เหมาะสมกับพืชซึ่งอาจทำได้โดย การปรับปรุงสภาพทางเคมีของดิน การเพิ่มธาตุอาหารให้กับดิน รวมทั้งการป้องกันการชะล้างและ พังทลายของดิน

2.6 การปรับปรุงสภาพทางเคมีของดิน

สภาพทางเคมีของคินที่มีความสำคัญต่อความเป็นประโยชน์ของธาตุอาหารพืชและการ เจริญเติบโตของพืช ได้แก่ ความเป็นกรด-ค่าง ความเค็ม และความสามารถในการดูดซับประจุ บวกของดิน การปรับปรุงดินสมบัติทางเคมีดังกล่าวทำได้ดังนี้

2.6.1 การปรับปรุงดินกรด

ในดินที่เป็นกรดจัดจะทำให้ความเป็นประโยชน์ของธาตุอาหารพืชโดยส่วนใหญ่ลคลง ยกวว้นจุลธาตุประจุบวก คือ $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}$ และ Cu นอกจากนั้นยังมีอะลูมินัมละลายออกมามาก ซึ่ง จะลดความเป็นประโยชน์ของฟอสฟอรัส และมีผลต่อการเจริญเติบโตของราก ทำให้พืชดูดธาตุ อาหารได้น้อยลง ปัญหาเช่นนี้ แก้ไขได้โดยการใช้ปูนซึ่งอาจจะอยู่ในรูปของคาร์บอเนตออกไซด์ หรือไฮดรอกไซด์ของแคลเซียม หรือแมกนีเซียม ปูนที่อยู่ในรูปคาร์บอเนตได้จากการนำหินปูน (limestone) หรือเปลือกหอยมาบคให้ละเอียด ในปูนบางชนิดที่มีแร่โดโลไมต์ $\left[\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}\right]$ เป็นองค์ประกอบก็จะเรียกว่าปูนโดโลไมต์ และถ้าเป็นปูนที่ได้จากการสลายตัวของหินปูนแล้ว เกาะตัวกันใหม่กับแร่คินเหนียวจะเรียกว่าปู่นมาร์ล เมื่อนำปูนที่อยู่ในรูปคาร์บอเนตมาเผาก็จะได้ ปูนในรูปของออกไซด์และเมื่อคูดความชื้นเข้าไปก็จะได้เป็นรูปไฮดรอกไซด์ เช่น $\mathrm{Ca}(\mathrm{OH})_{2}$ หรือ ปูนขาวซึ่งนิยมใช้กันอย่างแพร่หลาย หลังจากที่ใส่ปูนลงไปในดินจะทำปฎิกิริยากับน้ำและก๊าซ

คาร์บอนไดออกไซด์ได้เป็นสารประกอบไฮโครเจนคาร์บอเนต และแตกตัวได้ไฮโดรเจน คาร์บอเนต (ไบคาร์บอเนต) ซึ่งจะไปทำบฏิกิริยากับไฮโดรเจนไออนที่อยู่ในคิน เกิดเป็นกรดคาร์ บอนิกซึ่งสลายตัวให้น้ำและก๊าซุาร์บอนไดออกไซด์ ส่วนแคลเซียมไอออนก็จะไปไล่ที่ไฮโดรเจน ที่ถูกคูดซับอยู่ที่ผิวของคอลลอยค์คินให้ออกมาทำปฏิกิกิยากับไฮโดรเจนคาร์บอเนต นอกจากนั้น ปูนดังกล่าวอาจจะทำปฏิกิริยาโดยตรงกับไรโดรเจนหรืออะดูมินัมที่ถูกดูดซับอยู่ที่ผิวของคอล ลอยด์คิน ปริมาณปูนที่ใช้เพื่อลคความเป็นกรดของดินขึ้นอยู่กับระดับความเป็นกรดและความ สามารถในการต้านทานการเปลี่ยนแปลงปฏิกิริยาของดินซึ่งทราบได้จจกการวิเคราะห์ความ ต้องการปูนของดิน ถ้าดินมี pH ต่ำย่อมต้องการปูนสูง และโดยทั่วไปดินเหนียวและดินที่มีอินทรีย วัตถุสูง มักต้องการปูนสูงวว่าดินเนื้อหยาบ หรือมีอินทรียวัตถุต่ำทั้งที่ดินมี pH เท่ากัน ในการใส่ ปูนหากเป็นแปลงงที่ย์งไม่ได้ปลูกพืช ก็ควรหว่านให้ทั่วทั้งแปลง แล้วพรวนดินกลบ หากทำได้ก์ ควรจะรคน้ำและปล่อยทิ้งไว้ประมาณ 1 เดือน จึงจะปลูกพืช แต่ถ้าเป็นแปลงที่ปลูกพืชแล้วควร จะมีการแบ่งใส่ เพราะหากใส่ทั้งหมดอาจทำให้ปฏิกิริยาดินในระยะแรกสูงเกินไปจนมีผลต่อความ เป็นประโยชน์ของจุลธาตุ ประจุบวกได้ สิ่งสำคัญที่ต้องระวังคือ ห้ามใส่ปูนพร้อมกับปุ๋ยคคมี เพราะจะนำให้ปุ้ยแอมโมเนียระเหิดได้ง่าย และปฏิกิริยาที่จะลดความเป็นประโยชน์ของปุ๋ย ฟอสเฟต

สำหรับในดินกรดที่มีปัญหาความเป็นพิษของอะสูมินัม โดยเฉพาะในดินเขตร้อน ที่ระดับ pH ของดินไม่ต่ำมาก ส่ามารณแก้ไขใด้โดยการเติมยิบซัม $\left(\mathrm{CaSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}\right)$ แทนการใช้ปุ๋ย เพราะ การใช้ปูนสามารถลคความเป็นพิษได้เฉพาะในดินบน หากจะลคความเป็นพิษของอะลูมินัมในดิน ล่างด้วยจะต้องคลุกปูนกับคินล่าง ซึ่งไม่สะดวกในทางปฏิบัติ ส่วนยิบซัมเมื่อแตกตัวจะได้ซัลเฟต ไอออน ซึ่งถูกชะล้างลงสู่คินล่างได้ง้าย จึงสามารถจะรวมกับอะดูมินัมได้เป็นรูปที่ไม่เป็นพิษต่อ พืช ดังนั้นการใช้ยิบซัมจึงสสามารถลคความเจ็นพิษของ อะลูนินัมได้ทั้งในดินบนและดินล่าง อย่าง ไรก็ตามการใส่ขิบซัมทำให้ pH ของดินเพิ่มขึ้นเพียงเล็กน้อยเท่านั้น

2.6 .2 การปรับปรุงดินด่าง

ในดินที่มีปูน $\left(\mathrm{CaCO}_{3}\right)$ ปนอยู่มาก ซึ่งเรียกว่า คิน calcareous มีสมบัติเป็นด่างทำให้ลด ความเป็นประโยชน์ของ $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn}$ และ Cu เมื่อเติมกรดลงไปก็์สามารถจะเพิ่มความเป็น ประโยชน์ของธาตุเหล่านั้นได้ แต่เป็นการสิ้นงปลืองเพราะต้องใช้มากและไม่เหมาะสมในการ ปฏิบัติการใส่ผงกำมะถัน จะช่วยลดสภาพความเป็นด่างของดินได้ เพราะงงกำมะถันจะถูก ออกซิไดซ์ได้กรดซัสฟิวริก $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ จากนั้นกรดจึงทำปฏิกิริยากับปูนคาร์บอเนตในดินได้เป็น

ยิบซัม
$2 \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{SO}_{3}$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
นอกจากผงกำมะถันแล้วการใช้วัสตุอื่นๆ ที่มีสภาพเป็นกรด หรือให้กรด เช่น แร่ไพไรต์ $\left(\mathrm{FeS}_{2}\right)$ ก็ได้ผลเช่นเดียวกัน เพราะเมื่อถูกออกซิไดซ์ก็จะได้กรดซัลฟิวริก ในประเทศอินเดียได้ใช้ ไพไรต์อัตรา 320 กิโลกรัมต่อไร่ พบว่าสามารถจะเพิ่มความเป็นประโขชน์ของเหล็กและธาตุืื่นๆ ได้ทำให้อ้อยที่ปลูกในดินค่างเจริญเติบโตดีขึ้น ปริมาณคลอโรฟิลในใบและน้ำตาลซูโครสเพิ่มขึ้น (Nail,1988)

2.6.3 การปรับปรุงดินโซดิก

ในดินที่มีปริมาณโซเดียมอยู่สูงมีผลต่อการดูดน้ำและธาตุอาหารพืชและธังทำให้ดินมี ลักษณะแน่นทึบ ซึ่งสามารถจะแก้ไขโคยใส่ยิบซัมหรือกรคซัลฟิวริก หรือวัสดุที่ให้กรดดังกล่าว (Abrol และ คณะ , 1988) แต่โดยทั่วไปจะใช้ยิบซัมเพราะหาซื้อได้ง่ายและไม่ต้องกลัวปัญหา ความเป็นกรดที่จะเกิดภายหลัง เมื่อใส่ยิบซัมจะเกิดปฎิกิริยากับโซเดียมคาร์บอเนต $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ ในดินและโซเดียมที่ถูกดูคซับอยู่ ได้เป็นโซเดียมซัลเฟตซึ่งละลายน้ำได้คีและจะถูกชะล้างไปได้ ง่าย $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ ปริมาณยิบซัมที่ใช้ชื่พื่อปรับปรุรุดินโซคิก จะคำนวนจากค่าเปอร์เซนต์โซเดียมที่แลก เปลี่ยนได้(exchangeable sodium percentage; ESP) และความจุในการแลกเปลี่ยนประจุบวกของ ดิน(cation exchangeable capacity ; CEC) โดยที่คินโซดิกจะมีค่า สูงกว่า 15 และในการปรับ ปรุงดินโดยทั่วไป จะลดให้เหลือประมาณ 10 ซึ่งสามารถจะคำนวนความต้องการของยิบซัมดัง สูตร (วิโรจน์) ความต้องการยิบซัม ($\mathrm{me} /$ คิน 100 กรัม $)=(\mathrm{ESP}$ เดิม -ESP ที่ต้องการ $) \mathrm{CEC}$ / 100

2.7 ปริมาณผลผลิตของปุ๋ยพืชสด

การใช้ปุ๋ยพืชสด นันทกร(2534) กล่าวว่าการใช้พืชตระกูลถั่วหรือไม่ใช้พืชถั่วสามารถตรึง ไนโตรเจนในอากาศ ได้แตกต่างกันไป่ตามชนิดของพืช การปลูกถั่วเพื่อเป็นปุ๋ยพืชสด นอกจากจะ เป็นวิถีทางหนึ่งที่จะเพิ่มือนทรียัวัตถุให้แก่ดินแล้วยังเป็นการเพิ่มธาตุอาหารให้แก่ดินได้ Janzen (1991) กล่าวว่าอินทรียวัตถุในดินเป็นปัจััยสำคัญที่จะก่อให้เกิคระบบยั่งยืน เพราะอินทรียวัตถุใน ดินเป็นปัจจัยสำคัญจะก่อให้เกิดระบบัั่งยืน เพราะอินทรีย์วัตถุไม่เพียงจะเป็นแหล่งพลังให้ธาตุ อาหารแก่ดิน แ่่ขังเป็นสารเชื่อม่่อให้เกิคการจับตัวของคินดีขึ้น ซึ่งจะมีผลโดยตรงต่อการลดการ ชะล้างพัดพาและรักษาระดับความชื้นของดินได้ โดยจะมีผลโดยตรงต่อผลผลิตพืช

จากปัญหาการใชุ้๋่ยอินทรีย์ กทม. หรือมุียหมัก กองปฐูพวิทยา กรมวิชาการเกษตร จึงใด้ ศึกษาการนำพืชตระกูลลั่วเพื่อเป็นปุ้ชพืชสค โดยการปลูกแซม ปลูกก่อนพืชหลัก และปลูกเป็นแนว ป้องกันการชะล้าง แล้วตัดยอคคลุบคินหรือสับกลบลงคินโดยกอบเกียรติและคณะ(2534) ได้นำถั่ว พุ่ม ถั่วมะแฮะ ปอเทือง มาศึกษาเปรียบเทียบเพื่อใช้เป็นปุ๋ยพืชสด ในดินชุดยโสธร จังหวัดขอนแก่น พบว่า ถั่วพุ่มเป็นพืชตระกูลถั่วที่ไต้ซากพืชสดดีที่สุด โดยเฉลี่ยจาก 5 ปีได้ไไร่ละ 2.9 ตัน ขณะที่ถั่ว มะแยะให้ผลผลิตเฉลี่ย 0.8 ตัน/ไร่ และปอเทืองให้ผลผลิตเฉลี่ย 5 ปี เท่ากับ 1.6 ตัน/ ไร่ ซึ่งมีผล โดยตรงต่อกระบวนการผลิตมันสำปะหลัง โดยแปลงที่ไม่มีการปลูกพืชตระกูลถั่วให้ผลผลิตเฉลี่ย 1.875 ตัน/ ไร่แต่เมื่อปลูกถั่วพุ่ม ปอเทือง และถั่วมะแฮะปรับปรุงดิน จะยกระดับการผลิตมันได้ โดยผลผลติเฉลี่ย 5 ปีเพิ่มขึ้น เป็น2.49 ตันต่อไร่, 2.133 ตันต่อไร่ และ 1.918 ตันต่อไร่ ตามลำดับ สอดคล้องกับ Brodie (1908) รายงานว่าการปลูกลั่วพุ่มจะช่วยปรับปรุงคินและเพิ่มผลผลิตฝ้ายได้

การไถกลบพืชตระกูลถั่วที่ใช้เป็นปุี่ยพืชสด นอกจากคินจะได้รับธาตุไนโตรเจนโดยตรง จากการตรึงของเชื้อไรโซเบียมที่อยู่ในปมรากแล้ว เมื่อเศษซากพืชถูกย่อยสลาขยังส่งผลดีต่อการ ปรับปรุงดินในแง่คุณสมับิทิทางกายภาพและทางเคมีของดินให้ดีขึ้น (Patnik และ Rao., 1977;Ladhauเละคณะ) ซึ่ง MacRae และ Mehuys (1985) ได้สรุปรายงานการศึกษาถึงผลกระทบ ของปุ๋ยพืชสคต่อุุมสมบัติทางกายภาพ ของดินทั้งในระยะสั้นและระยะยาว พบว่าโดยสรุปปุ๋ยพืช สดส่งผลทำให้ค่าหนาแน่นรวม (Bulk density) ของคินลดลง ซึ่งสอคคล้องกับงานของ Patcharapreecha ที่พบว่าการใส่งุ่ยพืชสคจากโสนอัฟริกันในดินนาชุดร้อยเอ็ค (Aeric Paleaqults) ในอัตรา 1.25 และ 2.50 ตันต่อไร่ จะลดความหนาแน่นรวมของคินจาก 1.55 กรัม/ลูกบาศก์ เซนติเมตร ในแปลงควบคุมเป็น 1.23 และ 1.09 กรัม/ลูกบาศก์เซนติเมตา ตามลำคับ นอกจากนี้

กอบเกียรติและคณะ (2533) ได้ทำการศึกษาผลระยะยาวของการใช้ทุยยพืชสคจากถั่วพุ่ม ถั่วมะแฮะ และปอเทือง ต่อผลผลิตของมันสำปะหลังในคินไร่ชุคยโสสร (Oxic Paleustults) ติคต่อกัน 3 ปี พบว่าทำให้ความหนาแน่นรวมของดินลคลงจาก 1.53 กรัม/ลูกบาศก์เซนติเมตร ในแปลงควบคุม เป็น $1.49,1.50$ และ 1.49 กรัม/ลูกบาศก์เซนติเมตร ตามลำดับ ซึ่งมีผลทำให้อัตราการซาบซึ่งน้ำ ของคิน(water permeability) สูงขึ้นจาก 1.26 ในแปลงควบคุมเป็น $1.76,1.52$ และ 1.55 ลูกบาศก์ เซนติเมตร/ วินาที ตามลำดับ ไพบูลย์(2539)รายงานว่าการใช้ปุ้ยพืชสดจากถั่วมะแฮะเพื่อบำรุงคิน ในไร่อยอยในดินชัดสตึก (Oxic Paleustults) มีผลทำให้ความหนาแน่นรวมของดินในชั้นไถพรวน ($0-25$ ซม.) ลคลง เมื่อไถกลบถั่วมะแซะเป็นเวลา 7 เคือน และ 12 เดือน ปรัชญาและคณะ (2533) พบว่า นอกจากปู๋ยพืชสดจะช่วยปรับปรุงคุณสมบัติทางกายภาพของดินแล้ว ยังช่วยเพิ่มคามอุดม สมบูรณ์ของดินทั้งทางตรงโดยให้ธาตุไนโตรเจนแก่ดินหรือโคยทางอ้อมเมื่อเศษซากของปี่ยพืชสค ถูกย่อยสลาย ช่วยเพิ่มอินทรียวัตถุ (organic matter) แก่ดิน

ก่อกีียรติและคณะ (2533)พบว่า การใช้ปุยษืืชสคจากถั่วพุ่ม ถั่วมะแฮะ และปอเทือง ในดิน ชุดยโสธร เป็นเวลา 3 ปี จะเพิ่มอินทรียวัตถุแก่กิน จาก 0.56% ในแปลงควบคุมเป็น $0.63,0.58$ และ 0.58% ตามลำดับปรัญญาและคณะ (2533) พบว่ามีปียพืชสดหลชชชิดที่สามารณเพิ่มอินทรียวัตถุ แก่คิน ช่วยพยุุระดับความเป็นกรดเป็นด่าง (pH) หรือทำให้ค่าความเป็นค่าง (pH) ของดินสูงขึ้น นอกจากนี้ยี้งมีผลทำให้เพิ่มความเป็นกรดหรือค่างของดิน (pH) ความสามารถในการแลกเปลี่ยน ประจุบวก (Cation Exchamge Capacity, CEC) เพิ่มสูงข้้น, และเพิ่มความเป็นประโยชน์ของธาตุ อาหารพืช

Ragland และ Boonpuckdee (1988) พบว่าการใช้ปุยยพืชสดจากโสนอัฟริกัน (Sesbania rostrata) ในดินนา ชุดเรณู (:linthic Paleaqults) ร่วมกับทุ๋ยเคมีจะช่วยให้ดินมี Buffer capacity สูง กว่าในกรณีใช้ทุ๋ยแเคมีเพียงอย่างเดียวและมีผลทำให้ pH ของคินลคลงเพียงเล็กน้อย จาก 6.50 เป็น 6.00 ในขณะที่การใชุ้๋๋ยเคมีเพียงอย่างเคียว pH ของดินลคลงจาก 6.20 เป็น $3.90-4.00$

นิชัชและรัศมี (2534)รายงานการศึกษาการปลูกถั่วเงียวก่อนปลูกข้าวติดต่อกัน 6 ปี (2528 -2533)ในเขตจังหวัดพะเยา นอกจากจะช่วยเพิ่มผลผลิตข้าวยังส่งผลให้ปริมาณอินทรีย์วัตถุ และ pH ของดินเพิ่มสูงขื้นและในการที่ pH ของคินเพิ่มขึ้นจะช่วยเพิ่มความเป็นประโยชน์ของธาตุ อาหารในดินบางตัวทำให้มีการสลายตัวและปลดปล่อยออกมาเป็นประโยชน์มากขึ้น นอกจากนี้มื่อ ปริมาณอินทรียวัตถุในดินเพิ่มขึ้น จะมีผลทำให้ค่า CEC ของดินสูงขึ้นตามหลักทั่วไปที่ว่าทุก ๆ 1 $\%$ ของอินทรียวัตถุที่เพิ่มขึ้น จะทำให้ค่า CEC ของคินเพิ่มขึ้นประมาณ meq ต่อคิน 100 กรัม (คณะ

อาจารย์ภาควิชาปฐพีวิทยา, 2526) ส่วนในดินที่มีปริมาณแร่คินเหนียวต่ำที่ส่วนใหญ่ประกอบด้วย แร่ Kaolinite เหล็กและอลูมินัมออกไซด์ อินทรียวัตถุจะทำหน้าที่แทนแร่ดินเหนียวในการดูคยึด และแลกเปลี่ยนธาตุอาหารประจุบวกเพื่อเป็นประโยชน์แก่พืช(Greenland, 1986) พิทยากร (2535) รายงานว่าการปรับปรุงบำรุงดินค้วยปุ๋ยพืชสคนั้น ส่วนที่ย่อยสลายเร็วจะเป็นแหล่งธาตุไนโตรเจน แก่พืชที่ปลูกตาม ส่วนที่ย่อยสลายยากจะเป็นส่วนที่เพิ่มอินทรียัวัตถุแก่ดิน ซึ่งมีผลทำให้ CEC ของ ดินเพิ่มขึ้น จาการศึกษาของ Patharapreecha และคณะ(1993)พบว่า การใช้ปุ๋ยพืชสคจากโสนอัฟริ กันในอัตรา 2.5 ตันต่อไร่ ในดินนาชุดร้อยเอ็คมีผลทำให้ปริมาณธาตุฟอสฟอรัส ไนโตรเจน และ โพแทสเซียม สูงกว่าแปลงควบคุมโดยฟอสฟอรัสที่เป็นป่ระโยชน์เพิ่มจาก 8.70 เป็น 11.78 ppm ไนโตรเจนทั้งหมดที่เพิ่มจาก 0.039 เป็น 0.054% และโพแทสเซียมเพิ่มจาก 29.80 เป็น 40.70 ppm

2.8 ปสูกพืชหมุนเวียนร่วมกับพืหที่จะทำเป็นปุ๋ยพืชสด

เป้าหมายสุคท้ายของการจัดการดินหมักสังเคราะห์ก็คือสามารถควบคุมโรคและแมลง และได้รับผลผลิศและคุณภาพของพืชสูง โดยการนำเาพลังงานอินทรีย์กลับมาใช้อย่างมี ประสิทธิภาพ และในขณะเดียวกันก็ได้สร้างเกษตรกรที่มีมลภาวะต่ำ จากจุดนี้จำเป็นจะต้องสร้าง พืชหมุนเวียนในรูปไบบที่ว่าการปปปูกพืชที่จะทำเป็นปุ๋่ยพืชสดนั้น จะต้องทำในช่วงหลังของการ เพาะปลูกและเมื่อเก็บเกี่ยวพืชหลักแล้วให้ปลูกพืชที่จะเป็นปุ๋ยพืชสคแทนที่ทันที

ในการเพิ่มผลผลิตของพืชที่จะทำเป็นปุยยพืชสค จำเป็นจะต้องใส่จุลินทรีย์หมักและ สังเคราะห์ลงไปในไร่นาด้วย และใส่ปุ๋ยเคมี (น้อยกว่า $1 / 3$ ของปริมาณที่ใช้ในปัจุุบัน) แล้วทำ การให้น้ำ โดยมาตรการนี้จะได้มุ๋พพืชสด $2-3$ ตันภายใน $30-40$ วัน จากนั้นผลที่ได้จะขึ้นอยู่กับ วิธีการเพาะปลูกที่ใช้เท่านั้น

เมื่อพิจารณาถึงการรักษาดินและการคงอยู่ของจุลินทรียีคินแล้ว การปล่อยให้ไร่และนาว่าง เปล่านั้นเป็นสิ่งไม่ดี ชิ่งไป่กว่านั้นเราสามารถปลี่ยนแปลงสิ่งปฏิกูลได้โดลจุลินทรีย์หมักและ สังเคราะห์ แล้วใส่ให้แก่พืชโดยตรง ซึ่งจะมีประสิทธิภาพยิ่งขึ้น ดังนั้น เมื่อพิจารณาจากหลักการ ทั่วๆไป ควรใช้สิ่งปดิกูลคังกล่าวเพื่อพพิ่มผลผลิตของปุ๋ยพืชสค

การใช้ประโยชน์จากีุ๋ยืืชสดในปัจจุบัน ส่วนใหญู่เ็นเพียงการนำอินทรียวัตถุกลับลง ไป่ในดินหรือเพื่อป้องกันความผิดปกติของพืชสวนเนื่องจากการปลูกติดต่อกันและป้องกันการรบ กวนจากโรคและแมลง คังนั้นพืหที่จะทำเป็นปุ๋้พืชสคก็จะถูกคัคเลือกตามวัตถุประสงค์นี้ ซึ่งเป็น

การขวางกั้นการใช้ประโยชน์ของปุ๋ยพืชสดในฐานะที่เป็นเทคโนโลยีในการเพาะปลูกอย่างกว้าง ขวาง

ตามคำอธิบายข้างต้น ปุ๋ยพืชสดมีข้อดีและข้อเสียหลายอย่าง การที่ปุ๋ยพืชสดถูกลคคุณค่า ลงไปเนื่องจากมีสิ่งที่ดีและสิ่งที่ไม่ดีเท่าๆกัน ในปัจจุบันการใช้ประโยชน์ของจุลินทรีย์หมักและ สังเคราะห์จะลดข้อไม่คีของปุ๋ยพืชสคลงได้ และจะนำไปสู่การแก้ปัญหาที่มีอยู่ในการเกษตร อินทรีย์

2.9 ข้อเสียของปุ๋ยพืชสด

ข้อเสียของการใส่ปุ๋ยพืชสดก็คืออาจจะเกิคผลในทางตรงกันข้ามขึ้น ซึ่งจะขึ้นอยู่กับสภาพของ ไร่นา ปริมาณของปุ๋ยพืชสดที่เหมาะสม รวมทั้งจังหวะเวลาในการไถกลบพืชที่จะทำปุ๋ยพืชสคการ ปลูกพืชจะถูกควบคุมโดยคุณภาพของดิน ปริมาณน้ำที่มีอยู่ในดินและอุณหภูมิดังนั้นการใช้ปุ๋ยพืช สดจึงอาจจะมีค่าเท่ากับการใส่ปุ๋ยหมักที่ยังหมักไม่เพียงพอและเวลาในการปลูกพืชที่ไม่เหมาะสม จะนำไปสู่การทำลายพืชในช่วงเริ่มการเพาะปลูก

หนทางเดียวที่จะลดข้อเสียดังกล่าวนี้ลงและปรับปรุงประสิทธิภาพของปุ๋ยพืชสค คือการ รักษาจุลินทรีย์หมักและสังเคราะห์ไว้ในดิน แม้ว่าฟังดูจะเป็นการอวคอ้างมากเกินไปแต่ก็เป็นความ จริง ทั้งนี้เพราะการใส่ปุ๋ยพืชสดลงไป่ในดินเน่าเปื่อยจะก่อให้เกิดอาการโรคในดินขึ้นอย่างมากมาย อันเนื่องมาจากการแพร่ขยายของจุลินทรีย์เน่าเปื่อย การใช้ประโยชน์ปุ๋ยพืชสดร่วมกับการใส่จุลินท รีย์อย่างมีประสิทธิภาพ

จากแนวคิดข้างต้นจึงไม่เป็นการพูคเกินเลยไปว่า การใช้ประโยชน์จากปุ๋ยพืชสดสามารถ เป็นแนวความคิดที่มีประสิทธิภาพเฉพาะกับดินหมักสังเคราะห์เท่านั้นตามที่ได้อธิบายมาแล้ว ปัญหาอันยิ่งใหญู่ของการใช้ปุ๋ยพืชสดคือระยะเวลาที่ปุ๋ยพืชสดจะแสคงผลและเวลาในการปลูกหรือ หว่านเมล็ดพืช

ปกติการเลือกเวลาที่เหมาะสมโดยพิจารณาจากกลิ่นของดินนั้นเป็นวิธีที่ปลอคภัย กล่าวคือ ไม่ควรจะปลูกพืชในขณะที่มีกลิ่นเหม็นหรือมีก๊าซเกิดขึ้น ด้วยเหตุนี้การใส่ปุ๋ขพืชสคมักจะล้มเหลว เพราะไม่สามารถกำหนดเวลาใช้ที่เหมาะสมได้

การใส่ จุลินทรีย์หมักและสังเคราะห์ซึ่งจะเป็นตัวขับกรดแลตติคหรือเอนไซม์และสาร อินทรีย์ที่สามารถละลายได้ออกมาเพื่อยับยั้งการเกิดก๊าซและความร้อน ดังนั้นถ้าใส่จุลินทรีย์ลงไป

ในคินอย่างเต็มที่ภาดหลังไถกลบพืชที่อะทำไุ๋ยพืชสคลงไปไล้วเพียง $5-6$ วัน ก็จะสามารถปลูกพืช ได้เร็วกว่าจำนวนวันที่กำหนดไว้ก่อนการปลูกพืช หรือ 10-14 วัน ในกรณีไถกลบเศษพืชที่มี ปริมาณคาร์บอนสูง เช่น ฟงงข้าวลงไปในดิน และ $10-25$ วันสำหรับเศษวัสคุพวกกข้้เลื่อยหรือ แกลบ

ถ้าจะพิจรรณาในด้านการกำจัดวัชพืชควบคุ่กันไปด้วยแล้ว ให้ใช้พืชที่จะทำเป็นปุ๋ยชืชสค ปริมาณ $3-4$ ตัน (น.น. หญ้าสดต่อ 10 ares.) และพืชที่มีปริมาณคาร์บอนต่ำ (milk verches หรือ พืชตระกูลหญ้าที่สามารถเก็บเกี่ยวได้เร็ว) ร่วมกับเศษเหลือของพืชที่เก็บเกี่ยวไปแล้วไถกลบลงไป ในดิน แล้วใส่จุลินทรีย์หมักลงไปในดิน โคยให้คินมีความชี้นเพียงเล็กน้อย จากนั้น $4-5$ วันเมล็ด วัชพืชจะงอกออกมาพร้อมๆกันหรืออาจจะเหี่ยวเฉาลงจากการหมักของกรดแก่ ส่วนวัชพืชล้มลุกก็ จะเหี่ยวเฉาอันเนื่องมาจากการหมักที่เกิจจากบาดแผลของมันเอง วิธีนี้กำลังได้รับความสนใจว่า อาจจะเป็นวิธีที่ดีในการใช้ประโยชน์จากปุ๋ยพืชสดในการปราบวัชพืช ได้อธิบาขมาในบทก่อนแล้ว ว่า ถ้าเมล็ควัชพืชงยกขึ้นมาพร้อมๆกัน ให้ไถดินแต่เพียงเล็กน้อยแล้วหว่านเมล์คพืชหรือปลูกพืช สงไปในไร่นา วิธีนี้เป็นการเพียงพอสำหรับพืชที่มีจำนวนของไฮโดรคาร์บอนไม่แน่นอน เช่น ผัก กินใบและพืชอาหารสัตว์ แต่สำหรับพืชหัวและผลไม้ คุณภาพของมันจะลคลง

ขบวนการหมักที่ไม่เพียงพอนี้ สามารถจะแก้ไขได้ไดยการเพิ่มจุินิทรียีสังเคราะห์งงไป ซึ่งส่วนใหญ่ได้แก่ แบคทีเรียสังเคราะห์แสง ถึงแม่ว่าจะได้แบ่งการอธิบายถึงการใช้ประโยชน์ของ จุลินทรีธ์สำหรับปุ๋ยพืชสดเป็นชนิดหมักและสังเคราะห์แล้วก็คาม อันที่จริงแล้วมีจุดประสงค์ที่จะ ใช้ดุลินทร์ยีทั้งสองชนิดไปพร้อมๆกันด้วย ถิ่งไปกว่านั้นในกรณีของไร่นาที่มีอาการผิดปกติเนื่อง จากการปลูกพืชติดต่อกันหรือการรบกวนของโรคแมลงที่มักจะเกิดขึ้นนั้น ควรใช้จุลินทรีย้ต้าน ทานโรคด้วย จะทำให้มีประสิทธิภาพมากขึ้น

3. ระเบียบวิธีวิจัย

3.1 การวางแผนการทดลอง

การทดลองครั้งนี้จัดไว้ตำรับการทดลองแบบ RCBD จำนวน 6 กรรมวิธี 4 ซ้ำ
ประกอบด้วยปุ๋ขพืชสดดังนี้

1. Control
2. ไมยราพไร้หนาม (Mimosa inermis)
3. โสนอัฟริกัน (Sesbania rostrata)
4. ปอเทือง (Crotalaria juncea)
5. . ถั่วพุ่ม (Vigna spp)
6. ถั่วพร้า (Canavalia ensiformis)

โดยใช้ข้าวโพดพันธุ์สุวรรณ 3 ปลูกทคลองขนาคแปลงย่อย กว้าง X ยาว $=5 \mathrm{X} 5$ เมตร หรือ 25 ตารางเมตร รวม 24 แปลง ปุ๋ยพืชสดใส่ในอัตรา 2 ตันต่อไร่(น้ำหนัก สด) โดยการปลูกพืชปุ๋ยสคตามกรรมวิธีการทคลองได้ขนาดโตเต็มที่แล้วไถกลบเป็น เวลา 1 เคือนคึงปลูกข้าวโพดและเมื่อถอนแยกข้าวโพดเสร็จแล้วตั้งแต่อาทิตย์ที่ 3 เป็นต้นไปจึงเริ่มเก็บข้อมูลการเขริญเติบโตทุก 2 อาทิตย์ ต่อ 1 ครั้ง
3.2 กรเก็บข้อมูลคุณสมบัติของดิน เก็บตัวอย่างก่อนปลูก 1 เดือน ที่ระดับความลึก 0 $-10,10-20,20-30$ และ $30-40$ ซม. เพื่อนำมาศึกษาลักษณะทางกายภาพและ เคมี ดังนี้

- Bull density
- Total Porosity
- WC(water content)
- Hardness
- Soil texture
- pH
- CEC (cation Exchange Capacity)
- EC (Electrical conductivity)
- OM (Organic matter)
- Total N
- Aailable P
- Exchangeable K

3.3 การเก็บข้อมูลเกี่ยวกับการเจริญเติบโตและผลผลิตพืช

3.3.1 ข้อมูลการเจริญเติบโตของพืช (Vegetative growth) ศึกษาพืช

ทุก 2 อาทิตย์ ภายหลังเมล็ดงอกและถอนแยกแล้วเพื่อนำมาศึกษาลักษณะดังนี้

1. การเจริฏเติบโต (Growth Curve)

- Plant Height
- Stem size
- Leaf Length
- Leaf Number

2. ผลผลิตผลและองค์ประกอบผลผลิต

- ปริมาณผลผลิต(กิโลกรัม/ไร่)
- ปริมาณผลผลิต/ต้น (กรัม/ต้น)
- จำนวนเมล์ดฝัก
- น้ำหนัก 100 เมล็ด
- ดัชนีเก็บเกี่ยว (Harvest Index)
3.4 วิธีวิเคราะห์ทางเคมี

ความเป็นกรดเป็นด่าง (ดิน:น้ำ= $1: 1$)
อินทรียวัตถุ(\%) Walkley and Black methode
Avaible P (ppm) Bray No II methode)
Exchangeable K (ppm) (1 N.NH4Oac pH7)
Soil texture (Hydrometer methode)
3.5 การเก็บข้อมูลสภาพแวดล้อม

บันทึกข้อมูลอุณหภูมิและความชื้นสัมพัทธ์ในสภาพแปลงทดลองตลอคฤคูปลูก และเก็บ ข้อมูลปริมาณน้ำฝนในเขตจังหวัคอุบลราซธานี

3.6 การวิเคราะห์ข้อมูลสถิติ

วิเคราะห์ความแปรปรวนของข้อมูลตามแผนการทดลองแผนการทคลองแบบ RCBD และ เปรียบเทียบความแตกต่างระหว่างตำรับทดลองโดยใช้ Least Significant Difference ที่ระดับความ เชื่อมั่นทางสถิติ 95 เปอร์เซ็นต์ (Gomez and Gomez)1984
3.7 สถานที่ทำการทคลอง

ทำการทดลองในแปลงทคลองคณะเกษตรศาสตร์มหาวิทยาลัย
อุบลราชธานี ระหว่างเดือนเมษายนถึงตุลาคม 2538
การวิเคราะห์ทางเคมีใช้ห้องปฏิบัติการกลางของคณะเกษตรศาสตร์มหาวิทยาลัย อุบลราชธานีและห้องปฏิบัติการของ Tropical crop science laboratory,Tokyo University of agriculture,Tokyo

4. ผลการทดลอง

1. การวัดสภาพภูมิอากาศและฮิ่งแวดล้อมพืษ

ปริมาณน้ำฝนตลอคช่วงการทดลองเริ่มมีฝนตั้งแต่ปลายเคือนเมษายนจนถึงเดือนพฤศจิกายน 2538 ปริมาณฝนสูงสุดวัดได้ 320 มิลลิเมตร ในเดือนกรกฎาคม ส่วนปริมาณน้ำฝนสูงสุคต่อวันวัค ได้ 76 มิลลิเมตร ในเดือนกันยายนและฝ่นค่อย ๆ หมดไป่จนไม่มีฝนตกเลยในเดือนธันวาคม ความชื้นสัมพัทธ์จะเริ่มสูงตั้งแต่เดือน มิถุนายนไปจนถึงเดือนตุลาคม ซึ่งเป็นช่วงฤดูฝน(Table 1 และ Figure 1) ส่วนระดับน้ำใต้ดินโดยการขุดฝังท่อ PVC และวัคระดับน้ำใต้ดินจากผิวดินบริเวณ แปลงทดลอง พบว่าน้ำใต้ดินเฉลี่ยอยู่ที่ลึกที่สุดในเดือนเมษายน 223 เซนติเมตร และอยู่ตื้นที่สุคใน เดือนกันยายน 22 เซนติเมตร ส่วนปัจจัยอื่นๆกล่าวโดยสรุปแล้วสภาพแวดล้อมไม่ได้เป็นอุปสรรค ต่อการเจริญเติบโตของข้าวโพด

Table. 1 Climatic data of the experiment site 1995.

Month	Rain fall (mm)	Temp Max (C)	temp Min (C)	$\mathrm{RH}(\%)$	Under ground water (cm)
Jan	0	27	16	82	133
Feb	18	28	16.5	78	160
Mar	15	29	17	76	195
Apr	124	30	18	78.5	224
May	242	32	15.2	95	170
Jun	157	32.5	15.5	96	148
Jul	320	31	15	99	67
Aug	135	29	20	97.5	53
Sep	283	21	19	98	26
Oct	126	28	16	97	50
Nov	46	26	15	79	78
Dec	0	26.5	14	80	121

2. คุณสมบัติชองดิน

2.1 คุณสมบัติของดินก่อนปลูกพืช

ก่อนทำการทดลองได้เก็บตัวอย่างดินเพื่อทำการวิเคราะห์หาองค์ประกอบด้านเคมีและคุณ สมบัติพื้นฐานด้านกาขภาพของดินดังแสดงใน Table 2 และ 3 ซึ่งจะเห็นได้ว่าปฏิกิริยาดินมีฤทธิ์ เป็นกรคจัด ความเป็นกรดเป็นค่างมีค่าเฉลี่ย pH 5.7 ฟอสฟอรัสที่เป็นประโยชน์ (available phosphorous) มีน้อยไม่ถึง 1 ppm . นอกจากนั้นการที่มีอินทรีย์วัตถุต่ำไม่ถึง 1% มีผลทำให้ปริมาณ ไนโตรเจนทั้งหมดอยู่ในช่วง $0.022-0.042 \%$ การแลกเปลี่ยนประจุบวก (CEC) ของดินมีค่าต่าไป ด้วยจึงจำเป็นที่ต้องเพื่มอินทรียัวัตถุให้แก่คินในปริมาณมากก่อนการปลูกพืช ส่วนคุณสมบัติด้าน กายภาพบริเวณทดลอง พบว่าดินจัดเป็นคินร่วนปนทราย (Loamy sand) อนุภาคคินทรายเฉลี่ย บริเวณระบบรากพืช (root zone) ระหว่าง $0-40$ เซนติเมตร มีค่า 75.8% ซึ่งถือว่าเป็นดินทราขจัด และจากค่าความหนาแน่นรวมและปริมาณช่องว่างในดินแล้วแสดงให้เห็นว่าคินมีความสามารถอุ้ม น้ำต่ำ

Table 2 Soil Chemical properties before planting on May, 1995

Depth		pH	OM	Total N	Avail P
(cm)			$(\%)$	$(\%)$	cEC
$0-10$	5.8	0.8	0.042	0.36	0.045
$10-20$	5.8	0.79	0.041	0.35	0.04
$20-30$	5.6	0.77	0.041	0.351	0.04
$30-40$	5.6	0.71	0.022	0.285	0.13

$1 / 1 \mathrm{ppm}=1 \mathrm{mgkg}-1$
2_ $/ 1$ me ต่อคิน 100 กรัม $=1 \mathrm{cmolk}-1$

Table 3. Soil physical properties before planting on May, 1995.

Soil Depth	Bulk	porosity	Soit	Particle SiZe Distribution			Texture
(cm)	(g / cm)	(\%)	(kg/cm3)	Sand(\%)	Silt(\%)	Clay (\%)	
0-10	1.3	45.2	10.01	74.81	24.97	0.22	LS= Loamy Sand
10-20	1.67	43.12	4.68	75.14	24.66	0.2	LS
20-30	1.64	45.75	4.81	75.12	24.6	0.28	LS
30-40	1.63	42.25	5.44	78.04	21.81	0.15	LS

2.2 คุณสมบัติดินภายหลังการปสูกพืช

การเปลี่ยนแปลงของคุณสมบัติดินทางด้านเคมี แสดงไว้ใน Table. 4 ซึ่งจะเห็นได้ ว่าอินทรีย์วัตถุมีการเพิ่มขึ้นโดยเฉพาะระดับผิวดินและระบบรากพืช ความเป็นกรดค่างมีการปรับ สภาพดีขึ้นเล็กน้อย การแลกเปลี่ยนประถุบวกมีมากขึ้นค่อยข้างชัดเจน สมบัติด้านกายภาพอื่นเช่น ความพรุนและความหนาแน่นรวมไม่เปลี่ยนแปลงมากนัก แต่ความแข็งHardness ของชั้นดินลดลดง แทบทุกระดับจาก $0-40$ ซ.ม. ส่วนอนุภาคดินและเนื้อดินยังเป็นดินร่วนปนทราย Loamy sand เช่นเดิม (Table.5)

Table 4 Soil Chemical properties after planting on October, 1995

Depth	pH	OM	Total N	Avail P	CEC
(cm)		$(\%)$	$(\%)$	ppm. 1/	meg/100 g soil
$0-10$	5.9	1.0	0.065	0.80	0.086
$10-20$	5.8	0.9	0.060	0.44	0.063
$20-30$	5.8	0.78	0.055	0.57	0.054
$30-40$	5.6	0.75	0.046	0.42	0.0 .7

$1 _/ \mathrm{ppm}=1 \mathrm{mgkg}-1$
2 . 1 me ต่อดิน 100 กรัม $=1 \mathrm{cmolk}-1$

Table 5 . Soil physical properties after planting on October, 1995.

Soil Depth	Bulk	porosity	Soil	Particle SiZe Distribution			Texture
(cm)	(g / cm)	(\%)	(kg/cm3)	Sand(\%)	Silt(\%)	Clay(\%)	
0-10	1.2	51.0	8.60	74.0	24.0	2.0	LS = Loamy Sand
10-20	1.54	43.90	3.20	74.8	24.2	1.0	LS
20-30	1.50	45.80	2.95	75.6	23.4	1.0	LS
30-40	1.58	41.25	2.80	76.0	23.2	0.8	LS

3.2 จำนวนใบข้าวโพด(Number of corn leaves)

แปลงถั่วพุ่มให้การพัฒนาสูงสุดตามด้วยโสนอัฟริกันและปอเทืองตามลำดับ ส่วน ปุ๋ยพืชสดอื่น ๆ มีค่าไม่แตกต่างกับแปลงเปรียบเทียบ Table 7 และ Fig. 3

Fig. 3 Number of corn leaf

Table. 7 Effects of green manure on number of corn leaf.

Treatment	3	Week	5 Week	7 Week	9 Week	11 Week	13 Week
No Manure	4.4	6.2	7.2	Week			
Minosa	4.4	6.3	9.1	10	9.1	9	
Sesbamia	5.8	7.8	7	8.4	9.8	7.9	7.9
Crotalaria	5.8	7.7	9	10.2	10.3	9	9
Vigra spp	5.8	9.5	10	10.1	9	9	
Canavalia	4.6	6.5	9.6	9.7	10.1	9.1	9

3.3 ความยาวใบ (The length of corn leaves)

ใบข้าวโพดซึ่งเป็นส่วนสังเคราะห์แสงเพื่อสร้างอาหารไปเก็บที่เมล็คนั้น ผลการพัฒนา ความยาวใบ ปรากฎว่าถั่วพุ่มให้ค่าสูงสุดตามค้วยโสนอัฟริกันและปอเทือง ตามลำคับ (Table. 8 และ Figure 4) โดยทุกกรรมวิธีของการทดลองในอาทิตย์ที่ 13 ภายหลังการสำรวจพบว่าใบข้าวโพดจะ ขนาดยาวเต็มที่ หลังจากนั้นจะค่อย ๆ ลดลง

Table. 8 Effect of green manure on the length of corn leaf(cm)

Treatment	3 Week	5 Week	7 Week	9 Week	11 Week	13 Week	15 Week
No Manure	18	27	38	50	60	69	67
Mimosa	19	28	39	53	60	73	70
Sesbania	22	36	51	57	65	80	76
Crotalaria	20	26	38	54	62	75	71
Vigna	22	40	56	58	65	81	78
Conavalia	19	25	36	51	61	73	71

4 องค์ประกอบผลผลิด (Yield Components)

4.1น้ำหนักแห้ง (pod dry weight)

ช่วงเก็บเกี่ยวได้นำฝักข้าวโพคไปอบแห้งเพื่อหาน้ำหนักฝักแห้งพบว่าถั่วพุ่มให้น้ำหนักฝัก แห้งสูงสคุ 39 กรัม ตามด้วยโสนอัฟริกัน 37.7 กรัมและ ปอเทือง 35.6 กรัม ส่วนปุ๋ยพืชสคอีก 2 ชนิด มีค่าไม่แตกต่างกันกับแปลงเปรียบเทียบ(Table.9)

Table. 9 Yield and Yield component

Treatment	Pod dry weight	pod length	100 seed weights	Yield/rai
	(g)	(cm)	(g)	(kg)
no manured	29.5 c	11.1 cd	27.4 cd	54.4 d
Mimosa	28.8 c	8.3 d	20.6 d	$60.8 \mathrm{~d} \cdot$
Sesbania	37.7 c	12.0 cd	28.5 cd	84.5 c
Crotalaria	35.6 c	11.0 cd	28.4 cd	75.2 c
Vigna	39.0 c	12.0 cd	30.8 bcd	134.4 cd
Canavalia	29.0 c	11.2 cd	24.6 d	65.8 d
C.V(\%)	25.63	21.05	24.88	52.02

Sifnificant at $\mathbf{p}=0.01, \mathrm{~ns}=$ pon sifnificant
Means inclumn followed by the same letter are not significantly at $p=0.05$, determined by DMRT

4.2 ความยาวฝัก (pod length)

ความยาวฝักข้าวโพคเป็นปัจจัยหนึ่งที่ทำให้ผลผลิตแตกต่างกัน ผลการทคลองพบว่าถั่วพุ่ม ให้ฝักยาวที่สุด 12 ซม. ซึ่งความยาวฝักของปุ๋ยพืชสดทุกชนิด ไม่แตกต่างกันมาก

4.3 น้ำหนัก 100 เมล็ด (100 seed weights)

ถั่วพุ่มทำให้ข้าวโพคน้ำหนัก 100 เมล็ดสูงสุด 30.8 กรัมแตกต่างอย่างมีนัยสำคัญทางสถิติ กับแปลงปุ๋ขพืชสดชนิดอื่น ๆ ตามด้วยโสนอัฟริกันและปอเทืองตามลำดับ (Table 9) ส่วนถั่วพร้า และไมยราพย์ไร้หนามมีค่าไม่แตกต่างอย่างมีนัยสำคัญทางสถิติ กับแปลงเปรียบเทียบ

รุปที่ 3 ฝักข้าวโพคที่กำลังเจริญเต็มที่

5 ผลผลิต(Yields)

การใส่ถั่วพุ่มทำให้ผลผลิตข้าวโพคสูงสุด 134 กิโลกรัม/ไร่ แตกต่างอย่างมีนัยสำคัญทาง สถิติกับปุ๋ยพืชสดชนิดอื่น ๆ โดยแปลงถั่วพุ่มให้ผลผลิตสูงกว่าแปลงเปรียบเทียบประมาณ 1.5 เท่า ส่วนไมยราพไร้หนามและถั่วพร้าไม่มีความแตกต่างทางสถิติกับแปลงเปรียบเทียบ ถึงแม้องค์ ประกอบผลผลิตอื่นจะมีค่าสูงกว่าก็ตาม อิทธิพลของปุ๋ยพืชสคูชนิดต่าง ๆ ที่มีผลต่อการเจริญเติบโต องค์ประกอบผลผลิตและผลผลิตของข้าวโพดจาก การศึกษาครั้งนี้พบว่า โดยภาพรวมแล้วปุ๋ยพืชสด ทุกชนิดให้ผลดีต่อข้าวโพดและช่วยปรับปรุงบำรุงดินเมื่อเปรียบเทียบกับแปลงควบคุมโดยเฉพาะ ถั่วพุ่มมีอิทธิพลต่อการเพิ่มผลผลิตของข้าวโพดอย่างเด่นชัด ตามด้วยโสนอัฟริกันและปอเทืองตาม ลำดับ ดังนั้นจึงสามารถกล่าวได้ว่า การปรับปรุงพื้นที่ดินทรายจัดเพื่อการปลูกพืชนั้นควรมุ่งเน้นใช้ ปุ๋ยพืชสดใน 3 ชนิด ดังกล่าวข้างต้นและควรใช้ปุ๋ยพืชสคที่มีธาตุ ไนโตรเจนอยู่ในปริมาณสูง เพราะ ปุ๋ษพืชสดบางชนิดถึงแม้จะมีเปอร์เซ็นต์ธาตุอาหารต่อน้ำหนักแห้งสูง แต่การสะสมธาตุอาหารเหล่า นั้นจะอยู่ในลำต้น

ใบและดอกของปุ๋ยพืชสด จึงต้องอาศัยจุลินทรีย์การย่อยสลายและในการข่อยนั้นจุลินทรีย์ จำเป็นต้องใช้ในโตรเจนเพื่อเป็นแหล่งพลังงานและถ้าดินไม่มีอินทรีย์วัตถุเพียงพอ(Table 2, 3) เช่นสภาพพื้นที่ดินทรายจัด ดังนั้นไนโตรเจนจากปุ๋ยพืชสดจะถูกใช้ไปในกิจกรรมของจุลินทรีย์ มากกว่าที่จะเหลือเป็นประโยชน์ต่อพืชหลัก ดังนั้นถ้าใส่ปุ๋ยพืชสดปริมาณไม่มากพอต่อการปรับ ปรุงดินจะไม่ก่อให้เกิดประโยชน์ใด ๆ ต่อพืชหลักซึ่งทัสนีย์และคณะ (2536) ได้พบว่าผลผลิตข้าว ที่เพิ่มขึ้นจะผันแปรไปตามน้ำหนักสดของพืชปุ๋ยสดก่อนไถกลบเป็นสำคัญ

ส่วนธาตุฟอสฟอรัสและธาตุโพแทสเซียมนั้น จากข้อมูลพื้นฐานของดินและองค์ประกอบ ด้านเคมีในตารางที่ 2 ซึ่งดินมีสภาพเป็นกรคจัคเฉลี่ย pH 5.7 แสดงว่าในดินมีอสูมินั่มมากและค่า ฟอสฟอรัสที่เป็นประโยชน์(available phosphorus) มีน้อยมากไม่ถึง 1 ppm . อธิบายได้ว่าสภาพกรด จัคจะส่งเสริมการตรึงฟอสฟอรัสให้อยู่ในรูปเหล็กและอสูมินั่มฟ่อสเฟสซึ่งไม่เป็นประโยชน์ต่อพืช (ทัศนีย์และคณะ 2532) ส่วนธาตุโพแทสเซียมในดินทรายในภาคตะวันออกเฉียงเหนือมีปริมาณ น้อยอยู่แล้วเพราะถูกชะล้างได้ง่าย ดังนั้นการเจริญเติบโตของข้าวโพคจึงขึ้นอยู่กับปริมาณของธาตุ ไนโตรเจนเป็นสำคัญ เพื่อแก้ปัญหาดังกล่าวจึงควรมีการปรับ pH ดินก่อนใส่ปุ่ยทุกชนิด เป็นต้น
6. สรุป

1. ปุ๋ยพืชสดมีอิทธิพลศ่อการปรับปรุงคุณสมบัติ้านกายภาพและเคมีของคินซึ่งมีอิทธิพลต่อการ เจริญเติบโตและผลผลิตของข้าวโพค
2. ปุ๋ยพืชสดที่ควรน้ำมาใช้ในการปลูกข้าวโพดได้แก่ ถั่วพุ่ม โสนอัฟริกันและปอเทือง เป็นต้น สามารถทำให้ผลผลิตข้าวโพดเพิ่มขึ้นประมาณ 1.5 เท่า
3. การใส่ปุ๋ยพืชสดควรพิจารณาถึงปริมาณที่ใช้และเปอร์เซ็นต์ธาตุอาหารที่มีอยู่ในปุ๋ยพืชสดชนิด นั้น ๆโดยเฉพาะไนโตรเจนซึ่งจะทำให้การย่อยสลายเกิดขึ้นได้เร็วและเป็นประโยชน์ต่อพืช หลักอย่างแท้จริง

วิทูร ชินพันธ์ พินิจ เพาวน์ตระกูล ชวินเจิมสุวรรณ ไพบูลย์ โล่ชัยยะกูล และอภิรดี อิ่มเอิบ 2526 การเจริญเติบโตของพืชตระกูลถั่วบำรุงดินชนิดต่างๆในพื้นที่โครงการห้วยเสี้ยว รายงาน วิชาการประจำปี 2526 กองบริรักษ์ที่ดิน กรมพัฒนาที่ดิน กระทรวงเกษตรและสหกรณ์ หน้า 342-349
วิทูร ชินพันธ์ พินิจ คงเคชา สุภารันคาเว และวิภา ปียะวิกิจวงศ์ 2526 การบำรุงดินด้วยปุ๋ยพืชสด ปุ๋ยเคมี เพื่อปลูกข้าวโพดโดยมีถั่วเขียวเป็นพืชแซมในดินชุดกำแพงแสน รายงานวิชาการ ประจำปี 2526 กองบริรักษ์ที่คิน กรมพัตนาที่คิน กระทรวงเกษตรและสหกรณ์ หน้า $350-$ 355
กองส่งเสริมพืชพันธ์. 2529 .คำบรรยายเรื่องถั่วเหลือง กรมส่งเสริมการเกษตร บางเขน กทม. 7 หน้า
 การ สำนักงานพัฒนาที่ดิน เขต 5 ขอนแก่น.
วิทูร ชินพันธ์ 2525 การใช้ปุ๋ยพืชสด เอกสารทางวิชาการ ฝ่ายปรับปรุงบำรุงดิน กองบริรักษ์ที่ดิน กรมพัฒนาที่ดิน 19 หน้า
สมศรี อรุณินท์ ชัยนาม ดิสถาพร ยุทธชัย อนุรักษ์ดิพันธ์ และดวงใจ นานา. 2531 .ศักยกาพของการ ใช้โสนเป็นปุ๋ยพืชสดบนพื้นที่ดินเค็มของประเทศไทย.หน้า178."ความรู้เรื่องดินเค็มภาค ตะวันออกเฉียงเหนือ" โครงการพัฒนาพื้นที่ดินเค็ม กรมพัฒนาที่ดิน.
ประนอม ศรัยสวัสดิ์ 2524 การทดสอบความงอกแบบชาวบ้าน เอกสารทางวิชาการ, ฝ่ายควบคุม คุณภาพเมล็คพันธ์พืช กองขยายพันธ์พืช กรมส่งเสริมการเกษตร 2 หน้า

Dreyfus, B., Rinaudo, G. and Dommergues, Y. 1983. Use of Sesbania Rostrata as green Manure in Paddy fields.25P
กรมวิชาการเกษตร. 2543 . งานวิจัยด้านความอุดมสมบูรณ์ของดินและปุ๋ยข้าวและธัญ พืชเมืองหนาว. http://www.disc.doa.go.th/research/nutrition/nutrition-1.htm
กรมวิชาการเกษตร. 2543 . งานวิจัยด้านความอุดมสมบูรณ์ของดินและปุ้พืืชไร่.
http://www.disc.doa.go.th/research/nutrition/nutrition-2.htm
กรมวิชาการเกษตร. 2543 . งานวิจัยด้านความอุดมสมบูรณ์ของดินและปุ๋ยพืชสวนและ ไม้ยืนต้น.http://www.disc.doa.go.th/research/nutrition/nutrition-3.htm

คณาจารย์ ภาควิชาปฐพีวิทยา. 2523. ปฐพีวิทยาเบื้องต้น ภาควิชาปฐพีวิทยา มหาวิทยาลัยเกษตรศาสตร์, หน้า 673 . จันทนา ศิริไพมูลย์, วิมล ปิ่นไพซูรย์, รังสรรด์ ไชยฉอุ่ม .2543. บทบาทของการใส่ ฟ่งข้าวและปุ๋ยไนโตรเจนต่อความเป็นประโยชน์และปริมาณการตรึง ไนโตรเจนของถั่วเหลือง .กลุ่มงานวิจัยนิวเคลียร์เทคนิคการเกษตร กองเกษตร เคมี . http://www.disc.doa.go.th/research/nutrient_manage/p-nutrient-mana/nutrient-4.html
ปรัชญา ธัญญาดี. 2523 . การทำและใช้ปุ๋ยหมัก กรมพัฒนาที่ดิน, กรุงเทพศ. 16 น.
มนัส ภูปากน้ำ. 2525. งานพืชปุ๋ยสดและพืชคลุมในโครงการเร่งรัดปรับปรุงบำรุงดิน ด้วยอินทรีย์วัตถุในพื้นที่เป้าหมายพัฒนาชนบทยากจน ปี 2525-2529 เอกสารทางวิชาการ โครงการเร่งรัดปรับปรุงบำรุงดินด้วยอินทรียัวัตถุ กองบริรักษ์ที่ดินกรมพัตนาที่ดิน. สมบรูณ์ ประภาพรรณพงศ์ และคณะ 2539. การประชุมประชุมวิชาการประจำปี 2539 กอง ปฐพีวิทยา กรมวิชาการเกษตร กระทรวงเกษตรและสหกรณ์ สมศักดิ์ วังใน. 2521 . ปุยอินทรียี. มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพศ. 77น.

ภาคผนวก

วิธีการวิเคราะห์ธาตุดาหาร

(1) วิธีการเคชาะห์หาไนโตรเจน (Total-N)

การวิเคราะห์หาปริมาณไนโตรเจนในดิน เป็นการนำสารอินทรีย์มาย่อยด้วยกรดซัลฟูริก $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ เข้มข้นที่อุณหภูมิ $360-410$ องศเซสลเซียส ทำให้ไนโตรเจนในรูป Amide และ Amine มาอยู่ ในรูปเกลือแอมโมเนียม จากนั้นนำกลลือแอมโมเนียมที่ได้มาทำปฏิกิริยกกับกรดมาตรฐานที่เอือจางเพื่อ ให้ได้จำนวนมากเกินพอแล้ว นำก๊าซเอมโมเนียที่ละลยยในกรดมาวิเคราะห์โดยการ ไตเตรทกับกรดที่รู่ความเข้มข้นแน่นอน แล้วนำข้อมูลที่ได้ไปแบปลผลเพื่อหาปริมาณของธาตุไนโตรเจน ต่อไป

ดุปกรณ์และเครื่องมือ

1. Analytical balance
2. Digestion apparatus
3. Distillation apparatus
4. 100 ml . Graduated cylinder
5. 500 ml . Erlenmeyer flask
6. 500 ml . Kjeldahl flask
7. 50 ml . Buret

สารเคมีและนำยา

1. กรดซัลฟูริกเข้มข้น $\left(\operatorname{con} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}\right)$
2. Catalyst mixture : ผสม (anhydrous) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ หรือ $\mathrm{K}_{2} \mathrm{SO}_{4}, \mathrm{CuSO}_{4}$ และ Se metal ในอัตรา ส่วน $100: 10: 1$ โดขน้ำหนัก
3. Boric acid - indicator solution : ชั่ง $\mathrm{H}_{3} \mathrm{BO}_{3} 80$ กรัม เติมน้ำกลั่นประมาณ $3,800 \mathrm{ml}$. ทำให้ ร้อนจนกระทั่ง $\mathrm{H}_{3} \mathrm{BO}_{3}$ ละลายหมด ทำให้เข็นเติม mixed indicator 80 ml . (เตรียมโดย ละลาย bromocresol green 0.099 g . และ methyl red 0.066 g . ใน ethanol 100 ml . เติม 0.1 N NaOH ทีละน้อยจนกระทั้งสารละลายมีสีม่วงแดง $(\mathrm{pH}$ ประมาณ 5.0$)$ เติมน้ำกลั่นจนมี ปริมาตร 4 ลิตรเขย่าให้สารละลายเข้ากัน)
4. Sodium hydroxide $(\mathrm{NaOH}) 10 \mathrm{~N}$: ชั่ง NaOH 400 กรัม ใน flask ขนาด 1 ลิตร เติมน้ำ 400 ml . เขย่าจน NaOH ละลาย ทำให้เย็น ปิดจุกและตั้งทิ้งไว้หลาย ๆ วันเพื่อให้ $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ตก ตะกอน ถ่ายเอาแต่น้ำใส่ลงใน flask ที่มีขีดบอกปริมาตร 1 ลิตร เติมน้ำที่ไม่มี CO_{2} ลงไป ปรับปริมาตรให้ได้ 1 ลิตร เขย่าให้เข้ากัน เก็บในภาชนะที่กันไม่ให้ CO_{2} เข้าไปได้
5. Standard sulfuric (Hydrochloric) acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ หรือ HCl$) 0.05 \mathrm{~N}$
6. $\mathrm{H}_{3} \mathrm{BO}_{3} 2 \%$ ปริมาตร 50 ml : เตรียมชั่งสาร $\mathrm{H}_{3} \mathrm{BO}_{3}$ จำนวน 2 กรัม แล้วเติมน้ำกลั่นลงไป 100 ml .

วิธีการวิเคราะห์

ประกอบด้วย 3 ขั้นตอนดังนี้

1. การย่อยฮารอินทรีย์ (Digestion)

 ขั้นตอนนี้สารอินทรีย์จะถูกย่อยด้วยกรดซัลฟุริค $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ เข้มข้น ที่อุณหภูมิ $360-410$ องศา เซลเซียส ทำให้ไนโตรเจนในรูป Amide และในรูป Amine ถูกเปลี่ยนมาอยู่ในรูปเกลือแอมโมเนีย ดัง สมการ

1. นำตัวอย่างดินที่ต้องการทำการวิเคราะห์ไปตากแคดให้แห้งโดยวิธี Air dry ประมาณ 1 สัปดาห์ แล้วนำตัวอย่างคินมาร่อนผ่านตะแกรงขนาค 0.5 mm .
2. ชั่งดินตัวอย่าง 2 g . (ที่ร่อนผ่านตะแกรงขนาด 0.5 mm . แล้ว) ลงใน Kjeldahl flask ความจุ 500 ml .
3. ตวงสารผสม Catalyst 1 ซ้อน (ประมาณ 2 g.) ลงใน Kjeldahl flask
4. เติม $\mathrm{H}_{2} \mathrm{SO}_{4}$ เข้มข้น ปริมาตร 5 ml . ลงไป เขย่า Kjeldahl flask เบา ๆ เพื่อให้ดินและกรด ผสมเข้าด้วยกัน (ควรทำในตู้ Hood)
5. นำ Kjeldahl flask ไปวางบนเตาเผาเพื่อทำการย่อยสลายโดยเปิดไฟให้ความร้อนเต็มที่
6. ในขณะทำการ digest นี้ ควรหมุน Kjeidahl flask ทุก ๆ 10 นาที เพื่อช่วยให้มีการคลุกเคล้า กันดีขึ้น
7. เมื่อสืของเหลวใน Kjeldahl flask เริ่มใสเคี่ยวต่อไปอีกประมาณ 20 นาที แล้วจึงยก Kjeldahl flask ออกจากเตา
8. ปล่อย Kjeldahl flask ทิ้งไว้ให้เย็นค่อย ๆ รินน้ำลงไปใน Kjeldahl flask ประมาณ 400 ml เขย่าให้เข้ากัน แล้วรอจนของเหลวใน Kjeldahl flask เย็นเท่าอุณหภูมิห้องแล้วจึงดำเนิน การขั้นต่อไป

2. การกลั่นไล่ก๊าซแอมโมเนียยอกจากเกลือแอมโมเนียม (Distillation)

เป็นการนำเกลือแอมโมเนียมที่ได้จากสมการที่ 4.1 มาทำปฏิกิริยากับด่างเข้มข้น แล้วอุ่นให้ร้อน จะได้ก๊าซแอมโมเนียออกมาดังสมการ

ก๊าซแอมโมเนียมที่ได้อาจทำปฏิกิริยากับกรดมาตรฐานที่เจือจางจำนวนมากเกินพอ ดังสมการ

โดยมีขั้นตอนดังต่อไปนี้

1. รินน้ำยา $\mathrm{H}_{3} \mathrm{BO}_{3} 2 \%$ ปริมาตร 50 ml .ลงไปใน Erlenmeryer flask ที่มีความจุ 500 ml .
2. นำไปวางที่ใต้ก้าน condenser ของเครื่องกลั่นโดยให้ปลายก้านของเครื่อง condenser จุ่มอยู่ ไต้ผิวของน้ำยา $\mathrm{H}_{3} \mathrm{BO}_{3}$ เปิดก็อกน้ำเย็นให้ผ่าน condenser อยู่ตลอคเวลา
3. ใส่ pumice 1 ช้อนชาลงใน Erlenmeyer flask เพื่อกันการกระเด็น
4. รินน้ำยา NaOH 10 N ปริมาตร 150 ml ลงไปไน Kjeldahl flask โดยค่อย ๆ รินไปตามผนัง ด้านในของคอ Kjeldahl flask เพื่อให้น้ำยา NaOH ลงไปนอนอยู่ที่ก้น
5. ต่อ Kjeldahl flask เข้าเครื่องกลั่นทันที (ตรวจข้อต่อเครื่องกลั่นทุกแห่ง ว่าอยู่ในสภาพที่ หนาแน่น ไม่มีรอยรั่ว)
6. ผสมน้ำยาใน Kjeldahl flask ให้เข้ากันโดยการหมุน Kjeldahl flask ไปรอบ ๆ ตัวเองอย่าง ช้า ๆ (ขณะนี้ Kjeldahl flask วางอยู่ที่เครื่องกลั่นแล้ว) อย่าลืมคลุกเคล้าน้ำยาใน Kjeldah1 flask ให้เข้ากันทันทีมิฉะนั้นอาจเกิดการระเบิดขึ้นได้
7. ปรับไฟของเตาให้แรงขึ้น เพื่อต้มของผสมใน Kjeldahl flask ให้เดือด แล้วจึงค่อยปรับไฟ ให้ร้อนพอเหมาะที่จะให้ของเหลวใน Kjeldahl flask เดือดอยู่เสมอ
8. ขณะทำการกลั่นอยู่ระวังอย่าให้ไฟดับหรือไฟอ่อนลงเด็ดขาด เพราะจะทำให้เกิด Suction back pressure ส่งผลให้ $\mathrm{H}_{3} \mathrm{BO}_{3}$ ใน Erlenmeyer flask ถูกคูคกลับเข้าไปใน Kjeldahl flask ได้ และตรวจคุว่าอุณหภูมิของ distillate จะต้องน้อยกว่า $35^{\circ} \mathrm{C}$
9. ดำเนินการกลั่นไปจนกระทั้งของเหลวที่กลั่นได้ มีปริมาตรประมาณ 150 ml .
10. ก่อนที่จะหยุดการกลั่นจะต้องดึงเอา Erlenmeyer flask ออกพร้อมกับการทำการล้างปลาย ของก้าน condenser ด้วยน้ำกลั่น
11. ปิดไฟปลด Kjeldahl flask ออก เติมน้ำประปาลงไปใน Kjeldahl flask เพื่อทำให้ของเหลว ใน Kjeldahl flask เย็นและเจือจางลง แล้วจึงค่อยรินทิ้ง

3. การไตเตรทหาแอมโมเนียม (Titration)

ปริมาตรของ NH_{3} ที่ละลายในกรด ในสมการ (ค) วิเคราะห์ได้โดยการไตรเตรทกับกรดที่รู้ ความเข้มข้นที่แน่นอน ปฏิกิริยาที่เกิดขึ้นคือ

โดยมีขั้นตอนคังต่อไปนี้

1. ทำการไตเตรทของเหลวที่กลั่นได้ด้วย สารละลายมาตรฐาน HCl สีของน้ำยาจะเปลี่ยนจาก สีเขียวเป็นสีม่วงที่จุดเริ่มต้นเป็นสีม่วงนี้จะเป็น end point
2. บันทึกปริมาณของกรดไว้โดยอ่านจาก burette ให้ละเอียด 0.01 ml หมายเหตุ ควรทำ blank ไปพร้อมกับตัวอย่าง และทำ เหมือนตัวอย่าง แต่ไม่มีคินเท่านั้น

การแปลผล
$\%$ ไนโตรเจน $=\frac{(\mathrm{A}-\mathrm{B}) \mathrm{C} \times 1.4}{\mathrm{D}}$
โดยที่
$\mathrm{A}=\mathrm{ml}$. ของกรดที่ใช้กับตัวอย่าง
$B=\mathrm{ml}$. ของกรดที่ใช้กับ blank
$\mathrm{C}=$ ความเข้มข้นของกรด (normal)
$\mathrm{D}=$ น้ำหนักของดินตัวอย่าง (กรัม)

(2) วิธีการวิเคราะห์หาฟอสฟอรัส

ฟอสฟอรัสที่พืชใช้เป็นประโยชน์ ส่วนมากได้จากหินและแร่ซึ่งเป็นวัตถุต้นกำเนิดดินและได้ จากอินทร์ย์วัตถุต่าง ๆ ที่อยู่ในดิน ฟอสฟอรัสในดินส่วนมากจะอยู่ในรูปของ orthophosphate ซึ่งเป็น สารประกอบอินทรีย์ (organic soil-p) และอนินทรีย์สาร (inorganic soil-p) ซึ่งฟ่สสฟอรัสในดินที่พืชจะ สามารถนำไปใช้ต้องอยู่ในรุปของ inorganic orthophosphate และอยู่ใน soil solution เช่น พวก ฟอสเฟต $\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)$ เกรื่องมือที่ใช้ตรวจสอบ คือ Spectrophotometer

หลักการและเหตุผล

Available phosphons เป็นวิธีที่นิยมใช้หาค่า Available index ของคินมากมาย โคยกำหนด สภาพการสกัดฟอสฟอรัสออกมาจากคิน (แล้วหาปริมาณฟอสฟอรัสด้วยทางเคมี) แล้วหาสหสัมพันธ์ กับผลผลิตพืชหรือปริมาณฟอสฟอรัสที่พืชคูดจากดิน วิธีหาค่า Available phosphorus ในดินมีหลายวิธี ที่แตกต่างกันไปตามน้ำยาต่าง ๆ ที่ใช้สกัคดิน ที่นิยมกันอยู่ในปัจจุบันกีมีวิธี Bray1, Bray 2 และ Olsen

วิธีของ Bray2 โดยการใช้ $\mathrm{NH}_{4} \mathrm{~F}+\mathrm{HCl}$ สกัดสารประกอบฟอสฟอรัสที่ละลายได้ง่ายในกรด ส่วนใหญ่เป็น calcium phosphate และบางส่วนของ aluminum phosphate และ iron phosphate โดยทั่ว ๆ ไปวิธีนี้ใช้ใด้ผลคีกับดินกรค

การหาปริมาณฟอสฟอรัสในน้ำสกัด หลักการของทุกวิธีที่ใช้ คือ ใช้น้ำยา molybdate ที่เป็น กรคซึ่งมี orthophosphate ion อยู่นั้นจะเกิด phosphomolybdate complex ซึ่งเมื่อถูก reduce (ใดย reducing agent) จะได้สีน้ำเงินเกิดขึ้น ซึ่งความเข้มข้นของสี จะเป็นปฏิภาคโดยตรงกับปริมาณของ ฟอสฟอรัสที่มีอยู่ในน้ำสกัด

อุปกรณ์และเครื่องมือ

125 ml . Erlenmeyer flask
Filtering apparatus(funnel, filter paper No. 5)
10 ml . Graduated pipet
1.2 and 5 ml . Volumetric pipet

สารเดมีและนำยา

3.1) extracting solution (Bray $2: 0.1 \mathrm{~N} \mathrm{HCl}+0.03 \mathrm{~N} \mathrm{NH}_{4} \mathrm{~F}, \mathrm{pH} 1.5$)

1) $1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{~F}$: ละลาย $\mathrm{NH}_{4} \mathrm{~F}$ จำนวน 37 กรัมในน้ำกลั่นและทำให้มี ปริมาตร 1 ลิตร ($1,000 \mathrm{ml}$. เก็บใน polyethylene bottle)
2) ละลายกรด HCl เข้มข้นจำนวน 20.2 ml . ด้วยน้ำกลั่นทำปริมาตรเป็น 500 ml . เตรียมสารในข้อ 1.1 และ 1.2 เสร็จแล้วให้นำ $1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{~F}$ รวมกับ $0.5 \mathrm{~N} \mathrm{HCl} \quad 100$ ml . แล้วเติมน้ำกลั่นอีก 385 ml . จะได้สารละลาย $0.1 \mathrm{~N} \mathrm{HCI}+0.03 \mathrm{~N} \mathrm{NH}_{4} \mathrm{~F}$
3) Reagent A : ใช้ ammonium molybdate 12 กรัม ละลายในน้ำกลั่น 250 ml . และ ละลาย antimony potassium tartrate 0.2908 กรัม ในน้ำกลั่น 100 ml .จากนั้นเอา สารละลายทั้งสองใส่ลงใน $5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} 1,000 \mathrm{ml}$. ผสมให้เข้ากันและปรับปริมาตร เป็น 2 ลิตร เก็บไว้ในขวดแก้วในสภาพมืดเะละเย็น
4) Reagent B : ละลาย Ascorbic acid 1.056 กรัม ใน Reagent A 200 ml . ผสมให้เข้า กัน Reagent B ที่เตรียมแล้วต้องใช้ทันทีและเก็บไว้ได้ไม่เกิน 24 ชม.
5) Standard phosphate solution : ละลาย $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (A.R.) 0.2195 กรัม ในน้ำกลั่นจน มีปริมาตรครบ 1 ลิตร น้ำยา Standard phosphate solution จะมี phosphorus อยู่ $50 \mathrm{ppm} . \mathrm{P}$

วิธีการและขั้นตอน

1. การสกัด
1.1 ชั่งคินแห้ง 5 กรัมลงใน 125 ml . Erlenmeyer flask
1.2 เติมน้ำยาสกัด Bray2 ลงไป 50 ml . เขย่า 1 นาที
1.3 กรถงน้ำที่สกัดได้ ด้วยกระดาษกรองเบอร์ 5 ลงใน flask ที่สะอาคป็ดจุกไว้เพื่อนำไป วิเคราะห์หาปริมาณ phosphorus ในน้ำสกัดต่อไป
2. การวิเคราะห์หาปริมาณ phosphorus ในน้ำสกัด
2.1) การทำ Standard curve ของ phosphate
3. เตรียมน้ำยามาตรฐาน phosphate ให้มีกวามเข้มข้น 50 ppm . โดยใช้ Standard phosphate $50 \mathrm{ppm} . \mathrm{P}$ มาทำให้เจือจาง 10 เท่า
4. นำเอา aliquot $0,1,2,3,4$ และ 5 ml . บรรจุลงใน volummetric flask ขนาด 25 ml. (6 ใบ)
5. เติมน้ำกลั่นลงไปจนมีปริมาตรประมาณ 20 ml . เขย่าให้เข้ากัน
6. เติม Reagent B ลงไป 5 ml . เขย่าให้เข้ากัน เติมน้ำกลั่นลงไปจนมีปริมาตร 25 ml . เขย่าให้เข้ากันทิ้งไว้ 10 นาที
7. นำไปอ่านเปอร์เซ็นต์ transmittance ของน้ำยานี้ด้วย เครื่อง spectrophotometer wavelength 882 nm .
8. Plot กราฟระหว่างค่าที่อ่านได้จาก spectrophotometer กับความเข้มข้นของ phosphorus ในน้ำยา Standard บนกระดาษกราฟ (เป็น Standard curve สำหรับ unknown sample ได้)
2.2) การวิเคราะห์หาปริมาณ phosphorus ใน unknown sample
9. ใช้น้ำที่สกัดได้ (aliquot) 10 ml . ของ unknown sample ใส่ไป่ใน volumetric flask ขนาค 25 ml .
10. เติม Reagent B ลงไป 5 ml . เขย่าให้เข้ากัน
11. นำไปอ่านเปอร์เซ็นต์ transmittance ด้วยเดรื่อง spectrophotometer

วิธีการใช้เครื่อง Spectrophotometer 601

1. ขั้นตอนการเตรียมความพร้อมษองเครื่อง (Warm up) เปิดสวิทฑ์ Power on หมายเลข 1 รอ เครื่องทำการ Self Test และ Going to Lamda จนปรากฏเลขหน้าจอแล้วกด Clear เมื่อให้ ความยาวคลื่นตั้งแต่ 390 nm . ขึ้นไป (ให้ใช้ Cuvette ชนิด Glass 103)
2. กค (Second Function) Yes และใส่ความยาวคลื่นที่ต้องการ แล้วกด Yes อีกครั้ง จะ ปรากฎความยาวคลื่นที่ต้องการถ้าไม่ถูกต้องให้กค Clear แล้วทำตามข้อ 1 ใหม่
3. กค (Second Function) Deut กลับมาโคยเริ่มจาก (Second Function) ก่อนเสมอ จน ปรากฏคำว่า Deut Lam Off
4. (Second Function) และ Tung จะปรากฏคำว่า Lamp Reqired
5. กค 0 (Second Function) และ Lamp Save จะปรากฎคำว่า Lamp Save Off
6. ปล่อยให้เครื่องทำการ Warm up 30 นาทีก่อนการใช้งาน

2. เมื่อใช้งาน

1. เลือกค่าที่ต้องการ A หรือ $\% \mathrm{~T}$ โดยกด $\% \mathrm{~T} / \mathrm{A} / \mathrm{C}$
2. เปิคฝ่หมายเลข 2 แล้วนำ cuvette พร้อม Blank ใส่เข้าไปในช่องหมายเลข 3
3. ป็ดฝาลง อย่าให้ฝาหมายเลข 4 เปิด กค (Second Function) และ 100% T/ZERO A เพื่อให้ Blank เป็น 0
4. ทำการสกัดสารละลายที่ต้องการต่อไป โดยไม่ต้องกดปุ่มใดๆ อีก
5. ถ้าจำเป็น อาจทำการ Zero A อีกครั้ง โดยทำตามข้อ 2-4
6. ถ้าต้องการเปลี่ยนความยาวคลื่นให้ใส่เครื่องหมายที่ต้องการได้ทันที แต่ต้องปล่อยให้ เครื่องทำการ Warm Up 30 นาทีก่อนใช้งาน

การแปรผล
ppm.P ของดิน $=\frac{\text { วิธีการคำนวน }}{\text { Z.Y. final volume (ml.) }}$

โดยที่ Z เป็น ppm. P ที่อ่านได้จาก Standard curve Y เป็น ratio ของ solution soil

(3) การวิเคราะห์หาโพแทสเซียม

ส่วนใหญ่ของโพแทสเซียมในดินอยุ่ในรูปของแร่ต่าง ๆ เซ่น micas, feldspars และส่วนของ clay mineral และโพแทสเซียม ส่วนน้อยอยู่ในรูป Exchangeable K, Soluble K และ Total K ในคินจึง จะมีอยู่ประมาณ $1-2 \%$ ปริมาณ Exchangeable K จะอยู่ระหว่าง น้อยกว่า 100 ppm . ถึง หลายๆ พัน ppm . ส่วน Soluble K มักจะมีอยู่เพืยงไม่กี่ ppm .

ชื่อเครื่องมือ

การหาปริมาณ Exchangeable K โดยใช้เครื่อง Atomic absorption spectrophotometer

หลักการและเหตุผล

Exchangeable K หมายถึงส่วนที่สามารถจะแลกเปลี่ยนกับ cation ของเกลือต่าง ๆ ที่ใส่ลงไป ในดินอย่างอิสระ เนื่องจากปริมาณของ Exchangeable K ขึ้นอยู่กับธรรมชาติของสารละลายที่ใช้ในการ ไล่ที่หรือขึ้นอยู่กับชนิดของไอออนและความเข้มข้นของสารละลาย ดังนั้นจึงให้คำจำกัดความของ Exchangeable K ว่าเป็นปริมาณที่สกัดได้ด้วย $1 \mathrm{~N} \quad \mathrm{NH}_{4} \mathrm{Oac}$ /ลบปริมาณ K ที่ละลายในน้ำในดิน (non-
saline) ปริมาณ K ที่ละลายได้ในน้ำมีอยู่น้อยมาก ดังนั้นจึงถือได้ว่าปริมาณที่สกัดด้วย $1 \mathrm{~N} \quad \mathrm{NH}_{4} \mathrm{OAc}$ คือ ปริมาณชอง Exchangeable K โดยทั่วไปแล้วนิยมใช้ค่าของ Exchangeable $K+K$ ที่ละลายได้ใน น้ำ หรือ K ทั้งหมดที่ถูกสกัดโดยใช้ $1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OAc}$ เป็นดรรชนีที่จะบอกถึงความเป็นประโยชน์ของ K ในคิน

วัสคุจุปกรม์

1. $\mathbf{1 2 5 \mathrm { ml }}$. erlenmayer flask
2. Filtering apparatus
3. 25 ml . Volumetric pipet
4. 50 ml . Volymetric flask
5. Atomic absorption spectrophotometer สารเคมีและน้ำยา
6. Ammonium acetate $\left(\mathrm{NH}_{4} \mathrm{OAc}\right) 1 \mathrm{~N}$: เตรียมโคยใช้ ammonium hydroxide 68 ml . เติม acetic acid ลงไป 57 ml . แล้วเติมน้ำกลั่นลงไปให้ครบ $1,000 \mathrm{ml}$. เขช่าน้ำยาให้เข้ากัน แล้ว ปรับ pH ของน้ำยาให้เป็นกลางด้วยสารละลายที่เฉือจาง (1 N) ของ ammonium hydroxide หรือ acetic acid
7. Standard Potassium chloride solution : ชั่ง KCl (A.R.) 1.9103 กรัม ละลายใน ammonium acetic solution ให้ได้ปริมาณครบ $1,000 \mathrm{ml}$. สารละลายนี้จะมีความเข้มข้น $1,000 \mathrm{ppm} . \mathrm{K}$

วิธีการและขั้นตอน

ชั่งตัวอย่างคิน 5 กรัม ใส่ใน Erlenmeyer flask ขนาด 125 ml . เติมน้ำยาสกัด $\mathrm{NH}_{4} \mathrm{OAc} 50 \mathrm{ml}$. เขย่าติคต่อกัน นาน 30 นาที กรองโดยใช้กระดาษกรองเบอร์ 42 เติมสารละลายใสที่กรองได้ใน volumetric flask ขนาค 100 ml . ปรับปริมาตรให้เป็น 100 ml . โคยใช้ $\mathrm{NH}_{4} \mathrm{OAc}$ นำไปวิเคราะห์หา ปริมาณ K โคยใช้เครื่อง Atomic absorption spectrophotometer

การใช้งานเครื่อง Atomic absorption spectrophotometer รายละเอียดต้านหน้าตัวเครื่อง

1. ปุ่ม power on มีหลอดไฟ LED แสดงสภาวะการปิด-เปิดเครื่อง
2. Flame on มีหลอคไฟ LED แสคงสภาวะการปิด-เปิดของเปลวไฟ
3. Blank เป็นปุ่มปรับค่าบนจอแสคงค่าให้เป็นศุนย์ขณะทำการทคสอบกับ blank
4. Sensitivity fine and coarse เป็นปุ่มปรับอย่างละเอียดและอย่างหยาบ เพื่อปรับค่าบนจอ แสดงค่าสารละลายมาตรฐูานที่ทดสอบ
5. Fuel เป็นปุ่มปรับเพิ่มหรือลคอัตราการไหลของเชื้อเพลิง
6. $\mathrm{Na}, \mathrm{K}, \mathrm{Li}$ เป็นปุ่มปรับเพื่อเลือกชนิดของแผ่นกรองแสงตามชนิดของแผ่นกรองแสง ตาม ชนิดของสารละลายที่วัด ซึ่งมีให้เลือก 3 ชนิค คือ Na, K หรือ Li
7. decimal เป็นปุ่มกคแบบสัมผัสเพื่อเลือกหน่วยการอ่านค่าทศนิยมบนจอแสดงค่าเป็น 100 หรือ 1000
ขั้นตอนในการเตรียมความพร้อมของเครื่อง
8. ตรวจเช็คว่ามีน้ำอยู่ในสาย U หรือไม่ ถ้าไม่มีให้เติม deionized water และตรวจสอบไม่ให้ มีฟองอากาศตกค้างภายในท่อ
9. ปรับปุ่ม Fuel control ไปในทิศตามเข็มนาพิกาจนสุด เพื่อเปิดทางเดินของก๊าซเชื้อเพลิงแต่ ไม่ต้องปรับจนแน่น
10. ปรับปุ่ม Fuel control ไปในทิศตามเข็มนาฬิกา จำนวน 11 รอบ
11. กดปุ่ม power switch ที่ power on มีหลอดไฟ LED แสดงสภาวะการปิด-เปิดเครื่องและจะ มีเสียงการจุดไฟระยะหนึ่ง
12. เปิดปั๊มอากาศและตรวจเช็ค Air pressure gauge ด้านหลังเครื่อง ปรับให้เข็มชี้ที่ตำแหน่ง 12 psig.
13. เปีควาล์วแก็สที่ถังแก๊ส
14. ปิด power switch แล้วทิ้งช่วงประมาณ 2 นาที แล้วจึงกด power switch เป็นการเปิดอีก ครั้ง จะมืเสียงการจุดไฟอยู่ระยะหนึ่งและมีเปลวไฟติด
15. กรณีที่เปลวไฟยังไม่ติดให้เปิด power switch แล้วทิ้งช่วงประมาณ 2 นาที แล้วจึงกด power switch เป็นการเปิดอีกครั้ง
16. กรณีที่เปลวไฟยังไม่ติด ให้ปรับปุ่ม fuel control ไปในทิศทวนเข็มนาฬิกาเพิ่มขึ้นอีกหนึ่ง รอบ แล้วกด power switch เป็นการเปิดอีกครั้ง
17. กรณีที่เปลวไฟยังไม่ติดให้ปรับปุ่ม fuel control ไปในทิศทวนเข็มนาพิกาเพิ่มขึ้นอีกหนึ่ง รอบ แต่ไม่เกิน 4 รอบ แล้วจึงกด power switch เป็นการเปิดอีกครั้ง

การใช้งาน

1. เปิดวาล์วที่ถังแก็สและปั๊มอากาศ
2. กคปุ่ม power switch เป็นการเปิด จนมีเปลวไฟติด
3. เลือกชนิดของแผ่นกรองแสง ตามชนิดของสารละลายตัวอย่างที่ต้องการวัค
4. จุ่มปลายท่อลงไปในบีกเกอร์ขนาค 100 ml . ซึ่งบรรจุสารละลายที่เป็น Diluent ทิ้งไว้นาน 15 นาทีเพื่อปรับอุณหภูมิของเปลวไฟและเป็นการอุ่นเครื่อง
5. เตรียมสารละลายมาตรฐานของเครื่อง โดยระดับความเข้มข้นสูงสุดของ Na ไม่เกิน 30 ppm. , ไม่เกิน 10 ppm ., ไม่เกิน 10 ppm .
6. ขณะทำการอุ่นเครื่องให้ทำการปรับ blank จนได้ค่า 0.0
7. ใช้สารสะลายมาตรฐานความเข้มข้นสูงสุดที่เตรียมไว้เป็นสารละลายมาตรฐานค่าแรกจุ่ม ปลายท่อลงไปในบีกเกอร์ นาน 20 นาที จนค่าคงที่แล้วอ่านค่าที่ได้ ซึ่งอาจปรับปุ่ม coarse และ fine control เพื่อปรับค่าการอ่านให้ตรงกับค่าของสารละลายมาตรฐาน
8. นำเอาสารละลายมาตรฐานความเข้มข้นสุงสุดออก แล้วรอประมาณ 10 วินาที จึงนำเอา blank solution จุ่มปลายท่อลงในบีกเกอร์นาน 20 วินาที แล้วอ่านค่าที่ไต้ ซึ่งอาจปรับปุ่ม blank control เพื่อปรับค่าการอ่านให้ตรงกับค่า 0.0
9. ทำซ้ำในขั้นตอน 7 และ 8 จนกระทั่งการอ่านค่า blank เป็น $0.0(\pm 0.2)$ และค่าสารละลาย มาตรฐานความเข้มข้นสูงสุดอ่านที่ $\pm 1 \%$
10. ทำการทคสอบผลการวัดโดยใช้สารละลายที่ไม่ทราบค่าความเข้มข้น แต่อยู่ในช่วงที่ปรับ ค่ามาตรรานไว้ แล้วนำผลการวัดไปเปรียบเทียบกับการทำเจือจาง สารละลายที่ไม่ทราบค่า ความเข้มข้นนั้น

ข้อควรปฏิบัติหลังการใช้งาน
1.เตรียม cleaning solution ปริมาณ 1 ส่วน ใน deionized water 100 ส่วน จุ่มปลายท่อลงใน บีกเกอร์นาน 1 นาที เพื่อทำความสะอาดภายใน

