รายงานวิจัย

-
 เรือง

การเพาะเลี้ยงเนื้อเยื่อข้าวเหนียวพันธุต่างๆ ในภาคตะวันออกเฉียงเหนือ (Tissue Culture of Glutinous Rice in North-East of Thailand)

โดย

นางสาวพรรณณี รอดแรงบุญ นางสาวนารีรัตน์ มูลไจ
W.ศ. 2540

สารบัぬ
สารบัぬคาราง
สารบัぬภาพ
คำนำ
การตรวจเอกสาร
อุบกรณ์และวิธีการ
ผลการทดลอง 12
วิจารณ์ 38
สรุบ 40
เอกสารอ้างอิง 42
ภาศผนวก 44

สารรัดyาราง

ตารางที่

1 อาหารสังเคราะห์สูตร MS ดัคแบลงที่เติม 2, 4-D และ kinetin ระดับความเข้มขนต่าง ๆ เพื่อาช้เพาะเลี้ยงเมล็ดให้เกิดแคลลัส

2 อาหารสังเคราะห์สูตร MS ดัดแปลงที่เติม BA และ GA_{3} ระดับตวามเ ซ้มข้น ต่าง ๆ เพื่อใช้เพาะ เลี้ยง เมลั๊ดให้เกิดยอดหลาย ๆ ยอด

7 ผลการ เพาะ เลี้ยงข้าวพันธุอีเตี้ย ให้เจริญเบ็นแตลลัสานอาหารสัง เคราะห์ สูตร MS ตัดแยลงที่เติม $2,4-\mathrm{D}$ และ kinetin ในระดับความเข้มข้น ต่าง ๆ เบ็นเวลา 3 สับตาห์

สารบัญดาราง (ต่อ)

> ตารางที่

8 ผลการเพาะเลี้ยงนคลลัสที่เจริฉจากการเพาะเลี้ยงเมลัดจ้าวพับธุ์ก้านศาล อายุ 3 สับดาห์ ในอาหารสังเคราะห์สูตร Mร มัดแ้ลงที่เติม kinetin ใน ระตับความเข้มข้นต่าง ๆ เบ็นเวลา 4 สับดาห์

9 ผลการเพาะเลี้ยงแคลลัสที่เจริฉฉากการเพาะเลี้ยงเมลีด้้าวพับเุุช้าวตอ อายุ 3 สับดาห์ ในอาหารสั่งเคราะห์สูตร MS ดัดแบลงที่เติม kinet in $9 น$ ระดับความเข้มข้นต่าง ๆ เบิน: วลา + สับดาห์

10 ผลการเพาะเลี้ยงแศลลัสที่เจริดจากการเพาะเลี้ยงเมลี้ดข้าวพับธุ์ุึนเค่า อายุ 3 ส้ปดาห์ qนอาหารสังเคราะห์สูตร Mร ม้ดแบลงที่เติม kinet in ใน ระดับความเข้มข้นต่าง ๆ เบ็นเวลา 4 สั้บดาม์

11 ผลการเพาะเลี้ยงนคลลัสที่เจริฉจากการเพาะเลี้ยงเมล็ดข้าวพันรุนางต่า อายุ 3 สับดาห์ นนอาหารสังเคราะห์สูตร MS ด้ดแบลงที่เติม kinet in ใน ระดับดวามเข้มข้นต่าง ๆ เบ็นเวลา + สับดาห์

12 ผลการเพาะเสี้ยงแคลลัสที่เจริดจากการเพาะเลี้ยงเมลีดด้าวพ้มเธุออเตี้ย อายุ 3 สับดาห์ นนอาหารสังเคราะห์สูตร MS ดัดแบลงที่เติม kinetin $9 น$ ระดับความเข้มข้นต่าง ๆ เบ็นเวลา 4 สับดาห์

13 ผลการเพาะเสี้ยงข้าวพันธุ์้้านตาล ให้เจริฉเ เิ๊ยยอดหลาย ๆ ยอด ในอาหาร สังเคราะห์สูตร $M S$ ดัศแปลงที่เติม $B A$ นละ $G A_{3}$ นนระดับความเ ช้มข้ม ต่าง ๆ เป็นเวลา 4 สัปดาห์

สารบัญดาราง (ต่อ)

ตารางที่

14 ผลการเพาะเสี้ยงข้าวพันธุ์ข้าวดอ १ห้เจริฆเบ็นยอดหลาย ๆ ยอด ๆนอาหาร สังเคราะห์สูตร MS ดัดแบลงที่เติม BA และ GA_{3} ในระดับความเข้มข้ม ต่าง ๆ เบ็นเวลา 4 สัปดาห์

16 ผลโารเพาะเลื้ยงข้าวพันธุ์นางดำ วห้เจริゅเบั๊นยอดหลาย ๆ ยอด ในอาหาร สังเคราะห์สูตร MS ตัดแปลงที่เติม BA นละ GA_{3} ในระด้บความเข้มช้ม习่าง ๆ เป็นเวลา 4 สัปดาห์

17 ผลการเพาะเลี้ยงข้าวพันธุธ์อี้ดี้ย ให้เจริฉเบ็นยอดหลาย ๆ ยอด ในอาหาร สังเคราะห์สูตร MS ดัดแบลงที่เติม BA และ GA_{3} โนระดับความเข้มข้ม ต่าง $ๆ$ เบ็นเวลา 4 สัปดาห์

สารบัฯยาราง (ต่อ)

ตารางภาศผนวกที่

สารบัญภาพ

ภาพที่
1 ลักษณะ ของแคลลัสที่เชลล์เกาะกันหลวม ๆ (friable callus) 32
2 ลักษณะของแคลลัสที่ประกอบด้วยเชลล์ที่เกาะกันแน่น (Compact callus) และเซลล์ที่เกาะกันหลวม ๆ (friable callus) 33
3 ลักษณะบริเวณสี่เขียว (green spot) ที่เกิดบนแคลล้ส 34
4 ลักษณยยอดอ่อนที่พัมนามาจากแคลล้ส 35
5 ลักษณะการเกิดยอดจำนวนหลาย ๆ ยอด (multiple shoot) 36
6 ลักษะะต้นอ่อนที่นำออกบลูกในสภาพธรรมชาติ 37

คึานีา

ข้าว (Oryza sativa) เป็นพืษเศรยมิจจที่มีความสำตัญ่ต่อบระเทศใทย ภาคตะวันออก เฉียงเหนือ นับเบ็นแหล่งบลูกข้าวที่สัาคัฉม่งหนึ่งษองประเทศ แต่านบัจจุบันพบว่า ข้าวบางพันธุ ที่เกษตรกรบลูกเพื่อบริรภคนละส่งชาย มีผลผลิตต่องร่ค่อน้้างต่ำ ซึ่งสาเหตุมาจากต้นข้าวไม่ สามารถบรับตัวาด้นนสภาพแวดล้อมที่ไม่เหมาะสม เช่น สภาพความแห้งแล้ง สภาพคินเค็ม อีกทั้ง แม่ต้านทานต่อรรคแสะแมลงศ้ตรู ทรงต้นสูงหักล้มง่าย

ข้จจุบันเทคนิคการเพาะเลี้ยงเนื้อเยื่อได้เจ้ามามีบทบากต่อโครงการปรับบรุงพ้นธุุ้าว มากข้̆น เช่น สร้างสายพ้แเุ์กลายที่มลักษษะพึงบระสงต์ ได้แก่ สายพันรุ์ที่ทนเคึ่ม สายพันธ์ที่ ต้านทานต่อความแห้งแล้ง สายพันธุ์ที่ต้านทานต่อรรคหรือแมลงบางษนิต เบ็นต้น แต่อย่างเร กัตาม การที่จะใช้เทคนิศการเพาะเลี้ยงเนื้อเยื่อเพื่อให้เกิดผลด้งกล่าว จำเบ็นที่จะต้องศึกยา ข้อมูลพ้้นฐานเสียก่อน เพราะฉะนั้นในรครงการบรับบรุงพัเธ์ง้าวรตยใช้เทคนิคการเพาะเลี้ยง เนื้อเยื่อจีงจำงบี้นที่จะต้องศึกษาข้อมูลพ้้ฐานในการเพาะเลี้ยงเนื้อเข่อข้าว เพ่่ตท่จะนำข้อมูลกี่ ได้ใบาช้านโครงการบรับบรุงพันธุ์ช้าวานภาคตะ ว้นออกเดียงเหนีอ โดยาช้เทคนิคซั้นสูง เร่น

วัตถุบระสงค์

1. เพื่อหาสูตรอาหารที่เหมาะสมานการเพาะเลี้ยง เมล็ดข้าวพันธุ์ต่าง η เพ่อชักนำ ให้เกิดแคลลัส (cal lus) และหาสูตรอาหารที่เหมาะสมในการเพาะเลี้ยงแคลลัส เพื่อชัก นำให้เกิดต้นอ่อน
2. เพื่อหาสูตรอาหารที่เหมาะสมในการเพาะเลี้ยงเลม็ดข้าวพันธุ์ต่าง ๆ เพื่อชักนำ ให้เกิดยอดหลาย ๆ ยอด (multiple shoot)
3. เพื่อศึกยาวิธีการที่เหมาะสมในการย้ายต้นอ่อนออกบลูกในสภาพธรรมชาติ เพ่่อ ให้เกิดอัตราการรอดตายสูงสุด

การตรวจ\&อกสาร

ข้าวเบ็นธัดึสที่จัตอยู่ใน Family Gramineae Genus Oryza Sub-Tribe Oryzineae เป็นพื diploid มีจำนวนโครโมโซม $2 n=24$ (นพพร, 2526) เป็น พืชผสมตัวเอง (self fertilized crop) เกือบ 100 เปอร์เซนต์ จึงมีความเป็น homozygous สูง มียีนที่ควบคุมลักษณต่าง ๆ มากกว่า 300 ยีน (วาสนา, 2523) ประกอบด้วย 23 species โดยเป็นข้าวบ่า 21 species ข้าวปลูก 2 species ได้แก่ Oryza sativa มีปลูกกันทั่วไป และ Onyza glaberrima มียลูกเฉพาะาน แอพริกาเท่านั้น

สำหรับข้าวพวก 0 . sativa ซึ่งมีปลูกกันอย่างแพร่หลายในประเทศต่าง ๆ นั้น ได้ยึดถือเอาลักษณะายนอกของต้น เมลีด และเบอร์เซนต์เมลี๊ดลีบของข้าวลูกผสม (hybrid sterility) เบิ๊นหลักานการแบ่งออกเบี้น 3 พวก ได้แก่

1. Japonica เบิ้นข้าวที่บลูกในเซตอบอุ่น ได้แก่ จีน ถี่บุ่น เกาหลี เบั้นต้น
2. Indica เปี๊นข้าวที่ปลูกในเขตร้อน ได้แก่ เทย อินเดีย พิิบบินส์ เปี้นค้น
3. Javanica เบิ๊นข้าวที่ปลูกในอินโดนีเซียเท่านั้น

ปัจจุบันมีผู้น่าเทตนิคการ เพาะเลื้ยงเนื้อเยื่อ เข้ามาาซ้ร่วมในโครงการปร้บปรุงพพนธุ์ ข้าว รดยมีจุดบระสงค์แดกต่างกันไป เช่น ผลิตสายพันธุ์แท้ ผลิตพันธุ์์้านทานโรคหรือแมลง ผลิตพ้นธุ์ข้าวทนเต็มกนต่อสภาพความเป็นกรตหรือด่าง ทนต่อความแห้งนล้ง อย่างไรก็ตาม การที่จะบรรลุว้ตถุบระสงค์ดังกล่าวจ่าเบ็นจะต้องศึกษาเทคนิคการ เพาะเลี้ยง เนื้อเย่อข้าว พื้นฐานเสียก่อน ชื่งมีผู้บระสบผลสำเร็จในการทดลองเพราะเลี้ยงเนื้อเยื่อช้าวต่าง ๆ เป็น จำนวนมาก เช่น ุนช้าวพันธุ์ Kyoto Asahi (Nishi ed al., 1968) พันธุ์ Taichung No. 65 (Wu and Li, 1970) พันธุ์ Aichiasahi uละ Kinmaze (Meada, 1980) พ้นธุ์บาสมาติ 370 (Raina ey al., 1978 เผติมและคณะ 2532) ข้าวบ่าพันนุ์แพริกัน (Oryza langistaminate) (Boissot, 1990) พันชุ์ Lemont, Rico I, Rexmont, Taipe 309, IR 64 และ IR 36 (Peterson and Roberta, 1991)

การที่การเพาะ เลี้ยง เนื้อเยื่อข้าวไต้รับการพันาอย่างรวตเร็ว เนื่องมาจากชิ้นส่วน ของต้นเกือบทุกส่วน สามารถนำมาเพาะเลี้ยงให้สร้างแคลลัสได้ เมื่อย้ายแคลลัสที่ได้ไป เพาะเลี้ยงในสูตรอาหารที่เหมาะสม สามารถพ้ณาไปเบ็นต้นาหม่ที่สมบูรณ์ได้ (Henke และ คณ, 1978 : Vajrabaya และคณะ, 1986 : Wang และศ๓ะ, 1987)

Nabors และคณะ (1983) รายงานว่า การเพาะเลี้ยงเนื้อเยื่อโนธัณมพืชต่าง ๆ กลุ่มเซลล์ที่จะพัตมนาไบเบ็นพืชต้นใหม่ได้ต้องเบ็นแคลล้สซนิด E (embryogenic callus) สำหรับแคลลัสที่เกิดจากการเพาะเลี้ยงเนื้อเยื่อข้าวมีสีขาวหรือสึนวล ผิวแห้งมีปุ่มขมเล็ก ๆ และ แคลลัสชนิดที่มีสีเหลืองค่อนช้างนิ่ม โดยทั่วไปพบว่ามีแคลลัสมากกว่า 1 ชนิดอยู่ร่วมกัน ชั้นตอน การเปลี่ยนแบลงไบเบินพืชต้นใหม่ของแคลลัสทั้ง 2 ชนิดต่างกัน (Ling และตณะ, 1930) อาหารที่ใช้เพาะเลี้ยงทั่วไปมักส่งเสริมการเจริญุองแคลลัสชนิด NE (non embryogenic callus) แต่ยับยั้งการเจริฆของแคลลัสชนิด E (embryogenic callus) (รัชนี และดมเ, 2529) แคลลัสที่ชักนำได้จากเมล็ดหรือส่วนของศัพภะของข้าวส่วนใหมูจะเกิดจากบริเวณ scutellum และ mesocotyl bud แคลลัสที่เกิดจากบริเวณ scutellum นั้นเนื่องจาก การขยายตัวของเชลล์ pacenchyma และการแบ่งต้วของเซลล์ epithelium (พu และ Li, 1970 : Maeda, 1980)

Ketchum และศณะ (1987) รายงานว่า เมลั๊ดข้าวที่เจริญเคิบโตเจี๊มที่แล้ว เหมาะสมมากต่อการนำมาเพาะเลี้ยงเนื้อเยื่อเพราะจะให้การเกิดแคลลัสที่เบ็น embryogenic callus ที่สามารถัักนำให้เกิดเป็นต้นที่สมบูรณ์"ด้ดี ข้าวพ้นธุ่ท่าง ๆ มีการตอบสนองต่ออาหาร เพาะเลี้ยงแตกต่างก้น ทั้งการชักนำนตลลัสและชักนำให้เกิดต้น (Kamiya และฉศะ, 1988) ความสามารถที่จะพั้มนาไบเป็นต้นจะมีความแตกต่างก้นมากยิ่งกว่าอัตราการเกิดแคลล้ส ก้บความ สามารถที่จะพหผนาไปเบื้นต้นนั้นไม่เกี่ยวข้องก้นเช่นเดียวกับที่ควบดุมการเกิดแคลลัสจากเนื้อเยื่อ ส่วนต่าง ๆ ที่นำมาเพาะเลี้ยง (Davoyan, 1987)

อุบกรณ์

1. เมล็ดข้าว 5 สายพันธุ ไต้แก่ พันธุธ้านตาล พันธุช้าวดอ พันธุ์ตีนเต่า พนธุ์นางดำ และพันธุ์อีเตี้ย
2. สารเตมี
2.1 สารเคมีสำหรับเตรียมอาหารสูตร MS (Murashige และ Skoog, 1962)
2.2 สารดวบคุมการเจริฉเติบโตของพืพร ได้แก่ 2,4-D (2,4-Dichlorophenoxy acetic acid), kinetin (6-furfurylaminopurine), BA (Benzyl amino purine), GA_{3} (Gibberellic acid) และ casine hydrolysate
2.3 าเรตอะมิรน ได้แก่ proline. cysteine และ glutamine
2.4 สารเศมีสำหรับพอกม่าเซื้อ ได้แก่ คลอรอกช์ (clorox) หรือ haiter. สารเบียกใบ (ทวีน 20)
2.5 แอลกอฮอล์ -0 และ 95 เบอร์เซนต์
2.6 ยาสำหร้บบ้องก้นเชื้อรา
2.7 น้ำกลั่น
3. เครื่องมือและอุปกรณ์
3.1 เครื่องมือและอุบกรณ์ตี่ใช้สำหรับเตรียมอาหาร ได้แก่ หม้อนึ่งความดันทอน้ำ (autoclave) ขวดบรรจุอาหารพ้้อมผาบิด เครื่องชั่งไพพ้าแบบละเอียด เครื่องซั่งไพพ้าแบบ หยาบ เครื่องวัดความเบ็นกรด-ท่าง เดาไพพ้า เดาแก๊ส บีกเกอร์ กระบอกตวง แท่งแก้วคน และช้อนตักสาร
3.2 เครื่องมือและอุบกรณ์ตี่าช้สำหรับพอกม่าเซื้อ และถ่ายเนื้อเยื่อ ได้แก่ ตู ถ่ายเนื้อเยื่อ (laminar air flow cabinet) พลาสก์ ตะเกียงแอลกอฮอล์ จานแก้ว บาก คีบ มีดผ่าตัด
4. ห้อง พาะ เลี้ยง เนื้อ เยื่อ
4.1 อุบกรณ์ภายในห้องประกอบด้วยชั้นวางที่ติดตั้งหลอดไพเรื่องแสงสีชาว (cool
white) พร้อมเครื่องควบคุมเวลา (time switch) และเครื่องบรับอากาศ
4.2 สภาพแวดล้อมภายในห้องมีอุณภูมิประมาณ 25 ± 2 องศาเซลเชียส ช่วง แสง $16 / 8$ คือ มีแสงสว่าง 16 ชั่วโมง มืด 8 ชั่วโมง
5. วัสดุและภาชนะที่ใข้สำหรับบลูกต้นอ่อน ได้แก่ ดินนา จส่ลงในกระถางชนาดกว้าง 3 นิ้ว
6. อุบกรฉ์ที่ใช้สำหรับถ่ายภาพ

วิธีการ

การทดลองแบ่งออกเบ็น + การทดลอง ด้งนี้

การทดลองที่ 1 การหาสูตรอาหารที่เหมาะสมในการชักำให้เมล็ดข้าวพันธุ์่าง η เจริฆเป็นแศลลัส (callus)

นำเมลิ๊ดข้าวเบลือกพันธุ์ก้านตาล พ้นธุ์ข้าวดอ พ้ธธุ์ตีนเต่า พ้นธุ์นางดำ และพันธ์ อีเตี้ย มาแกะเอาเทลือกออก จากนั้นนำไบพอกม่าเชื้อที่ผิว (surface sterilization) โดยแช่เมล็ดข้าวุนสารละลายแอลกอฮอล์ -0 เปอร์เซ็นต์ นาน 3 นาที แล้วย้ายลงานสาร ละลายคลอรอกซ์ 10 เบอร์เซ็นต์ ที่เติมสารเบียกาบ (ทวีน 20) จำนวน $3-4$ หยด เขย่า เบันครั้งคราวนาน 30 นาที และล้างออกด้วยน้ำกลั่นที่นึ่งข่าเรื้อแล้ว 3 ครั้ง น่าเมล็ดาป เพาะเลี้ยงในอาหารส้งเคราะห์สูตร MS ดัดแบลง ที่มีสารควบคุมการเจริญเติบโต 2,4-D และ kinetin ที่ระดับความเข้มข้นต่าง ๆ ได้อาหารทั้งหมด 6 สูตร (ตารางที่ 1) โดย อาหารทุกสูตรจะเสริมด้วย casein hydrolysate 1 กรัมต่อลิตร และกรดอะมิรนบางชนิค ปรับความเบ็นกรด-ค่างเท่ากับ 5.6 นึ่งม่าเซื้อที่อุณหภูมิ 121 องศาเซลเชียส เบ็นเวลา 15 นาที นำไปเพาะเลี้ยงในสภาพแวดล้อมที่มีแสงสว่าง 16 ซั่วโมงต่อวัน อุณภภูมิ 25 ± 2 องศา เซลเชียส เบ็นเวสา 3 สัปดาห์ บันทึกผลถารทดลอง

ตารางที่ 1 อาหารสังเคราะห์สูตร MS ดัดแบลงที่เติม 2,4-D และ kinet in ระดับดวาม เข้มข้นต่าง ๆ เพื่อใช้เพาะเลี้ยงเมล็ดให้เกิดแคลลัส

สูศรอาหาร	สารควบคุมการเจริญเติบรห (มก./ล.)	
	2,4-D	kinelin
1	-	$-$
2	0.5	1.0
3	1.0	1.0
4	2.0	1.0
5	3.0	1.0
5	+. 0	1.0

การบันทีกผลการทดลอง
บันทึกเบอร์ร์เซนต์การเกิดแคลล้สและล้กษษะ ของแคลลัสที่เกิดขึ้น โดยใช้สัมดลักษณ์แทน จ้งนี้

C หมายถึง แคลลัสที่เชลล์เกาะกันแน่น (compact callus)
F หมายถึง แศลลัสที่เชลล์เกาะกันหลวม ๆ (friable callus)
T หมายถึง แคลลัสที่เซลล์อยู่ระหว่างแบบ C และ F ดังตัวอย่างแสดงในภาพที่ 1

การทดลองที่ 2 การหาสูตรอาหารที่เหมาะสมานการขักำแคลลัณต้ห้มคาเ เป็นต้น

นำแคลลัสที่ได้จากการเพาะเลี้ยง เมล็ดข้าวพ้นธุ์ต่าง ๆ ในอาหารสูตรที่เหมาะสมจาก การทดลองที่ 1 อายุ 3 สับดาห์ ไบเพาะเลี้ยงในอาหารสังเคราะห์สูตร MS ดัดแบลง ที่มี สารควบคุมการเจริฉเติบโต kinet in ระดับความเข้มข้นต่าง ๆ ก้น คือ $0,1,2,3,4$ และ 5 มิลสิกรัมต่อลิตร ได้อาหารทั้งหมด 6 สูตร โดยอาหารทุกสูศรจะเสริมด้วย case in hydrolysate 1 กรัมต่อลิตร และกรดอะมิโนบางชนิด ปรับความเบั๊นกรด-ต่างเท่ากับ 5.6 นึ่งม่าเชื้อทุ่อณหภูมิ 121 องศาเซลเชียสเป็นเวลา 15 นาที นำไบเพาะเลื้ยงในสภาพแวดล้อม เดิมเป็นเวลา 4 ส้ขดาห์ บ้นทีกผลการทดลอง

การบันทีกผลการทดลอง

G หมายถึง แคลลัสมีพื้นที่สีเ ขียวเกิดขึ้น
S หมายถึง แคลลัสห้ผนาไปเบ็นยอด
R นมายถึง แคลลัสพพตนาไปเบ็นราก
P หมายถึง แศลลัสพ้ผนาไบเบ็นยอด และราก
N หมายถึง แคลล้สไม่มีการเบลี่ยนแบลงไบเป็นยอด และราก

```
การทดลองที่ 3 การหาสูตรอาหารที่เหมาะสมนนการชักนำให้เมล็ดข้าวพัพธุุ ต่ำง ๆ เจริญเบ็นยอดหลาย ๆ ยอด (multiple shoot)
```

นำเมล็ดข้าวเปลือกพันธุ์ก้านหาล พันธุ์ข้าวดอ พันธุ์ตีนเตุ่า พันธุ์นางดำ และพันธุ์อีเตี้ย มาแกะเอาเปลือกออก จากนั้นนำไปพอกม่าเชื้อที่ผิว (surface sterilization) รดย แพ่เมล็ดข้าวभนสารละลายแอลกอฮอล์ 70 เบอร์เชนต์ นาน 3 นาที แล้วย้ายลงนนสารละลาย คลอรอกช์ 10 เบอร์เซ็นต์ที่เติมสารเบียกาบ (ทวีน 20) จำนวน $3-4$ หยด เซย่าเบ็นครั้ง คราว นาน 30 นาทึ และล้างออกด้วยน้ำกลั่นที่นึ่งม่าเขื้อแล้ว 3 ครั้ง นำเมลัดดไบเพาะเลี้ยง ในอาหารสังเคราะห์สูตร MS ดัดแบลงที่มีสารควบุุมการเจริゅเดิบโต BA และ GA_{3} ที่ระด้บ ความเข้มข้นต่าง ๆ ได้อาหารทั้งหมด 6 สูตร (ตารางที่ 2) โดยอาหารทุกสูตรจะเสริมด้วย casein hydrolysate 1 กรัมต่อลิตร และกรคอะมิโนบางชนิด ปรับความเบิ้นกรด-ท่าง เท่ากับ 5.6 นึ่งม่าเชื้อที่อุณหภูมิ 121 วงศาเซลเชียส เบินเวลา 15 นาที นำไปเพาะเลี้ยง วนสภาพมี่มีแสงสว่าง 16 ชั่วรมงต่อวัน อุญหภูมี 25 ± 2 องศาเชลเชียส เปีนเวลา + ส้ปดาห์ บันทีกผลการทดลอง

ตารางที่ 2 อาหารสังเคราะห์สูตร MS ดัดแบลงที่เติม 2,4-D และ kinet in ระดับดวาม เข้มข้นต่าง $ๆ$ เพื่อใช้เพาะเลี้ยงเมล็ดให้เกิตยอดหลาย ๆ ขอด

การบันทีกผลการทดลอง
บันทีกการ, กิดจำนวนยอด รดยาช้สัณม้กษณ์แทนดังนี้

+ หมายถึง จำนวนยอด $1-5$ ยอด
+ หมายถึง จำนวนยอด 6-10 ยอด
+++ หมายถึง จำนวนยอด 1:-15 ยอด
$+1+$ หมายถึง จำนวนยอด $16-20$ ยอด

การทตลองที่ 4 ศึกษาวิธีการที่เหมาะสมานการย้ายต้นอ่อนออกลลูกานสภาพซรรมษาดิ

เมื่อให้ต้นข้าวที่สมบูรณ์ ย้ายลงบลูกานกระถาง รดยแบ่งเบ็นขั้นตอนดังนี้

1. นำต้นอ่อนที่มีระบบยอดและรากดีมีความสูง $8-10$ เซนติเมตร ออกจากชวดเพาะ เลี้ยง นำไปล้างเอาว้้นออกให้หมด จากนั้นนำไปแช่านน้ำยาบ้องกันเชื้อราความเ ข้มข้น 4 กรัม ต่อลิตร นาน 3 นาที
2. นำต้นอ่อนที่ผ่านการแช่น้ำยาบ้องก้นเชื้อราแล้ว ไปปลูกๆนกระถางขนาดกว้าง 3 นิ้ว ชึ่งบรรจุดินนา โดยแยกบลูกต้นอ่อน 1 ต้น ต่อ 1 กระถาง จากนั้นนำกระถางไบวางไว้ วนสภาพแวดล้อมเดิม คือ มีแสงสว่าง 16 ชั่วโมงต่อวัน อุณภูมิ 25 ± 2 องศาเซลเชียส เป็น เวลา 1 สับดาห์
3. ย้ายกระถางออกมาวางในสภาพแวดล้อมตามธรรมชาหีเป็นเวลา 2 ส้ปดาห์ บ้นทีก ผลการทดลอง สถานที่ทำการทดลอง

ห้องทดลองเพาะเลื้ยง เนื้อเยื่อพืข ภาควิชาวิทยาศาสตร์ชืวภาพ ศณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราซธานี

ระยะเวลาทำการทตลอง

เริ่มทำการทดลองเดือน ตุลาศม 2539 สิ้นสุดการทดลองเดือน กันยายน 2540

๗สการทตลอง

การทตลองที่
 นคลลัส

จากการเหาะเลี้ยงเมลัดข้าวพันธุ่ต่าง ๆ १นอาหารสังเคราะห์สูตร Mร ดัคแบลงที่เดิม สารดวบคุมการเจริฆเติบรค $2,4-\mathrm{D}$ และ kinetin ในระดับความเ ม้มช้นต่าง $ๆ$ ก้น (ตารางที่ 1) พบวา อาหารทุกสูตรที่มีการเติมสารควบคุมการเจริฉเติบโ母 สามารดข้กนำ เมลี้ดให้เจริดเบ็นแคลลัสได้ โดยพบว่าเมื่อเพาะเลี้ยงเมล็ดข้าวได้บระมา๙ 2 ว้น จะมีการ
 มริเวแส่วนฐานชึ่งเปีนบริเวณเตียวก้บการงอกชองของต้นกล้า รดยแดลล้สที่เกิดศึ้นานระยะแรก จะมีสีเหลืองอ่อน ประกอบด้วยเชลล์ที่มีชนาดเลี๊ก มีทั้งแบบที่เชลล์เกาะก้นแน่น (compact callus) และแบบที่เซลล์เกาะกันหลวม ๆ (friable callus) ซึ่งจะพบว่าเกิดแยกก้น วนแต่ละก้อน แตตักัพมว่า มีแคลลัสบางก้อนที่ประกอบด้วยเซลล์ 2 ชนิดรวมกัน านสับดาห์ต่อมา
 เมื่อเพาะเลี้ยงครบ 3 สัปดาห์ พบว่า เบอร์เช็นต์การเกิดแคลลัสของข้าวแต่ละตัเธุ์นยอาหาร แต่ละสูตรจะมีค่าอยู่ระหว่าง $20-83$ เบอร์เซ็นต์ (คารางที่ 3-7) โดยสูตรอาหารที่เหมาะสม

1. ตับธุ์ท้านตาล ได้แก่ สูตรอาหาร MS ดัดนบลง ที่เมิมสารควบุุมการเจริฆเมิบโ円 2,4-D 3 มิลลิกรัมต่อลิตร นละ kinetin 1 มิลลิกรัมต่อลิตร โดยสามารถซ้กน่าให้เกิด แคลลัสเฉลี่ย 60 เขอร์เซ็นต์ (ตารางที่ 3)
2. พ้นธุ์ข้าวดอ ได้แก่ สูศรอาหาร MS ดัดแบลงที่เติมสารดวบุุบการเจริฯเติบรต 2,4-D 4 มิลลิกรัมต่อลิตร และ kinetin 1 มิลลิกรัมต่อลิตร โดยสามารถช้กำให้เกิด แคลลัสเฉลี่ย 51 เขอร์เซ็นต์ (ตารางที่ 4)
 2,4-D 2 มิลลิกรัมต่อลิตร และ kinetin 1 มิลลิกรัมต่อลิตร โดยสามารถชักนำาห้เกิด แคลลัสเฉลี่ย 83 เขอร์เซ็นต์ (ตารางที่ 5)
3. พัธธุ์นางคำ ได้แก่ สูตรอาหาร MS ดัดแบลงที่เดิมสารควบคุบการเจริఖเติบโศ 2,4-D 2 มิลลิกัรมต่อลิตร และ kinet in 1 มิลลิกรัมต่อลิตร รดยสามารถข้กนำให้เกิด แคลลัสเฉลี่ย 78 เบอร์เซ็นต์ (円ารางที่ 6)
 1 มิลลิกรัมต่อลิตร และ kinetin 1 มิลลิกรัมต่อลิตร รดยสามารดช้กำให้เกิดแคลลัส เฉลี่ย 59 เบอร์เซันต์ (ตารางที่ 7)

ตารางที่ 3 ผลการเพาะเลี้ยงช้าวพันธุก้านตาล ให้เจริญเป็นแศสลัสานอาหารสังเศราะห์สูตร MS ดัดแบลงที่เติม 2,4-D และ kinet in 9นระดับความเช้มช้นต่าง ๆ เป็น เวลา 3 สัปาดห์

สูตรอาหาร	จำนวนเมล็ด ที่เพาะเลี้ยง	ลักษณะ ของแคลลัสที่เกิดขึ้น			จำนวนเมล็ด ที่เกิดแคลลัส	\% การเกิด แคลลัส
		C	F	T		
1	100	-	-	-	-	-
2	100	4	7	9	20	20
3	100	4	5	14	23	23
$+$	100	10	19	25	54	54
5	100	11	16	33	60	60
6	100	7	15	29	51	51

C หมายถึง แดลลัสที่เซลล์เกาะก้นแน่น (compact callus)
F หมายถึง แคลลัสที่เชลล์เกาะก้นหลวม ๆ (friable callus)
T หมายถึง แคลลัสที่เชลล์อยู่ระหว่างแบบ C และ F

ตารางที่ 4 ผลการเพาะเลี้ยงข้าวพันธุ์ข้าวดอ วห้เจริญเป็นแคลลัสานอาหารสังเคราะห์สูตร MS タัดแบลงที่เติม 2,4-D และ kinet in १นระดับดวามเซ้มซ้นต่าง ๆ เป็น เวลา 3 สับาดห์

c หมายถึง แคลลัสที่เชลล์เกาะก้นแน่น (compact callus)
F หมายถึง แคลล้สที่เชลล์เกาะกันหลวม ๆ (friable callus)
T หมายถึ แคลล้สที่เชลล์อยู่ระหว่างแบบ C และ F

ตารางที่ 5	ผลการเพาะเลื้ยงข้าวพันธุ์ตีนเต่า ให้เจริญเป็นแคลลัสานอาหารสัง เคราะห์สูตร MS ตัดแบลงที่เติม 2,4-D และ kinetin ในระดับความเข้มข้นต่าง ๆ เป็น เวลา 3 สับาดห์					
สูตรอาหาร	จำนวนเมลิ๊ด ที่เพาะเลี้ยง	ลักษแะของแคลลัสที่เกิดขึ้น			จำนวนเมลัด ที่เกิดแคลลัส	\% การเกิด แคลลัส
		C	F	T		
1	100	-	-	-	-	-
2	100	11	16	33	60	60
3	100	17	20	35	72	-2
4	100	13	16	54	83	83
5	100	9	10	31	50	50
6	100	11	18	34	63	63

สัษลักษด์แนนลักษะยนลลัส

C หมายถึง แคลลัสที่เซลล์เกาะกันแน่น (compact callus)
F หมายถึง แคลลัสที่เชลล์เกาะกันหลวม ๆ (friable callus)
T หมายถึง แคลลัสที่เชลล์อยู่ระหว่างแบบ C และ F

ตารางที่ 6 ผลการเพาะเลี้ยงข้าวพันธุ์นางดำ ให้เจริฆเป็นแคลลัสานอาหารสังเศราะห์สูตร MS ดัดแบลงที่เติม 2,4-D และ kinet in ๆนระดับความเข้มท้นต่าง ๆ เป็น เวลา 3 สัปาดห์

สูตรอาหาร	จำนวนเมล็ด ที่เพาะเลี้ยง	ลักษณ ของแคลลัสที่เกิดขึ้น			จำนวนเมล็ด ที่เกิดแดลลัส	
		C	F	T		
1	100	-	-	-	-	-
2	100	15	18	18	51	51
3	100	10	19	30	59	59
+	100	11	26	41	78	78
5	100	16	12	38	66	66
6	100	14	18	39	71	71

C หมายถึง แคลลัสที่เซลล์เกาะกันแน่น (compact callus)
F หมายถึง แคลล้สที่เซลล์เกาะกันหลวม ๆ (friable callus)
T หมายถึง แคลลัสที่เชลล์อยู่ระหว่างแบบ C และ F

ตารางที่ 7 ผลการเพาะเลี้ยงข้าวพันธุ์อีเติ้ย ให้เจริฉเบ็็นแคลลัสานอาหารสังเคราะห์สูตร MS ด้ดแบลงที่เติม 2,4-D และ kinetin ไนระดับความเข้มพ้นต่าง ๆ เป็น เวลา 3 สัปาดห์

สูตรอาหาร	จำนวนเมล็ด ที่เพาะเลี้ยง	ลักษะะ ของแคลลัสที่เกิดขึ้น			จำนวนเมล็ด ที่เกิดแคลลัส	\% การเกิด แคลลัส
		C	F	T		
1	100	-	-	-	-	-
2	100	5	8	9	22	22
3	100	11	21	27	59	59
4	100	15	17	18	50	50
5	100	5	10	12	27	27
6	100	7	11	14	32	32

สัฯลักษต์ม ตนลักษะะนคลลัส

C หมายถึง แคลลัสที่เชลล์เกาะกันแน่น (compact callus)
F หมายถึ แคลลัสที่เชลล์เกาะกันหลวม ๆ (friable callus)
T หมายถึง แศลลัสที่เซลล์อยู่ระหว่างแบบ C และ F

การทดลองที่ 2 การหาสตรอาหารที่เหแาะสมดนการัักำนคลลัสาห้ตตนาเร็นต้น

เมื่อนำแคลลัสที่ได้จากการเพาาะเลี้ยงเมลั๊ดานอาหารสูตร MS ตัดแบลงที่เติมสาร ควบคุมการเจริฆเตินรฐ 2, +-D และ kinet in ความเข้มข้นที่เหมาะสมของข้าวแต่ละ พันธุ์อายุ 3 สับดาห์ ไบเพาะเลี้ยงในอาหารสังเคราะห์สูตร MS ดัดแบลงที่เติมสารควบคุม การเจริฉเติบโต kinet in ระดับความเข้มข้นต่าง ๆ ก้น คือ 01234 และ 5 มิลลิกรัมต่อลิตร พบว่า อาหารทุกสูตรสามารถชักนำแคลลัสาน้ท้พนนาเบ็นต้นที่สมบบูรณด้ด้ โดย สังเกตเห็นว่าในสับดาห์แรกจะเกิดบริเวดตึ้นที่สี่เขียว (green spot) บนิิวแคลลัส จาก นั้นบริ เวณพื้นที่สี เจียจจะมีการเบลี่ยนแบลงไบ เป็นยอดอ่อน รดยแตลลัสนต่ละก้อนจะเกิดยอด อ่อนจำนวนมม่เท่ากัน ซึ่งพบว่า เกิดยอตอ่อนตังแต่ 1-6 ยอดต่อแคลลัส 1 ก้อน และพบว่า จะมีการเจริฉูของรากเกิดี้้นในเวลาต่อมา ทำงห้าด้ต้นที่สมบูธ์์โตยามม้องนำยอดเบเพาะ เลี้ยงโนอาหารสูตรี่จะช้กำำห้หเกิดราก นอกจากนั้นย้งพบแคลลัสบางส่วนที่มีการเจริดของ รากขึ้นมาก่อน แต่นมพบว่ามีการเจริฉูตจงยอดตามมา และแคลล้สบางส่วนจะมีแม่การขยาย จนาดเท่านั้น มม่หบการเจริมูของทั้งยอดและราก หล้งจากทำการเพาะเลี้ยงเป็นเวลา 4 สัปดาห์ พบว่า เบอร์เชันต์การเกิตต้นชองอาหารแต่ละสูตรจะมีค่าอยู่ระหว่าง $20-75$ เบอร์เชันต์ (ตารางที่ 8-12) โตยอาหารสูตรที่เหมาะสมนนการช้กนำนคลล้สต้ห้พดนา เบ็นต้นได้ดี่กุ่สุดนนข้าวนต่ละพัเธุมีดังนี้ คือ

1. พัแธุ้ก้านตาล ได้แก่ สูตรอาหาร MS ดัดแบลงที่เติมสารควบมุมการเจริฉ เติบรต kinet in 2 พิลลิกรัมต่วลิตร รดยสามารถชักนำห้้เกิดต้นได้ 50 เขอร์เช์นต์ (ตารางที่ 8)
2. พันธุ์ร้าวตอ ได้แก่ สูตรอาหาร MS ดัดแบลงที่เติมสารดวบคุมการเจริญ เติบโต kinet in 2 มิลลิกร้มต่อลิตร โดยสามารถชักนำให้เกิดต้นได้ 60 เขอร์เชันต์ (ตารางที่ 9)
3. พันธุุศึนเต่า ได้มก่ สูตรอาหาร MS ดัดแบลงที่เติมสารดวบตุมการเจริมเติบโศ kinetin 2 มิลลิกรัมต่อลิตร รดยสามารถช้กนำให้เกิดต้นได้ 75 เปอร์เช็นต์ (ตารางที่ 10)
4. พัแธุ์นางตำ ได้แก่ สูตรอาหาร MS ด้ดแปลงที่เติมสารควบคุมการเจริดเติบโต kinetin 1 มิลลิกรัมต่อลิตร รดยสามารถชักนำให้เกิดต้นได้ 35 เขอร์เชันต์ (ตารางที่ 11)
 kinet in 3 มิลลิกร้มต่อลิตร รดยสามารถช้กนำให้เกิดต้นได้ 45 เขอร์เซั้น์ (ตารางที่ 12)

ตารางที่ 8 ผลการเพาะเลี้ยงแคลลัสที่เจริญจากการเพาะเลี้ยงเมล็ดข้าวพันธุ์ก้านตาล อายุ 3 สับดาห์ ในอาหารสังเคราะห์สูตร MS ดัดแบลงที่เติม kinet in ในระดับความ เข้มข้นต่าง ๆ เป็นเวลา 4 สับดาห์

ความเข้มข้น ของ kinetin (มก./ล.)	จำนวนแคลลัส ที่เพาะเลี้ยง	การเปลี่ยนแบลงชองแคลลัส					\% การเกิด ต้น
		G	S	R	P	N	
0	20	10	1	2	6	11	30
1	20	11	1	1	8	10	40
2	20	15	-	2	10	8	50
3	20	12	1	-	5	14	25
4	20	12	1	-	6	13	30
5	20	8	2	-	4	12	20

G หมายถึง แคลลัสมีพื้นที่สีเขียวเกิดซั้น
S หมายถึง แศลลัสัตนาไปเป็นยอด
R หมายถึง แคลลัสพัพนาไบเป็นราก
P หมายถึง แคลลัสััตนาไปเบ็นยอดและราก
N หมายถึง แคลลัสไม่มีการเปลี่ยนแบลงไปเป็นยอดและราก

ตารางที่ 9 ผลการเพาะเลี้ยงแคลลัสที่เจริฝุจากการเพาะเลี้ยงเมล็ดข้าวพันธุ์ข้ข้วคอ อายุ 3 สับดาห์ ในอาหารสังเคราะห์สูตร MS ดัดแบลงที่เติม kinet in १นระดับความ เข้มข้นต่าง ๆ เบ็นเวลา 4 สับดาห์

ความเข้มข้น	จำนวนแคลลัส ที่เพาะเลี้ยง	การเบลี่ยนแบลงของแคลลัส					$\%$ การเกิด ต้น
(มก./ล.)		G	S	R	P	N	
0	20	12	-	-	7	13	35
1	20	9	-	1	5	14	25
2	20	15	1	1	10	8	50
3	20	14	-	-	12	8	60
4	20	10	-	1	7	12	35
5	20	8	-	-	6	14	30

G หมายถึง แคลลัสมีพื้นที่สีเ ขียวเกิดชึ้น
S หมายถึง แคลลัสพัณนาไบเบินยอด
R หมายถึง แคลลัสพัผนาไบเป็นราก
P หมายถึง แคลลัสพัตนาไบเบ็นขอดและราก
N หมายถึง แคลลัสไม่มีการเปลี่ยนแบลงไบเป็นยอดและราก

ตารางที่ 10 ผลการเพาะเลี้ยงแคลลัสที่เจริฉจากการเพาะเลี้ยงเมล็ดข้าวพันธุ์ุีนเท่า อายุ 3 สัปดาห์ ในอาหารสังเคราะห์สูตร MS ตัดแบลงที่เติม kinet in ในระดับความ เข้มข้นต่าง ๆ เบ็นเวลา 4 สัปดาห์

ความเ ข้มข้น ของ kinet in (มก./ล.)	จำนวนแคลลัส ที่เพาะเลี้ยง	การ เปลี่ยนแบลงของแคลลัส					\% การเกิด ค้น
		G	S	R	p	N	
0	20	12	1	-	10	9	50
1	20	16	1	-	15	14	-5
2	20	12	-	-	9	9	$+5$
3	20	10	-	2	9	6	45
4	20	14	-	1	12	11	60
5	20	16	1	-	13	12	65

G หมายถึง แคลล้สมีพื้ที่สีเขียวเกิดซื้น
S หมายถึง แคลลัสพ้ผคนาไปเปี๊นยอด
R หมายถึง แคลลัสห้พนาไบเบ็นราก
P หมายถึง แคลลัสพ้มนาไบเบินยอดและราก
N หมายถึง แคลลัสไม่มีการเปลี่ยนแบลงไบเบ็๊นยอดและราก

ตารางที่ 11 ผลการเพาะเลี้ยงแคลล้สที่เจริぬจากการเพาะเลี้ยงเมล็ดข้าวพันธุ์นางดำ อายุ 3 สับดาห์ ในอาหารสังเคราะห์สูตร MS ดัดแบลงที่เติม kinet in ในระดับตวาม เข้มข้นต่าง ๆ เบ็นเวลา 4 สัปดาห์

ความเข้มข้น ของ kinetin (มก./ล.)	จำนวนแตลลัส ที่เพาะเลี้ยง	การ เบลี่ยนแบลงของแคลลัส					\% การเกิด ต้น
		G	S	R	P	N	
0	20	10	-	-	6	6	30
1	20	12	-	-	7	-	35
2	20	6	1	-	5	$+$	25
3	20	8	1	1	6	\pm	30
4	20	5	-	-	4	$+$	20
5	20	8	1	-	4	3	20
G หมายถึง แคลลัสมี้พื้เที่สีเ จียวเกิดซึ้น							
R หมายถึง แคลลัสผัตนาไบเบี้รราก							
P หม	ถึง แคลลัส\%ัมี่	รเปิน	บละ	ธัน			

ตารางที่ 12 ผลการเพาะเลี้ยงแคลลัสที่เจริฆจากการเพาะเลี้ยงเมล็ดข้าวพันธุ์อ์เตี้ย อายุ 3 ส้บคาห์ ในอาหารสังเคราะห์สูตร MS ดัดแปลงที่เติม kinet in ในระดับความ เข้มข้นต่าง ๆ เบ็ّนเวลา 4 สับดาห์

ความเข้มข้น ของ kinet in (มก./ล.)	จำนวนแศลลัสที่เพาะ เลี้ยง	การเบลี่ยนแปลงของแคลลัส					\% การเกิด ต้น
		G	S	R	P	N	
0	20	8	-	2	5	3	25
1	20	9	-	-	5	5	25
2	20	10	1	-	7	6	35
3	20	10	1	-	9	8	45
$+$	20	12	-	-	10	10	50
5	20	11	-	-	8	8	40

G หมายถึง แคลลัสมีพื้ที่สีเขียวเกิดขึ้น
S หมายถึง แคลลัสห้ตนาไบเบี๊นยอด
R หมายถึง แคลล้สห้ศณาไบเบินราก
p หมายถึง แคลล้สห้ผนาไบเบ็นยอดและราก
N หมายถึง แคลล้สไม่มีการเบลี่ยนแบลงไปเบ็นยอดและราก

การทดลองที่ 3 การหาสูรอาหารที่เหมาะสมานการษักนำาห่เมล็ตข้าวพันรุต่าง ๆ เจริยเป็น ยอดหลาย ๆ ยอด

จากการเหาะเลี้ยงเมล็ดข้าวพันธุ์ต่าง ๆ ในอาหารสังเคราะห์สูตร MS ด้ดแบลงที่เติม สารควบคุมการเจริษเติบโต BA และ GA_{3} ในระดับความเข้มซ้นต่าง ๆ (ตารางที่ 2) พบ ว่า อาหารทุกสูตรที่มีการเติมสารควบคุมการเจริญเดิบรต สามารถช้กนำให้เมลิ์คเกิดยอดหลาย ๆ ยอดได้ รดยพบว่า เมื่อเพาะเลี้ยงเมล็ดข้าวได้ประมาณ 2 วัน จะมีการงอกของต้นกล้าบริเวณ ส่วนของคัพภะ และภาษใน 2 สัแดาห์จะมียอดจำนวนหลาย ๆ ยอดเกิดซื้น เมื่อเพาะเลี้ยงตรบ 4 สัปดาห์ พบว่า การเกิดยอดของข้าวแตะะพนธุุ์นนอาหารแต่ละสูตรจะมีค่าอยู่ระหว่าง $1-20$ ยอด รดยอาหารสูตรที่เหมาะสมในการชักนำเมลัดดให้เกิดยอดหลาย ๆ ยอดได้ดีที่สุต ในข้าว แต่ละพันธ์่มีดังนี้ คือ

1. พันธุก้านตาล ได้แก่ สูตรอาหาร MS ตัดแบลงที่เดิมสารควบศุมการเจริญเเหิบร円 BA 5 มิลลิกรัมต่อสีตร และ $\mathrm{GA}_{3} 1$ มิลลิกร้มต่อลิตร โดยสามารถช้กนำดห้เกิดจำนวนยอด อยู่ระหว่าง 16-20 ยอด (ตารางที่ 13)
2. พัแธุ์ช้าวดอ ได้แก่ สูตรอาหาร MS ดัดแบลงที่เจิมสารควบคุมการเจริญเคิบรด BA 10 มิลลิกรัมต่อลิตร และ $G A_{3} 1$ มิลลิกรัมต่อลิตร โดยสามารถช้กนำให้เกิดจำนวนยอด อยู่ระหว่าง $16-20$ ยอด (ตารางที่ 14)
3. พันธุ์ตีนเต่า ได้แก่ สูตรอาหาร MS ดัดแปลงที่เติมสารควบคุมการเจริषเติบโศ BA 15 มิลลิกรัมต่อลิตร และ $\mathrm{GA}_{3} 1$ มิลลิกรัมต่อลิตร โดยสามารถชักนำให้เกิดจำนวนยอด อยู่ระหว่าง $16-20$ ยอด (ตารางที่ 15)
4. พันธุ์นางทำ ได้แก่ สูตรอาหาร MS ดัดแบลงที่เติมสารควบคุมการเจริఖเติบโค BA 10 มิลลิกรัมต่อลิตร และ $\mathrm{GA}_{3} 1$ มิลลิกรัมต่อลิตร โดยสามารถชักนำให้เกิดจำนวนยอด อยู่ระหว่าง $16-20$ ยอด (ตารางที่ 16)
5. พันธุ์ีเตี้ย ได้แก่ สูตรอาหาร MS ดัดแบลงที่เติมสารควบคุมการเจริฉเติบโต BA 10 มิลลิกรัมต่อลิตร และ $\mathrm{GA}_{3} 1$ มิลลิกรัมต่อลิตร โดยสามารถชักนำให้เกิดจำนวนยอด อยู่ระหว่าง $16-20$ ยอด (ตารางที่ 17)

ตารางที่ 13 ผลการเพาะเลี้ยงข้าวพัพธ์กุก้านตาล १ห้เจริญเป็นยอดหลาย ๆ ยอดในอาหาร สังเคราะห์สูตร MS ด้ดแบลงที่เติม BA และ GA_{3} 9นระดับความเข้มข้น ต่าง ๆ เบ็นเวลา 4 สับดาห์

สูตรอาหาร	จำนวนเมล็ดที่เพาะเลี้ยง	ค่าเฉลี่ยจำนวนยอดที่เกิดขึ้น่อ 1 เมล็ด
1	30	+
2	30	++
3	30	++++
4	30	+++
5	30	++
6	30	++
สัฯลักษ์์บบจำนวนยอด		
+	หมายถึง จำนวนยอด 1-5	ยอด
+	หมายถึง จำนวนยอด 6-10	ยอด
	หมายถึง จำนวนยอด 11-15	ยอด
	หมายถึง จำนวนยอด 16-20	ยอด

ตารางที่ 14 ผลการเพาะเลี้ยงข้าวพันธุ์ข้าวดอ ให้เจริญเป็นยอดหลาย ๆ ยอดในอาหาร สังเคราะห์สูตร MS ดัดแบลงที่เติม BA และ GA_{3} ในระดับความเข้มข้น ต่าง ๆ เป็นเวลา 4 สัปดาห์
สูตรอาหาร คำนวนเมล็ดที่เพาะเลี้ยง ค่าเฉลี่ยจำนวนยอดที่เกิดข้้นต่อ 1 เมลัด

1	30	+
2	30	++
3	30	+++
4	30	+++
5	30	++
6	30	++

สัญลักษฺ์ยนนจำนวนยอด
$\begin{array}{lllcl}+ & \text { หมายถึง } & \text { จำนวนยอด } & 1-5 & \text { ยอด } \\ ++ & \text { หมายถึง } & \text { จำนวนยอด } & 6-10 & \text { ยอด } \\ +++ & \text { หมายถึง จำนวนยอด } & 11-15 & \text { ยอด } \\ +++ & \text { หมายถึง จำนวนยอด } & 16-20 & \text { ยอด }\end{array}$

ตารางที่ 15 ผลการเพาะเลี้ยงข้าวพันธุ์ตีนเต่า ให้เจริญเบ็นยอดหลาย ๆ ยอดในอาหาร สังเ甲ราะห์สูตร MS ดัดแบลงที่เติม BA และ GA_{3} ในระดับความเซ้มชน ต่าง ๆ เบ็นเวลา 4 สัยดาห์

สูตรอาหาร	คาานวนเมล็ดที่เพาะเลี้ยง	ค่าเฉลี่ยจำนวนยอดที่เกิดชึ้นต่อ 1 เมลัด
1	30	+
2	30	++
3	30	+++
4	30	+++
5	30	++
6	30	++

สั\&ลักษ่นมนจำนวนยอด

| + | หมายถึง จำนวนยอด | $1-5$ | ยอด |
| :--- | :--- | :--- | :--- | :--- |
| + | หมายถึง จำนวนยอด | $6-10$ | ยอด |
| ++ | หมายถึง จำนวนยอด | $11-15$ | ยอด |
| ++++ | หมายถึง จำนวนยอด | $16-20$ | ยอด |

ภาพที่ 2 ลักษณะองแคลลัสที่ประกอบด้วยเซลล์ที่เกาะกันแน่น (compact callus) และเชลล์ที่เกาะกันหลวม ๆ (friable callus)

ภาพที่ 3 ลักษณะริิเวณสีเขียว (green spot) ที่เกิดบนแคลลัส

ภาพที่ 4 ลักษณะยอดอ่อนที่ทันนามาจากแคลลัส

ภาพที่ 5 ลักษณะการเกิดยอดอ่อนจำนวนหลาย ๆ ยอด (multiple shoot)

ภาพที่ 6 ลักษณะต้นอ่อนที่นำออกบลูกในสภาพธรรมชาติ

วจารณ์

ในการเพาะเลี้ยงเมล็ดข้าวพันธุ่ต่าง ๆ 5 พันธ์ ในอาหารสังเคราะห์สูตร MS ต้ดแบลงที่เติมสารดวบคุมการเจริมเติบรต 2,4-D และ kinet in 9 นระดับความเช้มข้น ต่าง ๆ 6 สูตร เมื่อชักำให้เกิดแคลล้ส พบว่า อาหารแต่ละสูตรมีมลต่อการเกิดนคลลัส นนข้าวแต่ละพันธุ์แตกต่างกันไบ รดยพบว่า อาหารที่สามารถช้กนำเมล์ดให้เกิดแคลลัสาดีดีที่สุด ในข้าวแต่ละพันธุ์ คือ อาหารสูตร MS จ้ดแแลงที่เติมสารควบคุมการเจริฆเติบโต $2,4-\mathrm{D}$ 1-4 มิลลิกรัมต่อลิตร และ kinet in 1 มิลลิกรัมต่อลิตร โดยสามารถชักนำหห้เกิดแคลลัส ได้ 51-83 เบอร์เซ็นต์ ซึ่งผลการทดลองนี้สอดคล้องกับการทดลองชอง Raina นละ คณะ (1993) ที่ได้ใช้ $2,4-\mathrm{D}$ และ kinet in วนการรักนำให้เกิดแคลลัส โดยพบว่าเมื่อทำการ เพาะเลี้ยงเมล็็ดข้าวได้ 1 สัปดาห์ จะสังเก円เห็นแคลลัสเจริมอาจากเน้้อเบื่อ ในส่วนของ scutellum ชึ่งในบริเวจนี้จะ เบี้นบริเวฉตึ่มีการแ่งต้วอย่างรวดเร็ว (Siriwardana และ Nabors, 1983; Gosal และคณะ, 1993) และลักษมะ ของแคลลัสที่เกิดจิ้นสามารถ แบ่งออกาด้เบัน 2 หนิด ตือ แคลล้สกี่ประกอบต้วยเซลล์ขนาดเลิ๊ก สีขาวหรือสีเหลือง ผิวแห้ง เซลล์เกาะกันแน่น ค่อนข้างแจัง ซึ่งเบินล้กยมฉของ embryogenic callus มีความ สามารถในการพ้ผผาเปีนต้นาด้ (Nabors และคณะ, 1983; Ketchum และศดะ, 1987; Vajrabhaya และคุะ, 1989) และเคลลั้สที่ยระกอบต้วยเชลล์ขนาดเล็๊กสีเหลือง ผิวค่อน ข้างนิ่ม เซลล์เกาะกันอย่างหลวม ๆ ซึ่งเบินล้กษมะของ non-embryogenic callus ไม่มีความสามารถพัตนาไปเป็นต้น จากจำนวนแคลล้สที่เกิดจะมีแคลลัสทั้ง 2 ชนิด เกิดจั้นนน จำนวนกี่ใกล้เตียงกัน นั่นแสดงว่าอาหารที่าช้นนการเพาะเลี้ยงสามารถส่งเสริมการเจริฉุของ แคลลัสทั้ง 2 ชนิด

ในการทตลองช้กนำแคลลัสให้พ้ผคาเป็นด้นนั้น ได้าช้แคลลิสที่มาจากการเพาะเลี้ยง เมลี๊ดในอาหารสูตรที่เหมาะสมจากการทดลองที่ 1 ของข้าวแต่ละะันธุ์ อายุ 3 สัปดาห์ มาทำ การทตลอง รดยนำมาเพาะเลี้ยงในอาหารสั้งเคราะห์สูตร MS ตัแแบลงที่เมิมสารควบดุม การเจริญเเติบรต kinet in ในระดับดวามเข้มข้นต่าง ๆ 6 สูตร ซึ่งพบว่า อาหารแต่ละ สูตรมีผตต่อการเกิดต้นในข้าวแต่ละพันรุนตกต่างกันไป โดยพบว่า อาหารที่สามารดช้กนำ แคลลัสให้เกิดต้นได้ดีที่สุดในข้าวแต่ละพ้นธุ์ คือ อาหารสูตร MS ตัคนบลงที่เติมสารควบดุมการ เจริมเติบโต kinetin 1-3 มิลลิกรัมต่อลิตร โดยสามารถชักนำให้เกิดต้นได้ $35-75$ เบอร์เซ็นต์ และจากการทดลองพนว่า kinet in นอกจากชักนำให้เกิดยอดแล้วยังมีอากเกิด

เกิดขึ้นด้วย ทำให้ได้ต้นที่สมบูรณ์ ที่เบ็นเช่นนี้อาจเบ็นเพราะว่าในซั้นตอนที่ขักนำเมล็ดให้เจริญ เบ็นแคลลัสนั้นได้ทำการเพาะเลี้ยงเมล็ดในอาหารสูตรที่มีสารดวบคุมการเจริฆเดิบรต ในกลุ่ม ออกซิน ตือ $2,4-\mathrm{D}$ ชื่งสามารถชักนำให้เกิดรากได้ ทำให้แคลลัสมีการสะสมของสารควบคุม การเจริญกลุ่มนี้อยู่ เมื่อนำมาชักนำให้พเนาเบ็นต้น จึงมีรากเกิดซื้นด้วย

สรูบ

จากการเพาะ เ ลี้ยงข้าวพันธุ์ต่าง ๆ ในภาคตะวันออกเฉียงเหนือ พบว่า

1. พันธุก้านตาล สามารถชักนำให้เกิดแคลลัสได้ดีที่สุดในอาหารสูตร MS ดัดแบลง ที่เติมสารควบคุมการเจริฉเติบรต $2,4-D \quad 3$ มิลลิกรัมต่อลิตร และ kinetin 1 มิลลิกรัม ต่อลิตร รดยสามารถชักนำให้เกิดแคลลัสได้ 60 เบอร์เช็นต์ ชักนำแคลลัสให้พนาเป็นต้นได้ ดีที่สุดานอาหารสูตร MS ดัดแบลงที่เติมสารควบคุมการเจริฒเติบโต kinetin 2 มีลลิกรัม ต่อลิตร รดยสามารถชักนำให้เกิดต้นได้ 50 เบอร์เชันต์ และชักนำเมล็ดๆห้เกิดยอดหลาย ๆ ยอดได้ดีที่สุดในอาหารสูตร MS ตัดแปลงที่เติมสารศวบคุมการเจริषยทิบโค BA 5 มิลลิกรัม ต่อลิตร และ $\mathrm{GA}_{3} 1$ มิลลิกรัมต่อลิตร รดยสามารถชักนำให้เกิดยอดได้ $16-20$ ยอด
2. พันธุ์ข้าวคอ สามารถช้กนำไห้เทิดแคลล้สได้ดีที่สุดในอาหารสูตร MS ว้ดแบลง ที่เติมสารควบคุมการเจริฉเติบรต $2,4-D+$ มิลลิกร้มต่อลิตร และ kinetin 1 มิลลิกรัม ต่อลิตร รดยสามารถั้กนำให้เกิดแคลล้สไต้ 51 เปอร์เซั้นต์ จักนำแศลล้สไห้พ้นาเบี้นต้นได้ ดีที่สุด วนอาหารสูตร MS ดัดแบลงที่เจิมสารควบคุมการเจริญเทิบโต kinetin 3 มลลิกรัม ต่อลิตร รดยสามารถชักนำให้เกิดต้นได้ 60 เปอร์เชิ๊นต์ และชักนำเมลี๊ดาห้เกิดยอดหลาย ๆ ยอดได้ตีที่สุด วนอาหารสูตร MS タัดแบลงที่เติมสารควบคุมการเจริฉเทิบรต BA 10 มิลลิกรัม ต่อลิตร และ $G A_{3} 1$ มิลลิกรัมต่อลิตร รดยสามารถักนำให้เกิดยอดไค้ 16-20 ยอด
3. พันธุตีนเต่า สามารถชักนำาห้เกิดแตลล้สได้ดีที่สุดานอาหารสูตร MS ลัดแบลง ที่เติมสารตวบคุมการเจริฉเติบโต 2,4-D 2 มิลลิกรัมต่อลิตร และ kinetin 1 มิลลิกรัม ต่อลิตร โดยสามารถชักนำให้เกิดแคลล้สได้ 83 เบอร์เชี้นต์ ชักนำแคลลัสทหข้นาเบี้นต้นได้ ดีที่สุด ในอาหารสูตร MS ตัดแบลงที่เติมสารดวบคุมการเจริญเติบรด kinetin 1 มิลลิกรัม ต่อลิตร รดยสามารถัักนำให้เกิดต้นได้ 75 เบอร์เซี่นฬ์ และชักนำเมล็ดาห้เกิดยอตหลาย ๆ ยอดได้ดีที่สุด ในะาหารสูตร MS ตัดแบลงที่เติมสารศวบคุมการเจริญเติบโด BA 15 มิลลิกรัม ต่อลิตร และ $\mathrm{GA}_{3} 1$ มิลลิกรัมต่อลิตร รดยสามารถช้กนำให้เกิดยอดได้ $16-20$ ยอด
4. หัแธุนางดำ สามารถชักนำวห้เกิดแคลลัสได้ดีที่สุดานอาหารสูตร MS タัดแปลง ที่เติมสารควบตุมการเจริฌเติบโต $2,4-\mathrm{D}$ 2 มิลลิกรัมต่อลิตร และ kinetin 1 มิลลิกรัม ต่อลิตร รดยสามารถชักนำให้เกิดแคลลัสได้ 78 เปอร์เซ็นต์ ซักนำแคลลัสทห้พนาเปีนต้นได้ ดีที่สุด ในอาหารสูตร MS ดัดแปลงที่เติมสารควบคุมการเจริญเติบโต kinet in 1 มิลลิกรัม ต่อลิตร โดยสามารถซักนำให้เกิดต้นได้ 35 เปอร์เชันต์ และชักนำเมลิ๊ดให้เกิดยอดหลาย ๆ

ยอดได้ดีที่สุด ในอาหารสูตร MS ดัดแปลงที่เติมสารควบุุมการเจริญเติบโด BA \%0ิลลิกรัม ต่อลิตร และ $\mathrm{GA}_{3} 1$ มิลลิกรัมต่อลิตร โดยสามารถชักนำให้เกิดยอดไต้ $15-20$ ยอด
5. พันธุ์อีเตี้ย สามารถัักนำให้เกิดแคลลัสได้ดีที่สุดในอาหารสูตร MS ดัดแปลง ที่เติมสารควบคุมการเจริญเติบรต $2,4-\mathrm{D}$ 2 มิลลิกรัมต่อลิตร และ kinetin 1 มิลลิกรัม ต่อลิตร โดยสามารถชักนำให้เกิดแคลลัสได้ 59 เปอร์เซ็นต์ ชักนำแคลลัสให้พพนาเป็นต้นได้ ดีที่สุด ในอาหารสูตร MS ดัดแบลงที่เติมสารควบคุมการเจริฆเติบโต kinetin 4 มิลลิกรัม ต่อลิตร รดยสามารถชักนำให้เกิดต้นได้ 50 เบอร์เช็นต์ และชักนำเมล็๊ดให้เกิดยอดหลาย ๆ ยอดได้ดีที่สุด ในอาหารสูตร MS ดัดแบลงที่เติมสารควบคุมการเจริఖเติบรต BA 10 มิลลิกรัม ต่อลิตร และ $\mathrm{GA}_{3} 1$ มิลลิกรัมต่อลิตร โดยสามารถักนำให้เกิดยอดใด้ $16-20$ ยอด
6. อัตรากการอยู่รอดของต้นอ่อน เมื่อนำออกบลูกในสภาพธรรมชาติของข้าว ทุกพันธุ์เท่ากับ 100 เปอร์เชัินต์

อกศสารอ้างอิง

นพพร สายัมพล. 2536. เทคนิคการปรับปรุงพันธุ๋พืพ. ภาควิษาพืชไร่นา คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพา. 123 น.
เผดิม ระติสุนทร ประดิษฐ์ พงศ์ทองคำ เสาวนีย์ สุพุทธิธาดา และสุพรรณี แก่นสาร. 2532. การเพาะเลี้ยงเนื้อเยื่อจ้าวพันธุ์บาสมาติ 237 . ว.เกษตรศาสตร์ (วิทย.) 23(3) : 205-210.
รัชนี จำปาเทศ บระดิษฐ์ พงศ์ทองคำ และอธิ เจริญุรัพย์. 2529. อิทธิพลของ น้ำมะพร้าวระยะต่าง ๆ ต่อการเจริญเติบโตของยอด ราก และแคลลัสโนข้าว. วารสารวิทยาศาสตร์เกษตร $11(6): 379-387$.

วาสนา พลารักษ์. 2523. ข้าว. ภาควิชาพืษศาสตร์ คณะ เกษตรศาสตร์ มหาวิทยาลัย ขอนแก่น, ขอนแก่น. 76 น.

Boissot, N., M. Valdez and E. Guiderdoni. 1990. Plant regeneration from leaf and seed-derived calli and suspension culture of the African perennial wild rice (Oryza longgistaminate). Plant cell Rep. 9 : 447-450.

Davoyan, E.I. 1987. Genetic determination of the processes of callus formation and induction of regenerates in the tissue culture of rice. Rice Abstr. 10 : 238.

Evans, D.A. and W.R. Sharp. 1983. Single gene mutations in tomato Plants regenerated from tissue culture. Science 221 : 949-951.

Henke, R.R., M.A. Mansure and M.J. Constantin. 1978. Organogenesis and plantlet formation from organ and seedling-derived calli of rice (Oryza sativa) Physio. Plant. 44 : 11-14.

Kayima. M., H. Yamanaka and K. Oono. 1988. Intervarietai variations of somatic embryogenesis in rice (Oryza sativa L.). Publ. Natt. Inst. Agrobiol. Resour. 4 : 127-151.

Ling, D.H., W.Y. Ghen, M.F. Chen and Z.R.Ma. 1963. Somatic embryogenesis and plant regeneration in an interspecific hybrid of Oryza. Plant Cell Rep. 2 : 169-171.

Maeda,. E. 1980. Organogenesis and cell culture in rice plants under sterile condition (Part I). JARQ 14 : 4-8.

Nabors, M.W., Heyser, T.A. Dydes and L.J.De Mott.. 1983. Loang duration, night frequency plant regeneration form cereal tissue cultures. Planta 157 : 385-391.

Nishi. T.,Y. Yamada and E. Takahashi. 1968. Organ redifferentiation and plant restoration in rice callus. Nature 219 : 508-509.

Peterson. G. and S. Raina. S.K.. P. Sathish and K.S. Sarma. 1987. Plant regeneration from in vitro cultures of anthers and mature seeds of rice (Oryza sativa L.) Basmati-370. Plant Cell Rep. $6: 43-45$.

Vajrabhaya, M., O Tunvachkul and T. Vajrabhaya. 1986. Effects of auxin and cytokinin on plant regeneration from rice callus. J. Sci. Res. Chula. Univ. 11(2) : 112-115.

Wang, M.S., F.J. Zapata and D.C. De Castro. 1987. Plant regeneration through somatic embryogenesis from mature seed and young inflorescence of wild rice (Oryza Perennis Maench). Plant cell Rep. 6 : 249-296.

Wu, L. and H.W. Li. 1970. Induction of callus tissues initiation from different somatic organs of rice plant of various concentration of 2,4 -dichlorophenoxy acetic acid. Cytologia 36 : 411-416.

