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ABSTRACT 


TITLE A COMPARISON OF THREE NUMERICAL METHODS 

FOR SOLVING THE TWO-DIMENSIONAL UNSTEADY 

ADVECTION-DIFFUSION EQUATIONS 

BY PONGPHAN MUKWACHI 

DEGREE MASTER OF SCIENCE 

MAJOR MATHEMATICS 

CHAIR SASITORN PUSJUSO, Ph.D. 

KEYWORDS : 	ADVECTION-DIFFUSION EQUATIONS / FINITE 

DIFFERENCE METHOD/ FINITE ELEMENT METHOD 

In this research, a comparative study on three numerical methods, the 

semi-discrete finite difference method, the Galerkin finite element method and the 

operator-splitting method for two-dimensional unsteady advection-diffusion problem 

is presented. The governing equation is splitted into advection and diffusion equar­

tions and solved by finite difference method and finite element method, respectively. 

The numerical algorithm has been validated by comparing with data from laboratory 

physical models and orther numerical results. 
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CHAPTER I 


INTRODUCTION 


In this chapter, literature review for numerical methods, the semi-discrete 

central finite difference method, the finite element method, and the operator splitting 

method, would be firstly presented. And then the objective, scope, and plan of the 

thesis is described respectively. Finally, it would be ended with expected result from 

the study. 

1.1 Literature review 

The models of transport problem involving advective and diffusive arise in 

many important applications in science and engineering such as heat and ma.')8 trans­

fer, playa vitally important role in human life. Gases and liquids surround us, flow 

inside our bodies, and have a profound influence on the environment in which we live. 

Fluid flows produce winds, rains, floods, and hurricanes. Convection and diffusion are 

re-sponsible for temperature fluctuations and transport of pollutants in air, water or 

soil. The ability to understand, predict, and control transport phenomena is essential 

for many industrial applications, such as aerodynamic shape design, oil recovery from 

an underground reservoir, or multiphase/multicomponent flows in furnaces, heat ex­

changers, and chemical reactors. This ability offers substantial economic benefits and 

contributes to human well-being. Heating, air conditioning, and weather fore- cast 

have become an integral part of our everyday life. We take such things for granted 

and hardly ever think about the physics and mathematics behind them. Various 

numerical method have been proposed to analyze such problem. There are many 

numerical methods for to solve the problems such as the finite difference method, the 

finite element method and the finite volume method. Researchers have developed 

and simulators for use in the planning and design of numerical method for to solving 

in these problems. 

In this section, we proposed the literature review of the three numeri­

cal techniques, the semi-discrete central finite difference method, the finite element 
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method and the operator splitting method, respectively. 

1.1.1 The semi-discrete central finite difference method 

Many of the recently developed high-resolution scheme for hyperbolic con­

servation laws are based on differencing. These scheme is the averaging of an approx­

imate Godonov solver and Riemann solver. Riemann solver makes it difficulties for 

these problems. Therefore, many researchers have tried to invent a new numerical 

scheme to avoid using the Riemann solver. 

H. Nessyahu and E. Tadmor (1990) developed high-resolution schemes for 

hyperbolic conservation law base on central difference scheme in [11]. They pro­

posed a family of non-oscillatory, second order, central difference and first-order Lax­

Friedrichs (LxF) scheme. The main advantage is simplicity: no Riemann problems 

and using high-resolution MUSCL-type interpolants. R. Kupferman and E. Tadmor 

(1997) proposed a high-resolution, second-order central differrence method for incom­

pressible flows. The method is based on a recent second-order extension of the class 

Lax-Friedrichs scheme introduced for hyperbolic conservation laws (H. nessyahu and 

E. Tadmor (1990)). The scheme is fast, easy to implement, and readily generaliz­

able. The advantage of central scheme, proposed in its velocity formulation is 2-fold 

: Generalization to the three-dimensional case is straightforward, and the treatment 

of the boundary condition associated with general geometries becomes simpler. The 

result is simple, fast high-resolution method, whose accuracy is comparable to that 

of an upwind scheme. X. D. Liu and E. Tadmor (1998) presented a third -order, non­

oscillatory central difference scheme for the approximate solution of nonlinear system 

of hyperbolic conservation laws in [9]. The third-order central scheme are an extension 

along the line of the second-order central scheme of Nessyuhu and Tadmor[NT]. The 

third-order scheme have the advantage of the central scheme over the upwind ones: in 

that no Riemann solver are involved. The use of the third -order picewise quadratic 

approximation compensates for the excessive viscosity. The result is a simple, robust, 

Riemann- solver-free central difference scheme with third-order resolution. F. Bianco, 

G. Puppo and G. Russo (1999) they presented third and fourth order central schemes 

for the approximate solution of quasilinear system of conservation law propose in [1]. 

The schemes are an extension of the second order Nessyahu-Tadmor scheme. 
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The new second-order semi-discrete schemes applied to the one-and two­

dimensional hyperbolic conservation law and convection-diffusion equation is pre­

sented by 

A. Kurganov and E. Tadmor (2000). The new scheme can be viewed a.., modifications 

of the Nessyuhu-Tadmor scheme[ll]. This enjoy the major advantage of the central 

scheme over the upwind ones : first, no Riemann solver are involved, and second as 

the result of the being Riemann-solver-free their realization and generalization for 

complicated multidimensionaL This scheme have the smaller amount of numerical 

viscosity than the original NT scheme, and unlike other central scheme, the can be 

written and efficiently intergrated in their semi-discrete form. 

1.1.2 	 The finite element method 

The finite element method originated from the need for solving complex 

elasticity and structural analysis problems in civil and aeronautical engineering. Its 

development can be traced back to the work by Alexander Hrennikoff (1941) and 

Richard Courant (1942). While the approaches used by these pioneers are different, 

they share one essential characteristic: mesh discretization of a continuous domain 

into a set of discrete sub-domains, usually called elements. Starting in 1947, Olgierd 

Zienkiewicz from Imperial College gathered those methods together into what would 

be called the Finite Element Method, building the pioneering mathematical formalism 

of the method. 

Development of the finite element method began in earnest in the middle 

to late 19508 for airframe and structural analysis and gathered momentum at the 

University of Stuttgart through the work of John Argyris and at Berkeley through 

the work of Ray W. Clough in the 19608 for use in civil engineering. By late 1950s, 

the key concepts of stiffness matrix and element assembly existed essentially in the 

form used today. NASA issued a request for proposals for the development of the 

finite element software NASTRAN in 1965. The method was again provided with a 

rigorous mathematical foundation in 1973 with the publication of Strang and Fix's 

An Analysis of The Finite Element Method, and has since been generalized into a 

branch of applied mathematics for numerical modeling of physical systems in a wide 

variety of engineering disciplines, e.g., electromagnetism and fluid dynamics. Many 
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researchers have developed and simulators for use in the planning and design of the 

numerical methods for the solving in these problems. 

A. Mizukami and T. J. R Hughes (1985) presented a new Petrov-Galerkin 

method for convection-diffusion flow problem which is conservative and satisfies the 

discrete maximum principle. this method possesses no spurious crosswind diffusion 

and gives vary accurate solution. The methods is representative of a class of methods 

which may be described as 'fixed-mesh adaptive'. 

M. Feistauer and V. Kucera (2008) analysis of the discontinuous Galerkin fi­

nite element method (DGFEM) for the numerical solution of nonstationary nonlinear 

convection-diffusion problems equipped with Dirichlet boundary conditions. 

T. Sun (2010) proposed a discontinuous Galerkin finite element method with 

interior penalties for convection-diffusion optimal control problem. A semi-discrete 

time DG scheme for this problem is presented. In this work analyze the stability of 

this scheme, and derive a priori and a posteriori error estimates for both the state 

and the control approximation. 

Recently, V. John and J. Novo (2011) proposed the conditions on the stabi­

lization parameters are explored for different approaches in deriving error estimates 

for the SUPG finite element stabilization of time-dependent convection diffusion­

reaction equations that is combined with the backward Euler method. For this rea­

son, the time-continuous case is analyzed under certain conditions on the coefficients 

of the equation and the finite element method. An error estimate with the standard 

order of convergence is derived for stabilization parameters of the same form that is 

optimal for the steady-state problem. 

1.1.3 The operator splitting method 

Operator splitting is a powerful method for numerical investigation of com­

plex models. The basic idea of the operator splitting methods based on splitting of 

complex problem into a sequence of simpler ta..,ks, called split sub-problems. The sub 

operators are usually chosen with regard to different physical process. Then instead 

of the original problem, a sequence of sub models are solved, which gives rise to a 

splitting error. The order of the splitting error can be estimate theoretically. In prac­

tice, splitting procedures are associated with different numerical methods for solving 
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the sub-problems, which also causes a certain amount of error. 

The idea of operator splitting, which was the Lie-Trotter splitting, dates 

back to the 1950s. It was probably in 1957 that this method was first used in the 

solution of partial differential equations (Bagrinovskii & Godunov, 1957). The first 

splitting methods were developed in the 1960s or 1970s and were based on funda­

mental results of finite difference methods. The classical splitting methods are the 

Lie-Trotter splitting, the Strang splitting (Dimov et al., 2001), (Strang, 1968), (Farago 

& Havasi, 2007) and the symmetrically weighted splitting (Strang, 1963), (Csomos et 

al.,2005). A renewal of the methods was done. In the 1980s while using the methods 

or complex process underlying partial differential methods in (Crandall & Majda, 

1999). 

Complex physical processes are frequently modelled by the systems of linear 

or non-linear partial differential equations. Due to the complexity of these equations, 

typically there is no numerical method which can provide a numerical solution that 

is accurate enough while taking reasonable integrational time. In order to simplify 

the task (Strang, 1968), (Marchuk, 1988) operator splitting procedure has been in­

troduced, which is widely used for solving advection-diffusion-reaction problems in 

(Hvistendahl et al., 2001), (Marinova et al., 2003) Navier-Stokes equation in (Chris­

tov & Marinova, 2001), including modelling turbulence (Mimura et al., 1984) and 

interfaces. 

In many applications in the past, a mixing of various terms in the equa,­

tions for the discretization and solver methods made it difficult to solve them together. 

With respect to the adapted methods for a simpler equation, the methods give im­

proved results for simpler part. The higher order operator splitting methods are 

used for more accurate computations, but also with respect to more computational 

steps. There have been some composition techniques to get the higher order splitting 

methods. The well known higher order composition schemes are developed by many 

authers (Blanes and Moan, 2002), (Kahan & Li, 1997), (Mclachlan & QUispel, 2002), 

(Suzuki, 1990), (Yoshida, 1990). 

The idea behind this type of approach is that the overall evolution operator 

is formally written as a sum of evolution operators for each term (operator) in the 

model. In other words, one splits the model into a set of sub-equations, where each 
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sub-equation is of a type for which simpler and more practical algorithms are available. 

The overall numerical method is then formed by picking an appropriate numerical 

scheme for each sub-equation and piecing the schemes together by operator splitting. 

A. Chertock, A. kurganov and G. petrova (2009) propose a second-order fa.')t 

explicit operator splitting (FEOS) method based on the strang splitting. The main 

idea of the method is to solve palabolic problem via a discretization of the fomular 

for the exact solution of the heat equation, which is realized using a conservative and 

accurate quandrature formula. The hyperbolic problem is solved by a second-order 

finite-volume Godunov-type scheme. 

A. Chertock, C.R. Doering, E. Kashdan and A. Kurganov (2010) proposed 

splitting approach, the hyperbolic and parabolic subproblems have been solved by 

two different methods: The hyperbolic equation has been solved numerically by the 

second-order Godunov-type central-upwind scheme in [2], while the parabolic equar­

tion has been solved exactly using the pseudo-spectral technique. 

1.2 Objectives 

(i) To derive numerical schemes based on finite difference method, finite element 

method and operator splitting method for two-dimensional unsteady advection­

diffusion equation 

(ii) To verify numerical algorithm by comparing with data from laboratory physical 

models which are known exact or approximate solution 

(iii) 	To compare the efficiency of the finite difference method, the finite element 

method, and the operator splitting method 

1.3 Scope of the thesis 

This thesis investigates the study of comparative on three numerical meth­

ods, the semi-discrete finite difference method, the Galerkin finite element method, 

and the operator-splitting method for two-dimensional unsteady advection-diffusion 

equations on rectangular domain. 
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1.4 Plan of the thesis 


This thesis, we study of comparative on three numerical methods for solving 

the two-dimensional unsteady advection-diffusion equations. The first part gives the 

detail of the literature review of the finite semi-discrete central difference method, 

the Galerkin finite element method, and the operator splitting method. 

The second part gives the computation of the numerical scheme of the finite 

difference method, the finite element method, and the operator splitting method for 

solving the two-dimensional unsteady advection-diffusion equations. 

The third part, verify numerical algorithm by comparing with data from 

laboratory physical models which are known exact. or approximate solution is pre­

sented. 

The fourth part we show that the numerical experiment obtained by a com­

parison of the finite difference method, the finite element method, and the operator 

splitting method(OSM), respectively. All of the computer programs which appears 

in this thesis are coded from their numerical meth,ads. These are developed and 

constructed by using MATLAB programming. 

The fifth part we devoted to a brief conclusion. Finally some references are 

introduced at the end. 

1.5 Expected results 

(i) The numerical schemes are analized 	to create procedure for programming a 

computer to solve the two-dimensional unsteady advection-diffusion equation. 

(ii) 	The result from the study could be applied to any area based on finite difference 

and finite element method for method for two-dimensional unsteady advection­

diffusion equation such as water pollution, air pollution and so on. 



CHAPTER II 


MATHEMATICAL MODELS 


In this chapter, we described the advection equation, the diffusion equation 

and the advection-diffusion equations. The mathematical model for the one-and two­

dimensional unsteady advection-diffusion equations is presented. 

2.1 The Advectioll Equation 

Advection, in chemistry, engineering and earth sciences, is a transport mech­

anism of a substance, or a conserved property, by a fluid, due to the fluid's bulk motion 

in a particular direction. An example of advection is the transport of pollutants or 

silt in a river. The motion of the water carries these impurities downstream. An­

other commonly advected property is energy or enthalpy, and here the fluid may be 

water, air, or any other thermal energy-containing fluid materiaL Any substance, 

or conserved property (such as enthalpy) can be advected, in a similar way, in any 

fluid. The fluid motion in advection is described mathematically as a vector field, and 

the material transported is typically described as a scalar concentration of substance, 

which is contained in the fluid. Advection requires currents in the fluid, and so cannot 

happen in rigid solids. It does not include transport of substances by simple diffusion. 

Occasionally, the term advection is used as synonymous with convection. 

However, many engineers prefer to use the term convection to describe transport by 

combined molecular and eddy diffusion, and reserve the usage of the term advection 

to describe transport with a general (net) flow of the fluid (like in river or pipeline). 

The advection equation is the partial differential equation that governs the 

motion of a conserved scalar as it is advected by a known velocity field. It is derived 

using the scalar's conservation law, together with Gauss's theorem, and taking the 

infinitesimal limit. 

The one-dimensional unsteady advection equation is the following form as 

(2.1) 
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where 

u(x, t) : concentration averaged in depth, 

Q; : the velocity in X direction, 

The two-dimensional um:;teady advection equation is the following form a.') 

au 8u 8u 
(2.2)8t +cx8x +(38y =0 

where 

u(X, y, t) : concentration averaged in depth at the point (x, y), 

Q; : the velocity in X direction, 

fJ : the velocity in Y direction. 

2.2 The Diffusion Equation 

A fundamental tra.nsport process in environmental fluid mechanics is dif­

fusion. Diffusion differs from advection in that it is random in nature (does not 

necessarily follow a. fluid particle). A well-known example is the diffusion of perfume 

in an empty room. If a bottle of perfume is opened and allowed to evaporate into 

the air, soon the whole room will be scented. We know also from experience that the 

scent will be stronger near the source and weaker as we move away, but fragrance 

molecules will have wondered throughout the room due to random molecular and 

turbulent motions. Thus, diffusion has two primary properties: it is random in na­

ture, and transport is from regions of high concentration to low concentration, with 

an equilibrium state of uniform concentration. 

Next, we introduce to the one-and two-dimensional unsteady diffusion equa­

tion. 

The one-dimensional unsteady difflL.-;ion equation is the following form a."3 

2 
8u = D 8 u (2.3)
8t 8x2 

where 

u(x, t) : concentration averaged in depth, 

D : diffusion coefficient in X direction. 

The two-dimensional unsteady diffusion equation is the following form as 

8u f)2u 82u 

at = D( 8x2 + 8 2) (2.4)
y
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where 

U{x, y, t) : concentration at the point (x, y) in n, 
D : diffusion coefficients in X, Y directions. 

2.3 The Advection-Diffusion Equation 

The convection-diffusion equation is a combination of the diffusion and 

convection (advection) equations, and describes physical phenomena where particles, 

energy, or other physical quantities are transferred inside a physical system due to 

two proces..':les: diffusion and convection. From the definition above it follows that 

the convection-diffusion equation combines both parabolic and hyperbolic partial 

differential equations. 

A mathematical model for described the dispersion of the concentration in 

one-and two-dimensional domain. In this case, the dispersion of the concentration is 

described by the unsteady advection-diffusion equation with constant coefficients in 

one and two-dimensional domain n E R2, 

The one-dimensional unsteady advection-diffusion equations is the following form as 

OU + aOu = D02U (2.5)ot ox ox2 

where 

U{x, t) : concentration averaged in depth, 

a : the velocity in X direction, 

D : diffusion coefficient in X direction. 

The two-dimensional unsteady advection-diffusion equations is the following form as 

(2.6) 


where 

U{x, y, t) : concentration at the point (x, y) in n, 

a : the velocity in X direction, 

f3 : the velocity in Y direction, 

D : diffusion coefficients in X, Y directions. 



CHAPTER III 


NUMERICAL METHODS 


In this chapter, we consider the semi-discrete central finite difference method, 

the Galerkin finite element method, and the operator splitting method for two­

dimensional unsteady advection-diffusion problems. 

3.1 The Semi-Discrete Central Finite Difference Method 

We will consider a uniform grids and use the following natation: (Xi, Yj) = 

(ib.x,jb.y), (Xi±~'Y;±~) = (i ~)b.x, (j ± ~)b.y), tn = nb.t, uiJ = u(x;,Yj,tn ), 


where b.x, b.y and b.t are small spatial and time scales, respectively(see as Figure 


3.1). 


According to [13], the semi-discrete central scheme for 


!Ui,j(t) - - ;x (Fi+!,;(t) Fi_!,/t») - ;Y (Gi,j+~(t) - Gi,j_!(t») 

1 
+ b.x2 (UHl,j(t) 2Ui,j(t) + Ui-l.;(t» 

1 
+ b.y2 (Ui,j+l(t) 2Ui,j{t) + Ui,j-l(t») (3.1) 

where FH!,j(t) and Gi,H! (t) are X and y numerical advection fiuxs, respectively, 

au-:t"+l .(t) + aU:-+1 ,(t) a~+l' (t) [ ]
F. 1 . (t) = 1 2,J , 2,] _' 2,J + (t) ( ) (3 2)

1+'2,] 2 2 uH!,j uH-!,j t . 

!3U-:t",+!(t)+!3U:-'+l(t) a~.+!(t)[ ]G (t) - I,] 2 I,J 2 I,] 2 + () - () (3.3)i,;+! - 2 - 2 ui,i+! t - ui,j+! t 

j+l/::' 

j+1_t_----­

r---------­
I 
: 

--I------I

G ... J• 1 /;,t

1----------"] 
I 

U t ., JV.l.T1i2 ,'J 

-

j -1

Il________ 

_t_--+----­

I_ _________1 

If----/---_t_ 

j -1/ ... 

1-1 1-1/2 i i+1/2 1+1 

Figure 3.1: Spatial grid FDM 
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which are expressed in term of the intermediate values 

U:+~,j - uiAt) + ~X lPf.j (t) (3.4) 

+ (3.5)Ui+ 1 j - UH1,J(t) - ~X lPi+l,j(t)
2' 

U-:-+l - Ui,j (t) + ~Y IPr,j (t) (3.6) 
~,} '2 

+ ~y II () (3.7)u, '+1 - Ui,J+l(t) TIP;,j+l t 
~,J '2 

where the limiters are defined by 

. d (Ui,j(t) - Ui-l,j(t) Ui+l,j(t) Ui,j(t)) (3.8)mmmo ~x ' ~x 

_ minmod (Ui,j(t) - Ui,j-l(t),.Ui,j+l(t) - Ui,j(t)) (3.9)
~y , ~y 

and the local speeds a:+!)t) and a~.j+~ (t), are computed by 

a:+~,j(t) - max(lol) (3.10) 

a~ '+1 (t) - max(l{31) (3.11)
I,} 2 

where the minmod limiter of two arguments is defined by 

a, if lal ~ Ibl and ab > 0 ; 

minmod(a, b) = b, if Ibl ~ lal and ab> 0 ; (3.12) 

0, if ab < O. 

The time discretization will be implemented by the class of third order TVD Runge­

kutta methods. 

du 
- = L(u) (3,13)
dt 

(3.14) 

(3.15) 

(3.16) 
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3.2 The Galerkin Finite Element Method 

Applying the method of weight residual to Eq.(2.6) and integrating of the 

differential equation and boundary condition is 

(3.17) 

We want evaluate the first term of diffusion equation (3.17) 

i Dw (~~~) dfl (3.18) 

The domain integral can be expressed as 

1
2112 (lX2 ou )Dw 0 2 dx dy, (3.19) 

111 Xl X 

where YI and Y2 are the minimum and maximum value of the domain of the y-axis as 

the strip along the x-axis move in the y-direction. Integrating by part with respect 

to x yields. 

2 x2

1
X2 

OU2 [ou ]X2 (OU ow)1DW!:l 2 dx = DW!:l 2 - D -;:)!:l dx. (3.20) 
Xl ux ux Xl 'Cl uX uX 

Substitute Eq.(3.20) into (3.18), we obtain 

1
2 x21121112 [ Dw-]X2 D dxdyOu (OU ow)dy - 1 -- (3.21)2 

111 ox Xl 111 Xl ox ox 

and rewriting the expression using the domain and boundary integrations 

1 1 (ouow)ou DW-;:)71xou dr - D ~!:l dr!.. (3.22)DW-;:)1Jx dr ­
r2 uX uX !l uX uX1 r1 

http:1--(3.21
http:Eq.(3.20
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in which T}x is the x-component of the normal vector which is assumed to be positive 

in the outward direction. Finally combining the two-boundary integrals gives 

(3.23) 

Similarly, the second term of diffusion in Eq. (3.17) can be written as 

(3.24) 

Adding Eqs.(3.23) and (3.24) produces 

2 2r ou ou 1 (ou ow ou ow) 1 (ou ou)in DW(ox2+ oy2) dO = nD ox ox + oy oy dO + !r Dw oxT}x + 8yT}y dr. 

(3.25) 

Since the boundary integral can be written as 

(3.26) 

we can rewrite Eq.(3.25) as 

r (Ou2 Ou2) r (ouow ouow) 1 ouin Dw ox2 + oy2 dO = - in D ox ox + oy oy dO + !r Dw on dr. (3.27) 

The symbol :i to denote the line integral around a closed boundary is replaced by J 
for simplicity in the following text. Then, Equation (3.27) can be written as 

(3.28) 

http:Eq.(3.25
http:Eqs.(3.23


15 Lot 0, q'j 

Local InformatIon 
y 

c 

-_b~---------r--------~b~X 

-c 

Figure 3.2: Bilinear rectangular element 

Bilinear Rectangular Element 

The bilinear rectangular element is show in Fig. 3.2. The shape function 

for this element can be derived from the following interpolation function 

(3.29) 

For the finite element computation, the element nodal sequence must be in 

the same direction for every element in the domain. 

By the Galerkin method, thus approximate unknown nodal using the price­

wise approximation 

4 

u(x, y, t) = L ui(t)H,(x, y) (3.30) 
i=l 

where a linear basis or shape function is used in this study and they are defined as, 

H1(x,y) - 1
-(b - x)(c ­
4bc 

y) (3.31) 

H2(x,y) = 
1 

4bc(b+x)(c- y) (3,32) 

H3(x,y) = 
1 

4bc(b + x)(c + y) (3.33) 

H4(x,y) -
1

-(b - x)(c ­
4bc 

y) (3.34) 

where 2b and 2c are length and height of the element, respectively. 

Discretizing the whole into these non-overlapping finite element and using 

the shape function of these element as nodal point, we get the final assembled form 

as 

(3.35) 

Tuk
Rectangle

Tuk
Rectangle
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where square matrices of order for all i = 1,2,3, ... , n which are 

M·· (3.36)l.J - 1HiHjdrl, 

SiJ - 1(aHi J3aHi )H.drl (3.37)O:a + a J , 
e X Y1(aHi aHj + aHi aHj ) drl KiJ - (3.38) 
e ax ax 8y ay , 

Hi drl (3.39)Fi - 1 . 

where M, Sand K are the 4x4 element matrix, 

MiJ = (HiHj) drl 1 
HI 

1( H2 
- [H. H, H, H4]) dfl (3.40) 

H3 


H4 


where 

Mll - 1HIHldrl, M31 = 1H3 HI drl, (3.41) 

Ml2 - 1HIH2drl, M32 = 1H3 H2 drl, (3.42) 

Ml3 - 1HIHa drl, M33 =1H3 H3 drl, (3.43) 

M14 - 1HIH4 drl , M34 = 1H3 H4 drl, (3.44) 

M21 - 1H2H1 drl, M41 = 1H4 H l drl, (3.45) 

M22 - 1H2H2drl, M42 =1H4 H2 drl, (3.46) 

H2Hadrl ,M23 - 1 M43 =1H4 H3 drl, (3.47) 

M24 - 1H2H4drl, M44 = 1H4 H4drl , (3.48) 

in which 

http:drl(3.39
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8i ,; - 1(QaHi + (3aHi) H· dfJ 
OJ e ax {}y J 

I)Hl 
81e 

8H2 
81e 

8H3 
81e 

8H4 
81e 

where 

OHI 
&g 

8H2 
&g 

8H3 
&g 

8H4 
&g 

(3.49) 

1 ( aHI aHl)811 - e Q ax HI + {3 ay HI dn, (3.50)

1 ( aH! aHl)812 - e Q ax H2 + {3 ay H2 dn, (3.51)

1 ( aHI aHl)813 - e Q ax H3 + {3 ay H3 dn, (3.52)

1 ( aH! aHl)814 - e Q ax H4 + {3 ay H4 dn, (3.53)

1 ( aH2 aH2)821 - e Q ax HI + {3 ay HI dn, (3.54)

1 ( aH2 aH2)822 - e Q ax H2 + {3 ay H2 dn, (3.55)

1 ( aH2 aH2)823 - e a ax H3 + {3 ay H3 dn, (3.56)

1 ( aH2 aH2)824 - e a ax H4 + {3 ay H4 dn, (3.57)

1 ( aH3 aH3)831 - e Q ax HI + {3 {}y HI dn, (3.58)

1 ( aH3 aH3)832 - e Q ax H2 + {3 ay H2 dn, (3.59)

1 ( aH3 aH3)833 - e Q ax H3 + {3 ay H3 dn, (3.60)

1 ( aH3 aH3)834 - e a ax H4 + {3 ay H4 dn, (3.61)

1 ( aH4 aH4)841 - e Q ax HI + {3 ay HI dn, (3.62)

1 ( aH4 aH4)842 - e a ax H2 + {3 ay H2 dn, (3.63) 
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(3.64) 

(3.65) 

in which 

_1(aHi aHj + aHi aHi) do'K··t,) 
e ax ax ay ay 

aHI 
O:r; 

aH2 
ax [ aHI aH2 aH3 a~4 ]ax O:r; O:r;aH31.( 
O:r; 

lJH4 
ax 

{}Hl 
Oy 

aH2 
a" [ lJHI aH2+ lJy lJy .~' 1) dOaH3 
Oy 

aH4 
Oy 

(3.66) 

where 

1(aHl aHl + aHl aHl) do'Kll - (3.67) 
e ax ax By ay ,1(aHl aH2 + aHl aH2) do'Kl2 - (3.68) 
e ax ax By ay ,1(aHl aH3 + aHl aH3) do'Kl3 - (3.69) 
e ax ax By By ,

1(aHlaH4 + aHlaH4) do',Kl4 - (3.70) 
e ax ax ay ay1 ( aH2 aHl + aH2 aHl) do'K21 = (3.71) 
e ax ax ay ay ,1 ( aH2 aH2 + aH2 aH2) do'K22 = (3.72) 
e ax ax ay ay ,
1(aH2aH3 + aH2aH3) do'K 23 = (3.73) 

e ax ax By By ,1(aH2aH4 + aH2aH4) dOK24 - (3.74) 
e ax ax By ay , 
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K31 = 

K32 ­

K33 ­

K34 = 

K41 ­

K42 = 

K43 ­

K44 

Their element matrix for ith ­

1 ( 8H3 8H1 + 8H3 8H1) dO 
e 8x 8x 8y 8y ,1(8H38H2 + 8H38H2) dO 
e 8x 8x 8y 8y ,

1(8H38H3 + 8H38H3) dO 
e 8x 8x 8y 8y ,

1(8H38H4 + 8H38H4) dO, 
e 8x 8x 8y 8y1(8H48H1 + 8H48H1) dO 
e 8x 8x 8y 8y ,1(8H48H2 + 8H48H2) dO 
e 8x 8x 8y 8y ,1(8H48H3 + 8H48H3) dO 
e 8x 8x 8y 8y . ,

1(8H48H4 + 8H48H4) dO. 
e 8x 8x 8y 8y 

element are 

[Me] = 1.HiHj dO = 

[se] = 1(a8Hi + (38Hi )H. dO ­
e 8x 8y ] 

[Ke] = 1(8Hi 8Hj + 8Hi 8Hj ) dO 
e 8x 8x 8y 8y 

4be 2be be 2bc 
36 36 36 36 
2be 4be 2be bc 
36 36 36 36 

be 2be 4bc 2be 
36 36 36 36 
2be bc 2be 4bc 
36 36 36 36 

(ac±,Bb) ac ,Bb (ac±.8b)
--3­ 3-6" 6 

ac ,Bb (ac-,Bb) .!!f + ,Bb-3-"6 3 6 3 
_ (ac±,Bb) ac .Bb ac±,Bb 


6 6"-3 -3­

ac ,Bb ~ac-.Bb)
-"6-3 .!!f+f!!!.

6 3 6 

c2 ±b2 b2 _2c2 b2 ±c2 

-6bc3bc 6bC 
b2 _2c2 c2±b2 c2 -2b2 

6bC 3bC 6bC 
_b2±c2 c2 -2b2 c2±b2 

6bc 6bC 3bC 
c2 -2b2 b2±c2 b2 -2c2 

-6bC"6bC 6bC 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

_.!!f + f!!!. 
6 3 

_.!!f _ f!!!. 
6 6 

ac + ,Bb 
3 3 

_ (ac-,Bb) 
3 

(3.84) 


c2_2b2 

6iiC 
b2 ±c2-6bC" 

~_2c2 

6iiC 
c2±~ 
3bC 

(3.85) 
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Time Integration Technique 

In this section, we explain the Crank-Nicolson method for the time deriva­

tive. For this technique we write equation (3.35) at time t + ~t instead of t Then, 

at t+ at t- at t+ atM{U}t+T + S{u} T + K{u} -T = {F} T (3.86) 

The time derivative term is expressed using the central difference technique like 

{ }t+at {}t
{u}t+-¥ = u - u (3.87)

6t 

On the other hand, the other term are computed are average like 

(3.88) 

and 

(3.89) 

Substitution of Eqs.(3.87} through Eqs.(3.89) into Eqs. (3.86) yields 

(2[MJ + 6t[S + K]) {u}t+at = 6t ({F}t + {F}t+at) - 2[M) 

+6t[S + K]{u}t. (3.90) 

3.3 The Operator-Splitting Method 

A second order strang operator splitting method combining the finite differ­

ence and finite element method is applied to the two-dimensional advection-diffusion 

equation. The governing equation is split into the hyperbolic equation and the 

parabolic equation. The hyperbolic equation is solved by the second order semi­

discrete central scheme, and the parabolic equation is solved by the finite element 

method. 

The two-dimensional unsteady advection-diffusion equation 

Eq.(2.6} is split into the hyperbolic, 

Ut + (au):z: + ({3u)" = 0 (3.91) 

http:Eqs.(3.89
http:Eqs.(3.87


21 

and the parabolic, 

(3.92) 

The hyperbolic substep is carried out using the second-order semi-discrete central 

scheme, 

!Ui,j(t) - - ;x (F;+!it ) - F;-jit ») - ;y (Gi,j+~(t) - Gi,i-j(t)) 

(3.93) 

where the numerical advection fluxes F;+!J(f) and Gi,j+!(t) are defined by Eq.(3.2) 

and Eq.(3.3), respectively. 

We use the finite element method which described in previous section to 

solve the parabolic equation as the following form 

[M] {u}t + [K] {u}t {F}t. (3.94) 

The last substep of the Strang operator splitting is again hyperbolic. We start with 

the solution of system Eq. (3.94) , and the evolve is using the semi-discrete central 

scheme as in the first hyperbolic step to obtain the solution of Eq.(3.91) at the new 

time level t + !::l.t. 

The numerical algorithm process of the strang operator splitting method for 

solving the two-dimensional unsteady advection-diffu....,ion equation had been shown 

by the flow chart illustrated in Figure 3.3. 

http:Eq.(3.91
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Set initial condition for u 


l 

Solve advection equation by finite difference method 


UzJ·-~ ',j -~(F'i~ -F" )-~(2A 0" -0" 1- 26x ,l,j ' , 1 , , ) 
2 1-2' !Y '~ IJ-i 

Solve diftUsion equation by finite element method 

1 • 1 • 
(2{M]+A(KD{ur~ = At({F} +{F}-i)-2[M]+At[K]){u} 

Solve advection equation by finite difIecence method 

11+-1 11+-... II+- II+- t 1II+- II+­
" =U,.2_,_ F 2-F 2 -_ G 2 -0 1,I At(' ') A (' ')tlzJ IJ 2Ar . 1 , , 1. 2A ' 0,1 , • I

-J 1--,) !y' loJ+- v-­
, 2 2 ,2 2" . 

Yes 
Stq)'time No 

,It,~1;l1IJal[ Finish 

Figure 3.3: The flow chart of the numerical algorithm of the strang operator 

splitting method 



CHAPTER IV 

NUMERICAL EXPERIMENTS 

In this chapter, we present the numerical experiments of three numerical 

techniques, the semi-discrete central finite difference method, the Galerkin finite el­

ement method and the operator splitting method, respectively. These methods are 

validated by compare with the exact solution. The comparison of three methods is 

studied on three problems. We first consider a two-dimensional advection-diffusion 

equation with a constant advection velocity. We then simulate numerically the mov­

ing of Gaussian hump. We will focus on the effect of the methods, the advection 

coefficients and the diffusion coefficients on the accuracy. Finally, we test on a non­

linear advection-diffusion equation. 

Let u(x, y, Tn) be the exact solution of the problem and U(x, y, rn) be the 

numerical schemes, then we calculate error Loo - norm as : 

The numerical order of convergence is given by 

EN 
loge 2N~t)

Eoo.~t 

log(2) . 

4.1 Problem 1 

We first consider the two-dimensional unsteady advection-diffusion on [0, 2]x[0, 2] (see 

[5]). The governing equation (2.6) have the initial condition 

_ (x -0.5)2 (y - 0.5)2) 
u (x, y, 0) - exp - D - D ' (4.1) 

and the four boundary conditions, 

1 (at + 0.5)2 (y - f3t - 0.5)2)u(O, y, t) (4.2)- 1 +4texp - D(I +4t) - D(I + 4t) , 

1 (1.5 - at)2 (y - f3t - 0.5)2)u(2, y, t) (4.3)- 1 + 4texp - D(I +4t) - D(I + 4t) , 
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1 ((x - at - 0.5)2 ({3t + 0.5)2) (4.4)u(x,O,t) - 1+4teXp - D(1+4t) - D(1+4t) , 

1 (X - at - 0.5)2 (1.5 - (3t)2) (4.5)u(x,2,t) - 1+4teXp - D(1+4t) - D(1+4t) . 

The corresponding exact solution for the problem in [5] is 

1 (X - at - 0.5)2 (y - (3t - 0.5)2) 
1 + 4teXp (4.6)u(x, y, t) = - D(l + 4t) - D(l + 4t) . 

we solved the problem 1 by using the FDM, FEM and OSM on three sequences of 

grid, (il.x, il.y) = 0.2,0.1 and 0.05 with 6.t = 0.001. 

Table 4.1 shows the numerical results for fixed a = {3 = 0.1 and the value of 

diffusion coefficients, D 0.05, 0.005 and 0.0005 at time T = 1.0. We see that three 

methods converge to the exact solution. the error increases when the D decrease. 

The FDM is more accuracy than the FEM and OSM. The OSM has better order 

of convergence than others. The numerical plots of this case have shown in Figures 

4.1-4.3. 

Table 4.2 shows the numerical results for fixed D = 0.1 and the value of 

advection velocity, a = {3 = 0.05, 0.005 and 0.0005 at time T = 1.0. We see that 

three methods converge to the exact solution. For the FDM, the error increases when 

the a and {3 decrease. While the error of FEM and OSM decreases when the a and 

{3 decreases. The FDM is more accuracy than the FEM and OSM. The FDM has 

better order of convergence than others. The numerical plots of this case have shown 

in Figures 4.4-4.6. 

4.2 Problem 2 

The second consider is 8elected in [4]. The governing equation (2.6) have a domain 

-0.5 ~ x ~ 0.5 and -0.5 ~ y ~ 0.5. The initial condition is given by 

(x + 0.25)2 + fl)
u(x,y, 0) = exp - 2 ' (4.7)( 20' 

and the boundary condition 

u(-0.5, y, t) - 0, (4.8) 

u(O.S, y, t) - 0, (4.9) 
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u(x, -0.5, t) - 0, (4.10) 

u(x, 0.5, t) - O. (4.11) 

The exact solution is given by 

20'2 ((X+0.25)2+ y2) (4.12)u(x, y, t) = 20'2 + 4Dtexp - 20'2 + 4Dt ' 

with x=xcos(4t) + ysin(4t) , y=-xsin(4t) + ycos(4t) , 0'=0.0477. 

In this problem, the advection coefficient is not constant, a=-4y and 

/3=-4x. Table 4.3 shows the numerical solution for D = 0.01, D = 0.001 and 

D = 0.0001 at time T = 1.0. This test shows that three methods have poorly in 

accuracy. The OSM is look better order of accuracy and convergent than the FDM 

and FEM. The surface and contour plots are shown in Figures 4.9-4.11. 

Table 4.1 : Error 'and computational orders for advection-dominated problems 

obtained with (a, /3) = 0.1 at T = 1. 

Methods 

FDM 

FEM 

OSM 

D 
1Ox1O 20x20 40x40 

Rate CPU(Time)(s)
for 4Ox4(1 

0.05 0.0198 0.0055 0.0014 1.9740 18.05 

0.005 0.18 0.0415 1.0394 17.99 

0.0005 -0.5813 17.11 

0.05 -0.0067 2111.70 

0.005 2116.50 

0.0005 621 2262.70 

0.05 791 2136.60 

0.005 2107.10 

0.0005 2158.50 

http:4.9-4.11
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Table 4.2 : Error and computational orders for diffusion-dominated problems 

obtained with D = 0.1 at T = 1. 

Methods () and f3 
Iu - ue.xactloo 

Rate CPU(TimeJ(s)
lOxlO 20x20 40x40 for 40x4 

0.05 17 0.00069 0.00022~ 17.70 

FDM 0.005 0.0064 0.0017 0.00043 1.9831 17.41 

0.0005 0.0071 0.0019 0.00047 2.0153 17.50 

0.05 0.0254 0.0139 0.0139 0 2094.00 

FEM 0.005 0.0070 0.0024 0.0023 0 2088.70 

0.0005 0.0065 0.0022 0.0022 0 2206.60 

0.05 0.0648 0.0262 0.0079 1.72 2116.40 

OSM 0.005 0.0508 H0208 0.0062 1.7462 2084.70 

0.0005 0.0496 0.0203 0.0061 1.7346 2095.00 

Table 4.3 : Error and computational orders for advection-diffusion problems 

obtained with () = -4y, f3 = 4x at T = 1. 

Methods D 
Iu - uexactloo 

Rate CPU(TimeJ(s)
lOx10 20x20 40x40 for 40x4 

0.01 0.0652 0.0408 0.0179 1.1886 17.70 

FDM 0.001 0.3853 0.4002 0.3136 0.3518 17.41 

0.0001 0.6204 0.7631 0.8843 -0.2127 17.50 

0.01 0.0878 0.0894 0.0898 -0.0564 2094.00 

FEM 0.001 0.4 0.4906 -0.0261 2088.70 

0.0001 0.6531 0.8915 0.9032 -0.0188 2206.60 

0.01 0.0654 0.0410 0.0182 1.1717 2116.40 

OSM 0.001 0.3852 0.4001 0.3135 0.5319 2084.70 

0.0001 0.6204 0.7631 0.6643 0.2000 2095.00 
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4.3 Problem 3 

The last problem is a nonlinear equation (see [14]). The governing equation (2.6) can 

be written in the conservation law as following 

(4.13) 


with the nonlinear flux function of the form 

f(u) - (4.14)
(u2 +(I-u)2)' 

g(u) - f(u)(1 - 5(1 - U)2), (4.15) 

The problem have a domain -1.5 ~ x :5 1.5 and -1.5 ~ Y ~ 1.5 and the initial 

condition 

I, 
(4.16)u(x, y,O) = 

{ 0, otherwise. 

In this test, we solve the nonlinear problem which more difficult to sole by 

using numerical method than two previous problem, particularly, the FEM. 

This thesis, we can solve this problem by using the FDM and OSM. The 

numerical results are well agree with the literature. The numerical results of the 

FDM and OSM are shown in Figures 4.12 - 4.13. 
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(a) Exact solution 	 (b) FDM 

(c) FEM 	 (d) OSM 

(i) surface plots of approximation solutions with exact solution 

(a) Exact solution 	 (b) FDM 

(c) FEM 	 (d) OSM 

(ii) contour plots of approximation solutions with exact solution 

Figure 4.1: 	 Approximate solutions of FDM, FEM and OSM with exact solution 

of the advection-dominated problems for ll.t = 0.001 , a = /3 = 0.1, 

and D = 0.05 at time T = 1.0. 



29 

(a.) Exact solution (b) FDM 

(c) FEM (d) OSM 
(i) surface plots of approximation solutions with exact solution 

"'. 
.... 

v • 

.n cO ... " 

(a.) Exact solution (b) FDM 

o 

(c) FEM (d) OSM 

(ii) contour plots of approximation solutions with exact solution 

Figure 4.2: Approximate solutions of FDM, FEM and OSM with exact solution 

of the advection-dominated problems for 6.t = 0.001 , a = {3 = 0.1 

and D = 0.005 at time T = 1.0. 
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(a) Exact solution 	 (b) FDM 

(c) FEM 	 (d) OSM 

(i) surface plots of approximation solutions with exact solution 

... 

0. 

.. •
.. 
... .... 

(a) Exact solution 

r-::
.,," § 

j~ ~ 

... 
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... : .. .~ 

(c) FEM 

", 

I." .. 
.... 
T • 

.. 


(b) FDM 

''''~,~~~~~~m 
• I 

1,11 I 

T • I 
~" I 

(d) OSM 

(ii) contour plots of approximation solutions with exact solution 

Figure 4.3: 	 Approximate solutions of FDM, FEM and OSM with exact solution 

of the advection-dominated problems for !.l.t =0.001 , a = {3 =0.1 

and D = 0.0005 at time T = 1.0. 
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(a) Exact solution 	 (b) FDM 

(e) FEM 	 (d) OSM 

(i) surface plots of approximation solutions with exact solution 

(a) Exact solution 	 (b) FDM 

u, 

(e) FEM 	 (d) OSM 

(ii) contour plots of approximation solutions with exact solution 

Figure 4.4: 	 Approximate solutions of FDM, FEM and OSM with exact solution 

of the diffusion-dominated problems for 6.t = 0.001 , D = 0.1 and 

a = /3 = 0.05 at time T = 1.0. 
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(a) Exact solution 	 (b) FDM 

(c) FEM 	 (d) OSM 

(i) surface plots of approximation solutions with exact solution 

(a) Exact solution 	 (b) FDM 

(c) FEM 	 (d) OSM 

(ii) contour plots of approximation solutions with exact solution 

Figure 4.5: 	 Approximate solutions of FDM, FEM and OSM with exact solution 

of the diffusion-dominated problems for tlt = 0.001 , D = 0.1 and 

a = {3 = 0.005 at time T = 1.0. 
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(a.) Exact solution 	 (b) FDM 

(c) FEM 	 (d) OSM 

(i) surface plots of approximation solutions with exact solution 

... ~~ 
~ . 

(a.) Exact solution 	 (b) FDM 

,,, 

(c) FEM 	 (d) OSM 

(ii) contour plots of approximation solutions with exact solution 

Figure 4.6: 	 Approximate solution..~ of FDM, FEM and OSM with exact solution 

of the diffusion-dominated problems for ~t = 0.001 , D = 0.1 and 

a = /3 = 0.0005 at time T = 1.0. 
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(a) Exact solution (b) FDM (c) FEM (d) OSM 

(i) T=O.O 

(a) Exact solution (b) FDM (c) FEM (d) OSM 

(ii) T=O.l 

(a) Exact solution (b) FDM (c) FEM (d) OSM 

(iii) T=0.5 

(a) Exact solution 	 (b) FDM (c) FEM (d) OSM 


(iiii) T=1.0 


Figure 4.7: 	 The surfaces plots of the advection-dominated problems with 

for At = 0.001, a = {3 = 0.1 and D = 0.05 on 4Ox40 grids. 
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(a) Exact solution (b) FDM (c) FEM (d) OSM 

(i) T=O.O 

(a) Exact solution (b) FDM (c) FEM (d) OSM 

(ii) T=O.l 

(a) Exact solution (b) FDM (c) FEM (d) OSM 

(iii) T=0.5 

N'" 

H .__._•.•.......... ._ ' , : -,'. - ' ••..... 
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~ .: "-, -",' '- '. 
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.. I" ," ~... ' " .~-,~ 
r;-...... " 	 ~ ....-~.. ', . ~f • ;- '1 J .~-	

~ 
x 

(a) Exact solution (b) FDM (c) FEM (d) OSM 

(iiB) T=1.0 

Figure 4.8: The surfaces plots of the diffusion-dominated problems with 

for tl.t = 0.001, D = 0.1 and 0= /3 = 0.0005 on 40x40 grids. 
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(a) Exact solution (b) FDM 

(c) FEM (d) OSM 

(i) surface plots of approximation solutions with exact solution 

..... 
(a) Exact solution (b) FDM 

.. .. 
(e) FEM (d) OSM 

(ii) contour plots of approximation solutions with exact solution 

Figure 4.9: Approximate solutions of FDM, FEM and OSM with exact solution 

for ~t = 0.001, a = -4y, f3 = 4x and D = 0.01 at time T = 1.0. 
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(a) Exact solution (b) FDM 

(c) FEM (d) OSM 

(i) surface plots of approximation solutions with exact solution 

.'".. .,. 

..- ­
(a) Exact solution (b) FDM 

.. 

(c) FEM (d) OSM 

(ii) contour plots of approximation solutions with exact solution 

Figure 4.10: Approximate solutions of FDM, FEM and OSM with exact solution 

for b:.t = 0.001, a = -4y, {3 = 4x and D = 0.001 at time T = 1.0. 
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(a) Exact solution (b) FDM 

(c) FEM (d) OSM 

(i) surface plots of approximation solutions with exact solution 

co 

. ., 
x 

(a) Exact solution (b) FDM 

0.1.1 

".f21 I 

~: 
L-----, - ­

o 11.1. 

X 

(c) FEM (d) OSM 

(ii) contour plots of approximation solutions with exact solution 

Figure 4.11: Approximate solutions of FDM, FEM and OSM with exact solution 

for t:at = 0.001, a = -4y, /3 = 4x and D = 0.0001 at time T = 1.0. 
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z 

1.5 

-1.5- -1.5 

(a) D = 0.1 

z 

.5 

(b) D = 0.01 

z 

1.5 

(c) D = 0.001 

Figure 4.12: Approximate solutions of FDM with D = 0.1, D = 0.01 and 

D = 0.001 at time T = 1.0. 
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z 

1.5 

(a)D=O.l 

z 

.5 

(b) D = 0.Ql 

z 

(c) D = 0.001 

Figure 4.13: Approximate solutions of OSM with D = 0.1, D = 0.01 and 

D = 0.001 at time T = 1.0. 



CHAPTER V 


CONCLUSIONS 


In this thesis, we have studied the comparison of three methods for solving 

the two-dimension unsteady advection-diffusion equation. The semi-discrete central 

scheme is easy to implement than the finite element method. The splitting technique 

reduces the difficult to handle the numerical approximation for the advection-diffusion 

by split into the hyperbolic equation and the parabolic equation, the hyperbolic and 

parabolic subproblems, which are of different nature, have been solved by two different 

methods. In this report, the hyperbolic equation has been solved numerically by the 

semi-discrete central scheme while the parabolic equation has been solved by the 

finite element method. We have demonstrated that all numerical methods tested in 

this work yield comparable results while applied to the model problems. 

The numerical experiments included linear and nonlinear advection-diffusion 

problems. Numerical tests of the linear problem is divided into two parts. First part, 
<2 

we perform the advection-diffusion problems with a constant velocity field and con­

stant diffusion coefficient. Second part, we test the advection-diffusion problems with 

velocity field is several and constant diffusion coefficient. 

This study can be summaries by 

(i) The semi-discrete central finite difference method is more accuracy than others. 

(ii) The operator splitting method is better converge than others. 

(iii) The operator splitting approach can be solve the nonlinear problem. 

(iv) Obviously, the semi-discrete central finite difference method is 50 times faster 

than others. 
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For a future work, we can improve an order accuracy of the operator split­

ting method(OSM) by using higher order the finite element(FEM). 

We will use a new grid such as triangular grid for solve the problem on 

irregular region. 
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