

การวิเคราะห์ปัญหาเสถียรภาพแรงดันไฟฟ้าด้วยวิธีเส้นทางการไหลวิกฤต ของกำลังไฟฟ้า

ณัฐพล ศิลปชัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยอุบลราชธานี ปีการศึกษา 2560 ลิขสิทธิ์เป็นของมหาวิทยาลัยอุบลราชธานี

ANALYSIS OF VOLTAGE STABILITY USING CRITICAL POWER FLOW PATHS

NUTTAPOL SINLAPACHAI

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING MAJOR IN ELECTRICAL ENGINEERING FACULTY OF ENGINEERING UBON RATCHATHANI UNIVERSITY ACADEMIC YEAR 2017 COPYRIGHT OF UBON RATCHATHANI UNIVERSITY

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จได้ด้วยความกรุณาจากผู้ช่วยศาสตราจารย์ ดร.คมสันติ์ ดาโรจน์ อาจารย์ที่ปรึกษาวิทยานิพนธ์และคณะกรรมการทุกท่านที่ให้ความช่วยเหลือ ให้คำแนะนำและ ข้อคิดเห็นมาตลอดระยะเวลาที่ทำการศึกษาเป็นอย่างดี

ขอขอบคุณ นางลัดดาวัลย์ วงศ์สุคนธนิตย์ ที่ให้คำแนะนำเรื่องเกี่ยวข้องกับวิทยานิพนธ์ และ นายสมนึก เวียนวัฒนชัย ผู้ช่วยสอนปฏิบัติการที่ให้คำแนะนำโปรแกรมคำนวณการไหลของกำลังไฟฟ้า นายต้องยศ แช่มช้อย นางสาวปานทิพย์ จันทร์สมุด ที่คอยอยู่เป็นเพื่อนปรึกษาและคอยให้กำลังใจ ตลอดการจัดทำวิทยานิพนธ์ฉบับนี้

ขอขอบคุณ ครอบครัว และเพื่อนที่คอยเป็นกำลังใจให้มาโดยตลอด และสุดท้ายนี้ขอขอบคุณ ผู้ที่ไม่ได้เอ่ยนามที่ให้ความช่วยเหลือและเป็นกำลังใจในทุก ๆ ด้านจนกระทั่งวิทยานิพนธ์ฉบับนี้สำเร็จ ลุล่วงไปด้วยดี

> ณัฐพล ศิลปชัย ผู้วิจัย

บทคัดย่อ

เรื่อง	:	การวิเคราะห์ปัญหาเสถียรภาพแรงดันไฟฟ้าด้วยวิธีเส้นทางการไหลวิกฤตของ		
		กำลังไฟฟ้า		
ผู้วิจัย	:	ณัฐพล ศิลปชัย		
ชื่อปริญญา	:	วิศวกรรมศาสตรมหาบัณฑิต		
สาขาวิชา	:	วิศวกรรมไฟฟ้า		
อาจารย์ที่ปรึกษา	:	ผู้ช่วยศาสตราจารย์ ดร.คมสันติ์ ดาโรจน์		
คำสำคัญ	:	เสถียรภาพแรงดันไฟฟ้า, การไหลของกำลังไฟฟ้าแบบต่อเนื่อง, การวิเคราะห์		
		เส้นทางการไหลวิกฤต, ระบบจำหน่าย		

ความสามารถในการรับโหลดสูงสุดของระบบ เป็นดัชนีที่ใช้ประเมินสมรรถนะของระบบส่งไฟฟ้า สามารถใช้ในขั้นตอนการวางแผนระบบผลิตและส่งไฟฟ้าในทางทฤษฎีโหลดสูงสุดของระบบจะถูก จำกัดด้วยเสถียรภาพแรงดันไฟฟ้าเสมอ ในการคำนวณต้องใช้การจำลองการเพิ่มขึ้นของเครื่องกำเนิด ไฟฟ้าและโหลด วิทยานิพนธ์ฉบับนี้นำนำเสนอผลการวิเคราะห์ปัญหาเสถียรภาพแรงดันไฟฟ้าของ ระบบไฟฟ้ากำลังโดยเปรียบเทียบ 2 วิธีระหว่างวิธีการไหลของกำลังไฟฟ้าแบบต่อเนื่องซึ่งเป็นวิธีที่ ได้รับความนิยมเนื่องจากสามารถคำนวณจุดที่เกิดสภาวะแรงดันพังทลายได้ นอกจากนี้ยังสามารถ เขียนกราฟการเพิ่มขึ้นของโหลดกับแรงดันไฟฟ้าของโหลดบัสทำให้ทราบบัสที่อ่อนแอที่สุดในระบบ เทียบกับวิธีวิเคราะห์เส้นทางการไหลวิกฤตของระบบไฟฟ้ากำลัง โดยผลที่ได้จากการเปรียบเทียบผลทั้ง สองวิธีจะนำไปสู่ความเข้าใจต่อปัญหานี้ในเชิงลึก โดยในวิทยานิพนธ์ฉบับนี้นำเสนอการจำลองผลโดย ใช้ระบบทดสอบ 5 บัส ระบบทดสอบ 9 บัส และระบบทดสอบ 39 บัส ในการทดสอบ

ABSTRACT

TITLE	ANALYSIS OF VOLTAGE STABILITY USING CRITICAL POWER FLOW	
	PATHS	
AUTHOR	NUTTAPOL SINLAPACHAI	
DEGREE	MASTER OF ENGINEERING	
MAJOR	ELECTRICAL ENGINEERING	
ADVISOR	ASST. PROF. KOMSON DAROJ, Ph.D.	
KEYWORDS	VOLTAGE STABILITY, CONTINUATION POWER FLOW, CRITRICAL POW	VER
	FLOW PATHS, DISTRIBUTION SYSTEM	

Maximum loadability of a system is basically defined as the maximum of system load that the system can be controlled without load of stability. This is necessary for both planning and generating stages. In theory, the maximum loading of a system is always limit by the voltage stability constraint. To obtain the maximum loading point of a system, the scenario of increasing generations and loads are required in association with efficient calculation approach. This thesis presented the analysis of the voltage stability problem in a power system by comparing 2 methods i.e, the Continuation Power Flow (CPF) and the critical power flow path. The CPF is the most popular methodology due to the capability of tracing P-V curve. Thus, the voltage collapse point and the weakest bus of a system can be obtained. The obtained result of comparing there two methods can enhance for understanding the voltage stability problem in transmission system. This thesis presents simulations using 5-bus system, 9-bus test system and 39-bus test system..

สารบัญ

				หน้า
กิตติก	ารระ	มประ	กาศ	ก
บทคัด	าย่อ	ภาษ	าไทย	ข
บทคัด	าย่อ	ภาษ	าอังกฤษ	ค
สารบั	໌ ຎູ			ঀ
สารบั	ัญต	าราง		ລ
สารบั	ัญภ	าพ		ຈົ
คำอธิ	บาย	ยสัญส	ลักษณ์และอักษรย่อ	ฒ
บทที	1	บทน	in and a second s	
		1.1	ความเป็นมาและความสำคัญของปัญหา	1
		1.2	วัตถุประสงค์ของวิทยานิพนธ์	2
		1.3	ประโยชน์ที่คาดว่าจะได้รับ	2
		1.4	ขอบเขตการศึกษาค้นคว้า	2
บทที่	2	ทบท	าวนวรรณกรรมที่เกี่ยวข้องกับวิทยานิพนธ์	
		2.1	เสถียรภาพของระบบไฟฟ้ากำลัง	3
		2.2	การแบ่งประเภทของเสถียรภาพระบบไฟฟ้ากำลัง	3
		2.3	การคำนวณค่าจุดวิกฤตของการส่งผ่านกำลังไฟฟ้า	4
		2.4	สภาวะแรงดันพังทลาย	4
		2.5	วิธีการวิเคราะห์เสถียรภาพแรงดันไฟฟ้า	4
		2.6	งานวิจัยที่เกี่ยวข้อง	5
บทที่	3	เนื้อา	หาและทฤษฎีที่เกี่ยวข้อง	
		3.1	การคำนวณการไหลของกำลังไฟฟ้าด้วยวิธีนิวตัน-ราฟสัน	8
		3.2	การคำนวณค่าจุดวิกฤตโดยใช้วิธีวิธีการไหลของกำลังไฟฟ้าแบบต่อเนื่อง	11

บทที่ 4 ข้อมลระบบทดสอบ

3.3 การวิเคราะห์เส้นทางการไหลวิกฤต

4	<u>ุ</u> กุลที่		
	4.1	ระบบทดสอบที่ 1 ระบบทดสอบ 5 บัส	19
	4.2	ระบบทดสอบที่ 2 ระบบทดสอบ 9 บัส	20
	4.3	ระบบทดสอบที่ 3 ระบบทดสอบ 39 บัส	21

14

สารบัญ (ต่อ)

บทที่ 5 ขั้นตอนการค้นหาคำตอบ

	5.1	ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องระบบทดสอบ 5 บัส	25
	5.2	วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้าของระบบทดสอบ 5 บัส	27
	5.3	วิเคราะห์เส้นทางการไหลวิกฤติของกำลังไฟฟ้าของระบบทดสอบ 5 บัส	30
	5.4	ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องระบบทดสอบ 9 บัส	31
	5.5	วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้าของระบบทดสอบ 9 บัส	33
	5.6	วิเคราะห์เส้นทางการไหลวิกฤติของกำลังไฟฟ้าของระบบทดสอบ 9 บัส	36
	5.7	ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องระบบทดสอบ 39 บัส	37
	5.8	วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้าของระบบทดสอบ 39 บัส	42
	5.9	วิเคราะห์เส้นทางการไหลวิกฤติของกำลังไฟฟ้าของระบบทดสอบ 39 บัส	48
บทที่ 6	สรุเ	lและข้อแสนอแนะ	
	6.1	สรุปผล	51
	6.2	ข้อเสนอแนะ	52
เอกสารอ้	้างอิง	3	53
ภาคผนว	ก		
	กเ	ผลการคำนวณการไหลของกำลังไฟฟ้าระบบทดสอบ 5 บัส	58
	ข	ผลการคำนวณการไหลของกำลังไฟฟ้าระบบทดสอบ 9 บัส	70
	ค (ผลการคำนวณการไหลของกำลังไฟฟ้าระบบทดสอบ 39 บัส	82
	ବ 1	การเผยแพร่ผลงานวิทยานิพนธ์	104
ประวัติผู้ [:]	ີວຈັຍ		119

ຈ

สารบัญตาราง

ตารางที่		หน้า
4.1	ข้อมูลบัสของระบบทดสอบ 5 บัส	19
4.2	ข้อมูลสายส่งของระบบทดสอบ 5 บัส	19
4.3	ข้อมูลบัสของระบบทดสอบ 9 บัส	20
4.4	ข้อมูลสายส่งของระบบทดสอบ 9 บัส	21
4.5	ข้อมูลบัสของระบบทดสอบ 39 บัส	22
4.6	ข้อมูลสายส่งของระบบทดสอบ 39 บัส	23
5.1	แรงดั้นไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า	
	จากผลการคำนวณ CPF	26
5.2	การไหลของกำลังไฟฟ้าระบบทดสอบ 5 บัส ณ สภาวะสุดท้าย	
	ก่อนเกิดการพังทลายของแรงดันไฟฟ้าจากผลการคำนวณ CPF	26
5.3	อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF	30
5.4	อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF	30
5.5	แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า	
	จากผลการคำนวณ CPF ของระบบทดสอบ 9 บัส	31
5.6	การไหลของกำลังไฟฟ้าระบบทดสอบ 9 บัส ณ สภาวะสุดท้าย	
	ก่อนเกิดการพังทลายของแรงดันไฟฟ้าจากผลการคำนวณ CPF	32
5.7	อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF	36
5.8	อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF	36
5.9	แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า	
	จากผลการคำนวณ CPF	37
5.10	การไหลของกำลังไฟฟ้าระบบทดสอบ 39 บัส ณ สภาวะสุดท้าย	
	ก่อนเกิดการพังทลายของแรงดันไฟฟ้าจากผลการคำนวณ CPF	39
5.11	เส้นทางการไหลของกำลังไฟฟ้าจากบัสปลายทางไปบัสต้นทางของบัสที่ 14	43
5.12	เส้นทางการไหลของกำลังไฟฟ้าจากบัสปลายทางไปบัสต้นทางของบัสที่ 18	44
5.13	เส้นทางการไหลของกำลังไฟฟ้าจากบัสปลายทางไปบัสต้นทางของบัสที่ 22	45
5.14	เส้นทางการไหลของกำลังไฟฟ้าจากบัสปลายทางไปบัสต้นทางของบัสที่ 25	45
5.15	เส้นทางการไหลของกำลังไฟฟ้าจากบัสปลายทางไปบัสต้นทางของบัสที่ 30	46
5.16	เส้นทางการไหลของกำลังไฟฟ้าจากบัสปลายทางไปบัสต้นทางของบัสที่ 37	47
5.17	อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF	
	จากโหลดบัสปลายทางบัสที่ 14 ไปยังบัสเครื่องกำเนิดไฟฟ้า	48
5.18	อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF	
	จากโหลดบัสปลายทางบัสที่ 18 ไปยังบัสเครื่องกำเนิดไฟฟ้า	48

ตารางที่		หน้า
5.19	อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF จากโหลดบัสปลายทางบัสที่ 22 ไปยังบัสเครื่องกำเนิดไฟฟ้า	48
5.20	อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF	
F 04	จากไหลดบสปลายทางบสท 25 ไปยงบสเครื่องกาเนิดไฟฟา	49
5.21	อตราการเพิ่มขนของเหลดเมอทาการคานวณการเหลของกาลงเพพาดวยวธ NRPF อากโหลดบัสปลายทางบัสที่ 30 ไปยังบัสเครื่องกำเนิดไฟฟ้า	10
5.22	จำกับกับกับถึงถึงการขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF	47
0.22	จากโหลดบัสปลายทางบัสที่ 37 ไปยังบัสเครื่องกำเนิดไฟฟ้า	49
ก.1	แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า	
	จากผลการคำนวณ CPF	59
ก.2	การไหลของกำลังไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า	
	จากผลการคำนวณ CPF	59
ก.3	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF	60
ก.4	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่า	
	ของค่าฐานจากผลการคำนวณ PF	60
ก.5	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1	61
ก.6	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่า	
	ของค่าฐานจากผลการคำนวณ PF ของกำลังไฟฟ้าเส้นที่ 1	61
ก.7	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1 เมื่อโหลดเพิ่มขึ้นได้ 6%	
	จากกรณีฐาน ณ ระดับโหลดเป็น 4.6621 เท่า	61
ก.8	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1 เมื่อ	
	โหลดเพิ่มขึ้นได้ 6% จากกรณีฐาน ณ ระดับโหลดเป็น 4.6621 เท่า	62
ก.9	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2	62
ก.10	การไหลของกำลังไฟฟ้าณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่า	
	ของค่าฐานจากผลการคำนวณ PF ของกำลังไฟฟ้าเส้นที่ 2	62
ก.11	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2 เมื่อ	
	โหลดเพิ่มขึ้นได้ 4% จากกรณีฐาน ณ ระดับโหลดเป็น 4.6621 เท่า	63
ก.12	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2	
	เมื่อโหลดเพิ่มขึ้นได้ 4% จากกรณีฐาน ณ ระดับโหลดเป็น 4.6621 เท่า	63

ตารางที่		หน้า
ก.13	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	63
ก.14	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่า	
	ของค่าฐานจากผลการคำนวณ PF ของเส้นทางการไหลกำลังไฟฟ้าเส้นที่ 3	64
ก.15	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	
	เมื่อโหลดเพิ่มขึ้นได้ 10% จากกรณีฐาน ณ ระดับโหลดเป็น 4.6621 เท่า	64
ก.16	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	
	เมื่อโหลดเพิ่มขึ้นได้ 10% จากกรณีฐาน ณ ระดับโหลดเป็น 4.6621 เท่า	64
ก.17	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4	65
ก.18	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่า	
	ของค่าฐานจากผลการคำนวณ PF ของเส้นทางการไหลกำลังไฟฟ้าเส้นที่ 4	65
ก.19	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4 เมื่อ	
	โหลดเพิ่มขึ้นได้ 9% จากกรณีฐาน ณ ระดับโหลดเป็น 4.6621 เท่า	66
ก.20	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4	
	เมื่อโหลดเพิ่มขึ้นได้ 9% จากกรณีฐาน ณ ระดับโหลดเป็น 4.6621 เท่า	66
ก.21	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1	67
ก.22	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่า	
	ของค่าฐานจากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1	67
ก.23	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2	67
ก.24	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2	
	ณ ระดับโหลดเป็น 4.6621 เท่า	68
ก.25	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	68
ก.26	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	68
ก.27	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4	69
ก.28	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4	69

ตารางที่		หน้า
ข.1	แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า	
	จากผลการคำนวณ CPF	71
ข.2	การไหลของกำลังไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า	
	จากผลการคำนวณ CPF	71
ข.3	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน	
	จากผลการคำนวณ PF	72
ข.4	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน	
	จากผลการคำนวณ PF	73
ข.5	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1	74
ข.6	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1	74
ข.7	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2 เมื่อโหลดเพิ่มขึ้นได้ 0%	
	จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	75
ข.8	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2	
	เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	75
ข.9	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	
	เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	76
ข.10	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	
	เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	76
ข.11	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4	
	เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	77
ข.12	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4	
	เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	77
ข.13	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1	78
ข.14	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน	
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1	78
ข.15	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2	
	เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	79
ข.16	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2	
	เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	79

ตารางที่		หน้า
ข.17	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	
	เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	80
ข.18	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	
	เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	80
ข.19	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4	
	เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	81
ข.20	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4	
	เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า	81
ค.1	แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า	
	จากผลการคำนวณ CPF	83
ค.2	การไหลของกำลังไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า	
	จากผลการคำนวณ CPF	85
ค.3	แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 2.173 เท่าของค่าฐาน	
	จากผลการคำนวณ PF	87
ค.4	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 2.0262 เท่าของค่าฐาน	
	จากผลการคำนวณ PF	89
ค.5	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1	
	เมื่อโหลดเพิ่มขึ้นได้ 12% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	91
ค.6	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1	
	เมื่อโหลดเพิ่มขึ้นได้ 12% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	91
ค.7	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2	
	เมื่อโหลดเพิ่มขึ้นได้ 5% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	92
ค.8	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2	
	เมื่อโหลดเพิ่มขึ้นได้ 12% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	92
ค.9	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	
	เมื่อโหลดเพิ่มขึ้นได้ 4% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	93
ค.10	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3	
	เมื่อโหลดเพิ่มขึ้นได้ 4% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	93
ค.11	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4	
	เมื่อโหลดเพิ่มขึ้นได้ 13% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	93
ค.12	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4	
	เมื่อโหลดเพิ่มขึ้นได้ 13% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	94

ตารางที่		หน้า
ค.13	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 8	
	เมื่อโหลดเพิ่มขึ้นได้ 4% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	94
ค.14	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 8	
	เมื่อโหลดเพิ่มขึ้นได้ 4% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	94
ค.15	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 10	
	เมื่อโหลดเพิ่มขึ้นได้ 8% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	95
ค.16	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 10	
	เมื่อโหลดเพิ่มขึ้นได้ 8% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	95
ค.17	แรงดันไฟฟ้าของเส้นทางการไหลข [ื] ้องกำลังไฟฟ้าเส้นที่ 12	
	เมื่อโหลดเพิ่มขึ้นได้ 18% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	96
ค.18	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 12	
	เมื่อโหลดเพิ่มขึ้นได้ 18% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	96
ค.19	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 13	
	เมื่อโหลดเพิ่มขึ้นได้ 71% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	96
ค.20	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 13	
	เมื่อโหลดเพิ่มขึ้นได้ 71% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	97
ค.21	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 14	
	เมื่อโหลดเพิ่มขึ้นได้ 65% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	97
ค.22	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 14	
	เมื่อโหลดเพิ่มขึ้นได้ 65% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	97
ค.23	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 15	
	เมื่อโหลดเพิ่มขึ้นได้ 10% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	98
ค.24	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 15	
	เมื่อโหลดเพิ่มขึ้นได้ 10% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	98
ค.25	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 16	
	เมื่อโหลดเพิ่มขึ้นได้ 8% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	98
ค.26	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 16	
	เมื่อโหลดเพิ่มขึ้นได้ 8% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	99
ค.27	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 23	
	เมื่อโหลดเพิ่มขึ้นได้ 10% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	99
ค.28	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 23	
	เมื่อโหลดเพิ่มขึ้นได้ 10% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	99

ตารางที่		หน้า
ค.29	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 24	
	เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	100
ค.30	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 24	
	เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	100
ค.31	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 25	
	เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	101
ค.32	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 25	
	เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	101
ค.33	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 26	
	เมื่อโหลดเพิ่มขึ้นได้ 7% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	102
ค.34	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 26	
	เมื่อโหลดเพิ่มขึ้นได้ 7% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	102
ค.35	แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 30	
	เมื่อโหลดเพิ่มขึ้นได้ 3% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	103
ค.36	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 30	
	เมื่อโหลดเพิ่มขึ้นได้ 3% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า	103

ภู

สารบัญภาพ

ภาพที่		หน้า
3.1	กราฟเส้นโค้ง P-V	13
3.2	กราฟเส้นโค้ง Q-V	14
3.3	การติดตามทิศทางการไหลของกำลังไฟฟ้าแบบด้านหน้า	15
3.4	การติดตามทิศทางการไหลของกำลังไฟฟ้าแบบย้อนกลับ	16
3.5	เส้นทางการไหลแบบเสมือนเรเดียล	16
3.6	โหลดไฟฟ้าเสมือน ณ บัส k ของ ERP เส้นทางที่ <i>i</i>	17
3.7	สมดุลกำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอกทีฟที่ไหลเข้าออกในบัสแต่ละบัส	17
4.1	ระบบทดสอบ 5 บัส	19
4.2	ระบบทดสอบ 9 บัส	20
4.3	ระบบทดสอบ 39 บัส	21
5.1	ความสัมพันธ์ระหว่างกำลังไฟฟ้าและแรงดันไฟฟ้าของระบบทดสอบ 5 บัส	27
5.2	เส้นทางการไหลของ P และ Q ณ สภาวะจุดเกิดการพังทลาย	
	ของแรงดันไฟฟ้าระบบทดสอบ 5 บัส	27
5.3	เส้นทางการของกำลังไฟฟ้าเส้นที่ 1 ไหลจากบัส 1-2-5	28
5.4	เส้นทางการของกำลังไฟฟ้าเส้นที่ 2 ไหลจากบัส 1-2-4-5	28
5.5	เส้นทางการของกำลังไฟฟ้าเส้นที่ 3 ไหลจากบัส 1-3-4-5	29
5.6	เส้นทางการของกำลังไฟฟ้าเส้นที่ 4 ไหลจากบัส 1-2-3-4-5	29
5.7	ความสัมพันธ์ระหว่างกำลังไฟฟ้าและแรงดันไฟฟ้าของระบบทดสอบ 9 บัส	32
5.8	เส้นทางการไหลของ P และ Q ณ สภาวะจุดเกิดการพังทลาย	
	ของแรงดันไฟฟ้าระบบทดสอบ 9 บัส	33
5.9	เส้นทางการของกำลังไฟฟ้าเส้นที่ 1 ไหลจากบัส 1-2-3-4-5	34
5.10	เส้นทางการของกำลังไฟฟ้าเส้นที่ 2 ไหลจากบัส 1-2-9-6-5	34
5.11	เส้นทางการของกำลังไฟฟ้าเส้นที่ 3 ไหลจากบัส 1-8-7-9-6-5	35
5.12	เส้นทางการของกำลังไฟฟ้าเส้นที่ 4 ไหลจากบัส 1-8-7-6-5	35
5.13	ความสัมพันธ์ระหว่างกำลังไฟฟ้าและแรงดันไฟฟ้าของระบบทดสอบ 39 บัส	41
5.14	การไหลของกำลังไฟฟ้าจริงของระบบทดสอบ 39 บัส	42
5.15	ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 14	
	ไปยังบัสต้นกำเนิด	43
5.16	ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 18	
	ไปยังบัสต้นกำเนิด	44
5.17	ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 22	
	ไปยังบัสต้นกำเนิด	45

สารบัญภาพ (ต่อ)

ภาพที่		หน้า
5.18	ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 25 ไปยังบัสต้นกำเนิด	46
5.19	ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 30 ไปยังบัสต้นกำเนิด	46
5.20	ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 37 ไปยังบัสต้นกำเนิด	47

คำอธิบายสัญลักษณ์และอักษรย่อ

สัญลักษณ์และอักษรย่อ	ความหมาย
R_i	ความต้านทานของสาย <i>i</i>
P_i	กำลังไฟฟ้าจริงที่ไหลในสาย <i>i</i> ที่มีหน่วยวัตต์ (W)
Q_i	กำลังไฟฟ้ารีแอคตีฟที่ไหลในสาย <i>i</i> มีหน่วยวาร์ (Var)
V_i	แรงดันไฟฟ้าที่บัส <i>i</i>
n	จำนวนบัสทั้งหมดในระบบ
С	ดัชนีบ่งบอกชนิดและขนาดของคาปาซิเตอร์
V_{min}	แรงดันไฟฟ้าต่ำสุด
V_i	แรงดันไฟฟ้าที่บัส <i>i</i>
V _{max}	แรงดันไฟฟ้าสูงสุด
PF_{min}	ตัวประกอบกำลังไฟฟ้าต่ำสุด
PF_i	ตัวประกอบกำลังไฟฟ้าที่บัส <i>i</i>
PF_{max}	ตัวประกอบกำลังไฟฟ้าสูงสุด
Q_{sys}	ค่ากำลังไฟฟ้ารีแอกตีฟรวมของโหลดในระบบ
$P_{sch,i}$, $Q_{sch,i}$	กำลังไฟฟ้าผลต่างระหว่างเครื่องกำเนิดไฟฟ้ากับโหลดที่บัส <i>i</i>
$P_{G,i}$, $Q_{G,i}$	กำลังไฟฟ้าของเครื่องกำเนิดไฟฟ้าที่บัส <i>i</i>
$P_{L,i}, Q_{L,i}$	กำลังไฟฟ้าของโหลดที่บัส <i>i</i>
G	เครื่องกำเนิดไฟฟ้า
L	โหลด
I_i	ค่ากระแสรวมที่ไหลออกจากบัสที่ <i>i</i>
у	แอตมิตแตนซ์ของสายป้อน
$ Y_{ij} $	ขนาดของค่าแอตมิทแตนซ์ ที่แถว i และหลัก j
$J_1 - J_4$	เมตริกซ์ที่มีค่าในแนวทแยงมุมหลักและค่านอกแนวทแยงมุม
_	หลัก
I_{ij}	ค่ากระแสไฟฟ้าที่ไหลจากบัส i ไปยังบัส j
I_{ji}	ค่ากระแสไฟฟ้าที่ไหลจากบัส <i>j</i> ไปยังบัส <i>i</i>
S_{ij}	ค่ากำลังไฟฟ้าที่ไหลจากบัส <i>i</i> ไปยังบัส <i>j</i>
S_{ji}	ค่ากำลังไฟฟ้าที่ไหลจากบัส <i>j</i> ไปยังบัส <i>i</i>
S_{Lij}	ค่ากำลังไฟฟ้าสูญเสียของระบบจากบัส <i>i</i> ไปยังบัส <i>j</i>

คำอธิบายสัญลักษณ์และอักษรย่อ (ต่อ)

สัญลักษณ์และอักษรย่อ	ความหมาย
S_L	ค่ากำลังไฟฟ้าสูญเสียทั้งหมดของระบบ
P_L	ค่ากำลังไฟฟ้าสูญเสียจริงของระบบ
E_L	ค่าพลังงานไฟฟ้าสูญเสียรวมในแต่ละระดับโหลด
P_L^i	ค่ากำลังไฟฟ้าสูญเสียเฉลี่ย
m	ระดับโหลด
r	ค่าความต้านทานของสาย
P_d	ค่ากำลังไฟฟ้าจริงของโหลด มีหน่วยเป็นเมกะวัตต์ (MW)
$Q_{_d}$	ค่ากำลังไฟฟ้ารีแอคตีฟของโหลด มีหน่วยเป็นเมกะวาร์
	(MVar)
V_m	ขนาดของแรงดันไฟฟ้า มีหน่วยเป็น p.u.
G_{s}	ค่าความนำไฟฟ้า ที่แรงดันไฟฟ้า 1 p.u. มีหน่วยเป็น
	เมกะวัตต์ (MW)
B_s	ค่าซัสเซพแตนซ์ของคาปาซิเตอร์ ที่แรงดันไฟฟ้า 1 p.u. มี
	หน่วยเป็นเมกะวาร์ (MVar)
V_a	มุมของแรงดันไฟฟ้า มีหน่วยเป็นองศา
P_{g}	ค่ากำลังไฟฟ้าจริงของแหล่งกำเนิดไฟฟ้า มีหน่วยเป็น เมกะวัตต์ (MW)
Q_{g}	ค่ากำลังไฟฟ้ารีแอคตีฟของแหล่งกำเนิดไฟฟ้า มีหน่วยเป็น
	เมกะวาร์ (MVar)
Q_{max}	ค่ากำลังไฟฟ้ารีแอคตีฟสูงสุดของแหล่งกำเนิดไฟฟ้า มีหน่วย
	เป็นเมกะวาร์ (MVar)
$Q_{_{min}}$	ค่ากำลังไฟฟ้ารีแอคติฟต้าสุดของแหล่งก้าเนิดไฟฟ้า มีหน่วย
V	เป็นเมกะวาร (MVar)
V _g	มนาดของแรงดนเพพาของแหลงกาเนตเพพา มหนายเบน
Р	p.u. ค่ากำลังไฟฟ้าจริงสงสุดของแหล่งกำเนิดไฟฟ้า บีหน่ายเป็น
- max	าาการเราสา เรารถุรถุรถุรายอาณารถารณาสารสาร มาน เอเยน เมกะวาร์ (MVar)
P_{min}	ค่ากำลังไฟฟ้าจริงต่ำสุดของแหล่งกำเนิดไฟฟ้า มีหน่วยเป็น
	เมกะวาร์ (MVar)

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

ในปัจจุบันความต้องการพลังงานไฟฟ้ามีอัตราที่สูงขึ้น ตามการเติบโตทางเศรษฐกิจ ในการ วางแผนและดำเนินการควบคุมระบบไฟฟ้าจึงมีความสำคัญเพิ่มขึ้น เหตุการณ์ไฟฟ้าดับเป็นบริเวณ กว้างอาจนำมาซึ่งความสูญเสียของเศรษฐกิจมหาศาล

ในขั้นตอนการปฏิบัติการจริงในการส่งจ่ายพลังงานไฟฟ้านั้นผู้ผลิตไฟฟ้าจะต้องพยายามพิจารณา หาความเหมาะสมทางด้านเศรษฐศาสตร์และทางด้านเทคนิคควบคู่กันไปความมั่นคง (security) และ ้เสถียรภาพ (stability) ของระบบไฟฟ้ากำลังจึงเป็นประเด็นที่มีการให้ความสำคัญและศึกษามาเป็น เวลานาน ปัญหาด้านเสถียรภาพของแรงดันไฟฟ้า (voltage stability) เป็นปัญหาที่ได้รับความสนใจ สภาวะแรงดันพังทลาย (voltage collapse) จะเกิดขึ้นเมื่อระบบมีการส่งจ่ายกำลังไฟฟ้าเป็นปริมาณ มากประกอบกับระบบมีความไม่สมบูรณ์ เช่น มีการหยุดโรงไฟฟ้าบางโรงหรือสายส่งเส้นสำคัญบางเส้น ส่งผลให้เกิดเหตุการณ์ไฟฟ้าดับทั้งระบบ (blackout) หรือแค่บางส่วน (browout) เช่น เหตุการณ์ ้ไฟฟ้าดับครั้งใหญ่ที่สหรัฐอเมริกาเมื่อวันที่ 14 สิงหาคม 2003 [1] สาเหตุเกิดจากความผิดพร่องหลายๆ ตำแหน่งในระบบส่งนำไปสู่การทริปแบบต่อเนื่องของสายส่งเส้นสำคัญ 345 kV Cleveland-Akron ใน ์ ตอนเหนือของรัฐโอไฮโอ ผลที่เกิดขึ้นทำให้เกิดไฟฟ้าดับเป็นบริเวณกว้างครอบคลุมพื้นที่ 8 รัฐในเขต ตะวันตกกลางและตะวันออกเฉียงเหนือของสหรัฐรวมไปถึงเมืองมอนทรีโอของแคนนาดา กำลังไฟฟ้า สูญเสียกว่า 61,800 MW ผู้คนกว่า 50 ล้านคนขาดไฟฟ้าใช้ ความเสียหายทางเศรษฐศาสตร์คิดเป็น ้มู[้]ลค่า 8-10 พันล้านเหรียญ^สหรัฐ เหตุการณ์ไฟฟ้าดับทั้งระบบที่ประเทศสวิสเซอร์แลนด์และอิตาลีใน วันที่ 28 กันยายน 2003 [1] สาเหตุเริ่มต้นจากความผิดพร่องของสายส่งเส้น 380 kV Mettlen-Lavorgo เนื่องจากสายส่งเส้นนี้รับภาระโหลดมากเกิดไป (86% ของโหลดสูงสุด) ส่งผลให้เกิดการ ้ลัดวงจรลงดินความผิดพร่องที่เกิดขึ้นส่งผลให้สายส่งเส้นอื่น ๆ ทริปจากระบบอย่างต่อเนื่อง ทำให้เกิด ไฟดับในอิตาลีทั้งประเทศรวมถึงตอนใต้ของสวิสเซอร์แลนด์และบางพื้นที่ของฝรั่งเศสที่ใกล้กับอิตาลี ้สูญเสียกำลังไฟฟ้ากว่า 20,500 MW ประชาชนกว่า 55 ล้านคนขาดไฟฟ้าใช้ มูลค่าความเสียหายทาง เศรษฐศาสตร์ประมาน 139 ล้านเหรียญสหรัฐ เป็นต้น

วิธีการวิเคราะห์เสถียรภาพแรงดันไฟฟ้าในปัจจุบันที่นิยมใช้กันอย่างแพร่หลาย คือ วิธีการไหล ของกำลังไฟฟ้าแบบต่อเนื่อง (Continuation Power Flow: CPF) เป็นวิธีที่ปรับปรุงมาจากการ คำนวณการไหลของกำลังไฟฟ้าแบบปกติเพื่อให้สามารถคำนวณคำตอบของระบบได้แม้ในสภาวะที่ เมตริกซ์จาโคเบียนใกล้กับความเป็นเอกฐาน (singular matrix) ซึ่งการคำนวณการไหลของกำลังไฟฟ้า แบบต่อเนื่องเป็นการคำนวณโดยอาศัยสมมติฐานการเพิ่มขึ้นของกำลังไฟฟ้าของโหลดและเครื่อง กำเนิดไฟฟ้า ผลการคำนวณที่ได้ทำให้สามารถหาค่าความสามารถในการจ่ายโหลดได้สูงสุดของระบบ (maximum loadability) ได้

อีกหนึ่งวิธีในการวิเคราะห์ปัญหาเสถียรภาพแรงดัน คือ การวิเคราะห์เส้นทางไหลวิกฤตของ กำลังไฟฟ้า (critical power flow paths) วิธีการนี้จะเป็นการวิเคราะห์เส้นทางการไหลวิกฤตของ กำลังไฟฟ้าจากทุกเส้นทางการไหลของกำลังไฟฟ้าในระบบไฟฟ้าตั้งแต่แหล่งกำเนิดไฟฟ้าไปจนถึงโหลด บัส สามารถนำผลที่ได้ไปวิเคราะห์เพื่อปรับปรุงระบบผลิตและส่งไฟฟ้าได้

วิทยานิพนธ์ฉบับนี้จะศึกษาปัญหาเสถียรภาพแรงดันไฟฟ้าโดยการใช้การวิเคราะห์เส้นทางไหล วิกฤตโดยใช้ระบบทดสอบ 3 ระบบ คือ ระบบทดสอบ 5 บัส (Hadi Saadat) ระบบทดสอบ 9 บัส (Hadi Saadat) และ ระบบทดสอบ 39 บัส (New England) ผลที่คาดว่าจะได้รับจะนำไปสู่ความ เข้าใจต่อปัญหานี้ในเชิงลึกเพิ่มขึ้น

1.2 วัตถุประสงค์ของวิทยานิพนธ์

- 1.2.1 เพื่อวิเคราะห์เส้นทางไหลวิกฤตของกำลังไฟฟ้าในระบบทดสอบได้
- 1.2.2 เพื่อเข้าใจปัญหาด้านเสถียรภาพแรงดันไฟฟ้ามากขึ้น

1.3 ประโยชน์ที่คาดว่าจะได้รับ

1.3.1 สามารถวิเคราะห์เส้นทางไหลวิกฤตของกำลังไฟฟ้าในระบบทดสอบได้
 1.3.2 สามารถเข้าใจปัญหาด้านเสถียรภาพแรงดันไฟฟ้ามากขึ้น

1.4 ขอบเขตการศึกษาค้นคว้า

1.4.1 ศึกษาการไหลของกำลังไฟฟ้าในระบบทดสอบมาตรฐาน 3 ระบบ ประกอบไปด้วย ระบบ ทดสอบ 5 บัส ระบบทดสอบ 9 บัส และ ระบบทดสอบ 39 บัส

1.4.2 ศึกษาเส้นทางการไหลวิกฤตในระบบทดสอบมาตรฐาน 3 ระบบ ประกอบไปด้วย ระบบ ทดสอบ 5 บัส ระบบทดสอบ 9 บัส และ ระบบทดสอบ 39 บัส

บทที่ 2 ทบทวนวรรณกรรมที่เกี่ยวข้องกับวิทยานิพนธ์

ในบทนี้เป็นการศึกษาปัญหาเสถียรภาพแรงดันไฟฟ้า (voltage stability) และวิธีการในการ แก้ไขปัญหาเสถียรภาพแรงดันไฟฟ้าจากงานวิจัยที่ผ่านมาในอดีต เพื่อนำความรู้ที่ได้จากการศึกษามา กำหนดปัญหาและหาแนวทางแก้ไขปัญหาที่จะใช้ในวิทยานิพนธ์ฉบับนี้ โดยมีรายละเอียดและทฤษฎีที่ เกี่ยวข้องดังนี้

2.1 เสถียรภาพของระบบไฟฟ้ากำลัง (power system stability) [2], [26]

นิยามของเสถียรภาพของระบบไฟฟ้ากำลังคือ ความสามารถของระบบไฟฟ้ากำลังในการกลับคืน สู่จุดทำงานสมดุลหลังเกิดการรบกวนของระบบ [2]

สาเหตุของการเกิดการรบกวนของระบบไฟฟ้ากำลังที่สำคัญ เช่น ภัยธรรมชาติ ลมพายุ ฝน ฟ้าผ่า ซึ่งเป็นต้นเหตุทำให้เกิดการลัดวงจร (short circuit) ของสายส่ง ความผิดพลาดของระบบป้องกัน (protection) และความผิดพลาดของมนุษย์ (human error) เป็นต้น

ผลกระทบที่เกิดขึ้นถ้าระบบสูญเสียเสถียรภาพไปอาจส่งผลให้เกิดเหตุการณ์ การทริปอุปกรณ์ ป้องกันอย่างต่อเนื่อง (cascade tripping) ซึ่งส่งผลให้เกิดไฟฟ้าดับบางพื้นที่ หรือไฟฟ้าดับทั้งระบบ เป็นต้น

2.2 การแบ่งประเภทของเสถียรภาพระบบไฟฟ้ากำลัง [2], [26]

เสถียรภาพระบบไฟฟ้ากำลังสามารถแบ่งได้เป็น เสถียรภาพมุมโรเตอร์ เสถียรภาพความถี่ไฟฟ้า และเสถียรภาพแรงดันไฟฟ้า

2.2.1 เสถียรภาพมุมโรเตอร์ [2], [26]

เสถียรภาพมุมโรเตอร์ หมายถึงความสามารถของเครื่องกำเนิดไฟฟ้าซิงโครนัสในระบบ ไฟฟ้ากำลังที่จะรักษาภาวะซิงโครไนซ์หลังเกิดการรบกวนในระบบไฟฟ้ากำลัง เสถียรภาพมุมโรเตอร์จะ ขึ้นอยู่กับความสมดุลระหว่างแรงบิดทางกลและแรงบิดทางไฟฟ้าของเครื่องกำเนิดไฟฟ้าซิงโครนัส ระบบไฟฟ้ากำลังสามารถรักษาเสถียรภาพได้หรือไม่หลังจากเกิดความไม่สมดุลระหว่างแรงบิดทางกล ไฟฟ้า พิจารณาได้จากการแกว่งของมุมโรเตอร์ซึ่งจะส่งผลให้เกิดการแกว่งของกำลังไฟฟ้า (power oscillation) ที่ไหลในสายส่ง ถ้าการแกว่งของมุมโรเตอร์ค่อยๆ ลดลงจนเข้าหาจุดทำงานที่สมดุลเดิม หรือสมดุลใหม่ แสดงว่าระบบสามารถรักษาเสถียรภาพไว้ได้ ดังนั้นในการศึกษาเสถียรภาพมุมโรเตอร์ จะเน้นการวิเคราะห์พลศาสตร์ของเครื่องกำเนิดไฟฟ้าซิงโครนัส

2.2.2 เสถียรภาพความถี่ไฟฟ้า [2], [26]

เสถียรภาพความถี่ไฟฟ้า หมายถึงความสามารถในการรักษาความถี่ซิงโครนัสของระบบ ไฟฟ้ากำลังให้อยู่ในช่วงที่ยอมรับได้ปัญหาเสถียรภาพทางความถี่ไฟฟ้ามักพบในระบบไมโครกริด หรือ ระบบไฟฟ้าที่มีการเชื่อมต่อกันหลายพื้นที่ควบคุม

2.2.3 เสถียรภาพแรงดันไฟฟ้า [2], [26]

เสถียรภาพแรงดันไฟฟ้า หมายถึง ความสามารถในการรักษาแรงดันไฟฟ้าของทุกบัสใน ระบบให้อยู่ในช่วงที่ยอมรับได้ในภาวะปกติและหลังจากที่เกิดการรบกวนเกิดขึ้นในระบบไฟฟ้ากำลัง โดยทั่วไปปัญหาเสถียรภาพแรงดันไฟฟ้ามักจะเกิดขึ้นที่บัสโหลด สามารถยกตัวอย่างได้ดังนี้ โรงไฟฟ้า จ่ายกำลังไฟฟ้าให้กับโหลดโดยผ่านสายส่งเมื่อระยะทางจากโรงไฟฟ้าไปยังโหลดบัสเพิ่มมากขึ้น แรงดัน จะค่อย ๆ ลดลง ตามค่าของอิมพีแดนซ์ในสายส่งที่เพิ่มมากขึ้น ดังนั้นเมื่อโหลดมีความต้องการ กำลังไฟฟ้ามากขึ้นจะทำให้กระแสงไหลไปยังโหลดเพิ่มมากขึ้นและจะทำให้แรงดันไฟฟ้าในสายส่งตก เพิ่มมากขึ้น เมื่อโหลดต้องการกำลังไฟฟ้ามากเกินกว่ากำลังไฟฟ้าสูงสุดที่โหลดรับได้ จะทำให้แรงดันที่ บัสตกลงอย่างรวดเร็ว เรียกเหตุการณ์นี้ว่า การพังทลายของแรงดัน (voltage collapse) ส่งผลให้ ระบบสูญเสียเสถียรภาพแรงดันไฟฟ้า

2.3 การคำนวณค่าจุดวิกฤตของการส่งผ่านกำลังไฟฟ้า [3], [4]

จุดวิกฤต (critical point) เป็นจุดส่งผ่านกำลังไฟฟ้าสูงสุด (Point of Maximum Power Transfer ; PMPT) ที่ระบบผลิตไฟฟ้าสามารถจ่ายกำลังไฟฟ้าไปยังโหลดในระบบได้ โดยในระบบปกติ การเพิ่มขึ้นหรือลดลงของโหลดจะสามารถเปลี่ยนแปลงได้ช่วงหนึ่งที่ไม่ทำให้เกิดสภาวะแรงดันเกิน (over voltage) โดยไม่มีผลต่อเสถียรภาพของระบบ สภาวะแรงดันพังทลายมักเกิดในระบบที่มีปัญหา ซึ่ง ณ จุดวิกฤตถ้ามีการเพิ่มขึ้นของโหลดอีกเพียงเล็กน้อย จะทำให้ขนาดของแรงดันไฟฟ้าตกลงอย่าง มากจนก่อให้เกิดสภาวะแรงดันพังทลาย

2.4 สภาวะแรงดันพังทลาย (voltage collapse) [3], [4]

สภาวะแรงดันพังทลายเป็นผลจากเปลี่ยนแปลงแรงดันไฟฟ้าในระบบบางพื้นที่อย่างช้าๆ ต่อเนื่อง อยู่ตลอด (dynamic process) จนกระทั่งถึงจุดวิกฤต (critical point) ของการส่งผ่านกำลังไฟฟ้าผลที่ ตามมาจะเกิดการทริปของอุปกรณ์อย่างต่อเนื่องจนเกิดไฟฟ้าดับเป็นบริเวณกว้างหรือทั้งระบบผลิต

สาเหตุของการเกิดสภาวะแรงดันพังทลาย เกือบทุกเหตุการณ์จะมีความไม่สมบูรณ์ของระบบและ ส่งไฟฟ้ามาเกี่ยวข้อง เช่น มีเหตุผิดพร่องที่โรงไฟฟ้าหรือสายส่งไฟฟ้าในบางพื้นที่แต่การเพิ่มขึ้นของ โหลดอาจเป็นปกติ

2.5 วิธีการวิเคราะห์เสถียรภาพแรงดันไฟฟ้า

2.5.1 วิธีการวิเคราะห์แบบโมดอล (modal analysis) [5]

วิธีการวิเคราะห์แบบโมดอล เสนอโดย Gao, Morrison and Kundur ในปี 1992 โดยใช้ กำลังไฟฟ้ารีแอคทีฟกับความไม่เป็นเสถียรภาพของแรงดันไฟฟ้า เป็นปัจจัยในการคำนวณการไหลของ กำลังไฟฟ้าโดยใช้จาโคเบียนเมตริกซ์ ส่วนกำลังไฟฟ้าจริงจะใช้ค่าคงที่และการลดลงของจาโคเบียน เมตริกซ์ J_R ในการคำนวณ เมตริกซ์ J_R จะแสดงความสัมพันธ์เชิงเส้นระหว่าง การเพิ่มขึ้นของแรงดัน (ΔV) และกำลังไฟฟ้ารีแอคทีฟ (ΔQ) ในบัส ถ้าไอเกนแวลู (eigenvalue) ต่ำสุด ของ เมตริกซ์ J_R มีค่ามากกว่าศูนย์ระบบไฟฟ้าจะมีเสถียรภาพ การระบุบัส วิกฤตทำได้โดยการวิเคราะห์ บัสและสายส่ง (buses and branches) โดยบัสจะใช้ ไอเกนเวกเตอร์ (eigenvectors) ในการคำนวณ ส่วนสายส่งจะ คำนวณโดยกำลังไฟฟ้าสูญเสียรีแอคทีฟ

2.5.2 วิธีค่าเอกพจน์ต่ำสุด (minimum singular value method) [6]

เอกพจน์ต่ำสุดของจาโคเบียนเมตริกซ์สามารถใช้เป็นดัชนีประเมินเสถียรภาพแรงดันไฟฟ้า ในการวิเคราะห์ จะทำการเพิ่มระดับของโหลดเพื่อคำนวณเมตริกซ์ *J_R* เมื่อค่าเอกพจน์ที่น้อยที่สุดของ เมตริกซ์ *J_R* มีค่าใกล้ศูนย์ พบว่าเมตริกซ์จาโคเบียนจะเป็นเมตริกซ์เอกฐาน (singular matrix) และ ใช้เป็นเงื่อนไขประเมินค่าโหลดสูงสุดที่เพิ่มขึ้นในระบบได้ (maximum loadability)

2.5.3 ดัชนีเสถียรภาพแรงดันไฟฟ้า (voltage stability indices)

ดัชนีเสถียรภาพแรงดันไฟฟ้าในระบบไฟฟ้าสามารถอ้างอิงจากแรงดันที่บัสหรือสายส่งได้ การวิเคราะห์วิธีนี้จะใช้ค่าดัชนีคำนวณมาจากผลการคำนวณการไหลของกำลังไฟฟ้าในการหาค่าเข้า ใกล้จุดสภาวะแรงดันพังทลาย ซึ่งดัชนีเสถียรภาพแรงดันไฟฟ้าสามารถวิเคราะห์นำข้อมูลมาวิเคราะห์ ได้หลายวิธี เช่น Fast Voltage Stability Index (FVSI) เสนอโดย I. Musirin et al. [7], line stability index (L_{mn}) เสนอโดย M. Moghavemani et al. [8], voltage reactive power index (VQI_{Line}) เสนอโดย M. W. Mustafa et al. [9] และ L index เสนอโดย P. Kessel et al. [10]

2.5.4 การคำนวณการไหลของกำลังไฟฟ้าโดยวิธีนิวตัน-ราฟสัน (Newton-Raphson Power Flow: NRPF)

การคำนวณการไหลของกำลังไฟฟ้าแบบ NRPF เป็นการคำนวณเพื่อหาแรงดันไฟฟ้าและ มุมเฟสที่บัสต่าง ๆ โดยปกติกำลังไฟฟ้า ณ บัส *i* ที่มี เครื่องกำเนิดไฟฟ้า โหลด และสายส่งต่ออยู่ สามารถประยุกต์ใช้วิธี NRPF เพื่อประเมิน PMPT ได้โดยใช้สมมุติฐานการเพิ่มขึ้นของกำลังไฟฟ้าจาก เครื่องกำเนิดไฟฟ้าและโหลดในระบบจนกระทั่งผลการคำนวณ NRPF ไม่สามารถหาคำตอบได้

2.5.5 การคำนวณค่าจุดวิกฤตโดยใช้วิธีวิธีการไหลของกำลังไฟฟ้าแบบต่อเนื่อง (Continuation Power Flow: CPF)

การคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องเป็นวิธีการหาคำตอบของระบบที่นิยมใช้ กันอย่างแพร่หลายสามารถหาคำตอบของระบบได้ในสภาวะวิกฤต นอกจากนี้สามารถนำผลการ คำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องมาสร้างกราฟเส้นโค้ง P-V ซึ่งการวิเคราะห์กราฟเส้นโค้ง P-V สามารถวิเคราะห์หาบัสอ่อนแอในระบบได้

2.6 งานวิจัยที่เกี่ยวข้อง

จากงานวิจัยที่ผ่านมาในอดีตมีผู้สนใจศึกษาและวิเคราะห์เกี่ยวกับดัชนีสำหรับประเมินปัญหา เสถียรภาพพอสมควร เช่น Selangor (2002) [11] นำเสนอวิธีการหาเสถียรภาพแรงดันไฟฟ้าด้วยวิธี FVST (Fast Voltage Stability Index) สามารถใช้หาค่าโหลดสูงสุดของระบบไฟฟ้ากำลัง งานวิจัยนี้ ใช้ระบบทดสอบ IEEE 5 บัส 9 บัส และ 39 บัส ในการทดสอบ โดยผลที่ได้จากการเรียงลำดับดัชนี FVST ของแต่ละบัส พบว่าบัสที่มีดัชนี FVST สูงสุดจะเป็นบัสอ่อนแอในระบบเนื่องจากสามารถรองรับ การเพิ่มขึ้นของโหลดได้น้อยเมื่อระบบเกิดสภาวะแรงดันพังทลาย

F.A. Althowibi (2010) [9] เสนอวิธีวิเคราะห์เสถียรภาพแรงดันไฟฟ้าในระบบส่ง โดยใช้วิธี VQI_{Line} (voltage reactive power index at line) ในการหาเสถียรภาพของแรงดันไฟฟ้าและจุด เกิดแรงดันพังทลายในสายส่งโดยใช้ดัชนีแรงดันรีแอคทีฟในสายส่งประเมินจุดเกิดแรงดันพังทลายใน ระบบ เปรียบเทียบกันวิธี *L*_m (line stability index) โดยใช้ระบบทดสอบ IEEE 14 บัสในการทดสอบ ผลที่ได้วิธี *VQI*_{Line} สามารถหาจุดแรงดันพังทลายได้เหมือนกับวิธี *L*_m แต่ทำได้ง่ายและรวดเร็วกว่า

Venkataramana Ajjarapu, Colin Christy (1998) [12] เสนอวิธีการหาคำตอบปัญหา เสถียรภาพแรงดันไฟฟ้าด้วยวิธีการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องจากกรณีฐานไปจนถึง จุดเกิดการพังทลายของแรงดันไฟฟ้าโดยใช้ระบบทดสอบหลายกรณีในการทดสอบ ผลที่ได้ช่วยให้ เข้าใจขีดจำกัดการไหลของกำลังไฟฟ้าและสามารถใช้กราฟเส้นโค้ง P-V ระบุบัสอ่อนแอในระบบได้

Judith Paniagua Ramírez, José Horacio Tovar Hernández (2013) [13] เสนอการใช้ กราฟเส้นโค้ง P-V และ P-Q ในการหาขอบเขตของเสถียรภาพแรงดันไฟฟ้าในสภาวะคงตัว (steady state) งานวิจัยใช้ระบบทดสอบอย่างง่ายในการทดสอบ ซึ่งสามารถนำค่ากำลังไฟฟ้าจริง กำลังไฟฟ้ารี แอกทีฟ และแรงดันไฟฟ้ามาวาดกราฟเส้นโค้ง P-V และ P-Q เพื่อหาบัสอ่อนแอในระบบได้

Farbod Larki, Mahmood Joorabian (2010) [14] เสนอการใช้วิธีคำนวณการไหลของ กำลังไฟฟ้าแบบต่อเนื่องเพื่อประเมินระบบไฟฟ้ากำลังร่วมกับวิธีการวิเคราะห์แบบโมดอล Khouzestan ในประเทศอิหร่าน ในการประเมินเสถียรภาพแรงดันไฟฟ้าในสภาวะปกติและสภาวะที่มี โหลดมาก ในงานวิจัยนี้ใช้ข้อมูลในช่วงโหลดสูงสุดในปี 2007 ผลที่ได้พบว่าบัสอ่อนแอในระบบทั้ง สภาพวะปกติและสภาวะฉุกเฉิน คือบัสที่ 9 ในเมือง Abadan

Vishwas Acharya N, Rajesh G. Kavasseri (2016) [15] เสนอการคำนวณการไหลของ กำลังไฟฟ้าแบบต่อเนื่องโดยเริ่มจากโหลพื้นฐานไปจนถึงจุดวิกฤตของเสถียรภาพแรงดันไฟฟ้าของ ระบบไฟฟ้ากำลัง ใช้ระบบทดสอบ 4 ระบบในการทดสอบ ผลที่ได้พบว่าการคำนวณการไหลของ กำลังไฟฟ้าแบบต่อเนื่องสามารถระบุบัสอ่อนแอในระบบ นอกจากนี้ยังสามารถใช้อัลกอริทึมนี้ไปใช้ใน การวิเคราะห์การไหลของกำลังไฟฟ้าที่เหมาะสม(optimal power flow) ในระบบไฟฟ้ากำลังได้อีก ด้วย

P-A Liif, G Andersson, D J Hill (1993) [16] เสนอการใช้ดัชนีเสถียรภาพแรงดันไฟฟ้ามีค่า น้อยบนพื้นฐานการจำแนกเอกพจน์ของจาโคเบียนเมทริกซ์ในการคำนวณการไหลของกำลังไฟฟ้า ซึ่ง แสดงข้อมูลดัชนีสำคัญเกี่ยวกับเสถียรภาพแรงดันไฟฟ้า บัสอ่อนแอในระบบ และมุมมองจากความไม่ เป็นเสถียรภาพทางแรงดันไฟฟ้า ซึ่งคำนวณโดยสมการการไหลของกำลังไฟฟ้าแบบเชิงเส้น ใช้ แบบจำลองระบบไฟฟ้าแบบสมจริง 1033 บัสในการทดสอบ ผลที่ได้พบว่า เมทริกซ์ $G_{,}$ คือเมทริกซ์ ย่อยที่ดีที่สุดที่ใช้ระบุสภาวะเสถียรภาพแรงดันไฟฟ้ากำลัง ค่า $\sigma_{,}$ เป็นค่าเอกพจน์ที่มีค่าน้อยที่สุดที่ชี้ วัดขีดจำกัดของเสถียรภาพแรงดันไฟฟ้า สามารถคำนวณค่านี้ได้แบบไม่ซับซ้อนและมีประสิทธิภาพ วิธีการนี้สามารถใช้ได้ในระบบไฟฟ้ากำลังขนาดใหญ่

ElFadil Zakaria, Kamal Ramadan, Dalia Eltigani (2013) [17] เสนอการใช้วิธีคำนวณการ ไหลของกำลังไฟฟ้าแบบต่อเนื่องโดยโปรแกรม PSAT ในการหาจุดเกิดการพังทลายของแรงดันไฟฟ้า และกราฟเส้นโค้ง P-V ประกอบการวิเคราะห์ความสามารถในการรับโหลดสูงสุดในระบบ โดยใช้ระบบ ทดสอบ IEEE 30บัส Benchmark และระบบส่งของประเทศซูดาล ผลที่ได้การวิเคราะห์ความสามารถ ในการรับโหลดสูงสูดสามารถหาบัสอ่อนแอของระบบได้ Peyman Mohammadi, Heidar Dehghani (2015) [18] เสนอวิธีแก้ปัญหาเสถียรภาพ แรงดันไฟฟ้าโดยใช้การคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องในการประมาณความสามารถใน การรับโหลดสูงสุดของระบบ โดยบทความนี้จะเพิ่มทฤษฏี Tellegen และ adjoint เข้าไปในการ คำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง ใช้ระบบทดสอบ IEEE 30 บัส ในการทดสอบ ผลที่ได้ พบว่าเมื่อเพิ่มทฤษฏี Tellegen และ adjoint เข้าไปในการคำนวณทำให้จำนวนรอบในการหาคำตอบ ลดลง และมีค่าแม่นยำมากขึ้น

วิทยานิพนธ์ฉบับนี้เสนอแนวทางการแก้ปัญหาเสถียรภาพแรงดันไฟฟ้าโดยใช้วิธีที่นิยมใช้กันอย่าง แพร่หลายคือ วิธีการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องเปรียบเทียบกับวิธีการวิเคราะห์ เส้นทางการไหลของกำลังไฟฟ้าวิกฤต โดยใช้ระบบทดสอบ 3 ระบบในการทดสอบคือ ระบบทดสอบ 5 บัส (Hadi Saadat), ระบบทดสอบ 9 บัส (Hadi Saadat) และระบบทดสอบ 39 บัส (New England) ในการทดสอบรายละเอียดระบบทดสอบจะกล่าวต่อไปในบทที่ 4

บทที่ 3 เนื้อหาและทฤษฎีที่เกี่ยวข้อง

ในบทนี้จะกล่าวถึงการคำนวณการไหลของกำลังไฟฟ้า การคำนวณการไหลของกำลังไฟฟ้า แบบต่อเนื่อง และการวิเคราะห์เส้นทางการไหลวิกฤต ดังรายละเอียดต่อไปนี้

3.1 การคำนวณการไหลของกำลังไฟฟ้าด้วยวิธีนิวตัน-ราฟสัน (Newton-Raphson Power Flow: NRPF) [4]

การคำนวณการไหลของกำลังไฟฟ้า เป็นการหาแรงดันไฟฟ้า และมุมเฟสที่บัสต่าง ๆ ซึ่งเป็น ข้อมูลเบื้องต้นที่ใช้ในการคำนวณค่ากระแสไฟฟ้า กำลังไฟฟ้าจริง และกำลังไฟฟ้ารีแอคทีฟที่ไหลในสาย ณ สภาวะโหลดที่ใช้คำนวณ โดยใช้ข้อมูลของสายป้อนในระบบ (line data) ซึ่งประกอบด้วยค่าพารามิเตอร์ ของสายจำหน่าย หม้อแปลงไฟฟ้า และข้อมูลกำลังไฟฟ้าของบัส (bus data) ร่วมกับสมมติฐานการ ควบคุมกำลังไฟฟ้าของระบบ โดยส่วนใหญ่วิธีการคำนวณการไหลของกำลังไฟฟ้าที่ได้รับการยอมรับ มากที่สุด คือวิธี NRPF ซึ่งมีขั้นตอนการคำนวณดังนี้

กำลังไฟฟ้าผลต่างเฉพาะเครื่องกำเนิดไฟฟ้ากับโหลด ณ บัสที่ *i* เขียนได้เป็นสมการที่ (3.1)

$$P_{sch,i} + jQ_{sch,i} = \left(P_{G,i} + jQ_{G,i}\right) - \left(P_{L,i} + jQ_{L,i}\right)$$
(3.1)

เมื่อ $P_{sch,i}, \ Q_{sch,i}$ คือ กำลังไฟฟ้าผลต่างระหว่างเครื่องกำเนิดไฟฟ้ากับโหลด ที่บัส *i* $P_{G,i}, \ Q_{G,i}$ คือ กำลังไฟฟ้าของเครื่องกำเนิดไฟฟ้าที่บัส *i* $P_{L,i}, \ Q_{L,i}$ คือ กำลังไฟฟ้าของโหลดที่บัส *i* $G, \ L$ คือ เครื่องกำเนิดไฟฟ้าและโหลด ตามลำดับ

ซึ่งกำลังไฟฟ้าตามสมการที่ (3.1) จะไหลระหว่างสายป้อนที่เชื่อมต่อกับบัส ดังสมการที่ (3.2)

$$P_{sch,i} + jQ_{sch,i} = V_i I_i^*$$
(3.2)

เมื่อ

V, คือ ค่าแรงดัน ณ บัส i

*I*_i คือ ค่ากระแสรวมที่ไหลออกจากบัสที่ *i* ผ่านทางสายป้อนไปยังบัส
 อื่นคำนวณได้จากสมการที่ (3.3)

$$I_{i} = y_{i0}V_{i} + y_{i1}(V_{i} - V_{1}) + y_{i2}(V_{i} - V_{2}) + \dots + y_{in}(V_{i} - V_{n})$$

= $(y_{i0} + y_{i1} + y_{i2} + \dots + y_{in})V_{i} - y_{i1}V_{1} - y_{i1}V_{2} - \dots - y_{in}V_{n}$ (3.3)

โดยค่า y แทนแอตมิตแตนซ์ของสายป้อน เมื่อจัดรูปสมการ (3.3) ใหม่ จะได้สมการที่ (3.4) ซึ่ง สามารถเขียนในรูปแบบเชิงขั้วได้ดังสมการ (3.5)

$$I_{i} = V_{i} \sum_{j=0}^{n} y_{ij} - \sum_{j=1}^{n} y_{ij} V_{j} \qquad j \neq i$$
(3.4)

$$I_{i} = \sum_{j=1}^{n} \left| Y_{ij} \right| \left| V_{j} \right| \angle \theta_{ij} + \delta_{j}$$
(3.5)

เมื่อ $\left|Y_{ij}\right|$ คือ ขนาดของค่าแอตมิทแตนซ์ ที่แถว i และหลัก j ของเมตริกซ์แอตมิทแตนซ์ จัดรูป สมการที่ (3.2) ในรูปของค่าสังยุค (Conjugate) แล้วแทนค่า I_i จากสมการที่ (3.5) ลงไป จะได้ สมการที่ (3.6) ดังนี้

$$P_{sch,i} - jQ_{sch,i} = \left| V_i \right| \angle -\delta_i \sum_{j=1}^n \left| Y_{ij} \right| \left| V_j \right| \angle \theta_{ij} + \delta_j$$
(3.6)

สมการที่ (3.6) สามารถแยกเป็นสมการที่ (3.7) และ (3.8) ตามลำดับ

$$P_{sch,i} = \sum_{j=l}^{n} |V_i| |V_j| |Y_{ij}| \cos\left(\theta_{ij} - \delta_i + \delta_j\right)$$
(3.7)

$$Q_{sch,i} = -\sum_{j=l}^{n} |V_i| |V_j| |Y_{ij}| sin(\theta_{ij} - \delta_i + \delta_j)$$
(3.8)

สมการที่ (3.7) และ (3.8) เป็นสมการไม่เชิงเส้น โดยมีตัวแปรที่ไม่ทราบค่าคือขนาดแรงดันและ มุมแรงดันที่ทุกบัส ยกเว้นบัสอ้างอิงที่กำหนดมุมแรงดันเป็นศูนย์องศา เมื่อกระจายสมการที่ (3.7) และ (3.8) โดยใช้อนุกรมเทย์เลอร์ (Taylor's Series Expansion) ที่คิดเฉพาะเทอมอนุพันธ์อันดับที่หนึ่ง รอบจุดเริ่มต้น เราจะได้ความสัมพันธ์ในรูปเมตริกซ์ดังสมการที่ (3.9)

$$\begin{bmatrix} \Delta P_{2} \\ \vdots \\ \Delta P_{n} \\ \vdots \\ \Delta Q_{2} \\ \vdots \\ \Delta Q_{n} \end{bmatrix} = \begin{bmatrix} \frac{\partial P_{2}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{2}}{\partial \delta_{n}} & \frac{\partial P_{2}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{2}}{\partial |V_{n}|} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial P_{n}}{\partial \delta_{2}} & \cdots & \frac{\partial P_{n}}{\partial \delta_{n}} & \frac{\partial P_{n}}{\partial |V_{2}|} & \cdots & \frac{\partial P_{n}}{\partial |V_{n}|} \\ \frac{\partial Q_{2}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{2}}{\partial \delta_{n}} & \frac{\partial Q_{2}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{2}}{\partial |V_{n}|} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial Q_{n}}{\partial \delta_{2}} & \cdots & \frac{\partial Q_{n}}{\partial \delta_{n}} & \frac{\partial Q_{n}}{\partial |V_{2}|} & \cdots & \frac{\partial Q_{n}}{\partial |V_{n}|} \end{bmatrix} \begin{bmatrix} \Delta \delta_{2} \\ \vdots \\ \Delta \delta_{n} \\ \frac{\Delta |V_{2}|}{\partial \delta_{n}} \\ \frac{\Delta |V_{n}|}{\partial |V_{n}|} \end{bmatrix}$$
(3.9)

จากสมการที่ (3.9) สามารถเขียนใหม่ในรูปสมการที่ (3.10)

$$\begin{bmatrix} \underline{\Delta P} \\ \underline{\Delta Q} \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix} \begin{bmatrix} \underline{\Delta \delta} \\ \underline{\Delta |V|} \end{bmatrix}$$
(3.10)

สมการที่ (3.10) ใช้ในการคำนวณแบบวนรอบเพื่อปรับค่าขนาดแรงดันและมุมแรงดันทุกบัส จนกระทั่งเงื่อนไขของการลู่เข้าสู่คำตอบเป็นจริง สมการที่ (3.10) สามารถเขียนใหม่เพื่อใช้สำหรับการ คำนวณแบบวนรอบเขียนได้ดังสมการที่ (3.11) และ (3.12)

$$\left[\frac{\Delta\delta}{\Delta|V|}\right]^{(k-1)} = \left(\left[\frac{J_1 \mid J_2}{J_3 \mid J_4}\right]^{-1}\right)^{(k-1)} \left[\frac{\Delta P}{\Delta Q}\right]^{(k-1)}$$
(3.11)

$$\left[\frac{\Delta\delta}{\Delta|V|}\right]^{(k)} = \left[\frac{\delta}{|V|}\right]^{(k-1)} + \left[\frac{\Delta\delta}{\Delta|V|}\right]^{(k-1)}$$
(3.12)

อักษรตัวยก k ในสมการที่ (3.11) และ (3.12) หมายถึงรอบของการคำนวณ ในการคำนวณ เริ่มต้นจะกำหนดให้ ขนาดและมุมของแรงดันที่ทุกบัสมีค่า 1 หน่วยและศูนย์ตามลำดับ

เมตริกซ์จาร์โคเบียนในสมการ (3.11) และ (3.12) ประกอบด้วยเมตริกซ์ย่อย $J_{_I} - J_{_4}$ โดย เมตริกซ์ย่อย $J_{_I}$ เป็นเมตริกซ์ ที่มีค่าในแนวทแยงมุมหลักและค่านอกแนวทแยงมุมหลัก ดังสมการที่ (3.13) และ (3.14) ตามลำดับ

$$\frac{\partial P_i}{\partial \delta_i} = \sum_{j \neq i} |V_i| |V_j| |Y_{ij}| \sin(\theta_{ij} - \delta_i + \delta_j)$$
(3.13)

$$\frac{\partial P_i}{\partial \delta_j} = -|V_i| |V_j| |Y_{ij}| \sin(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i$$
(3.14)

J₂ เป็นเมตริกซ์ ที่มีค่าในแนวทแยงมุมหลักและค่านอกแนวทแยงมุมหลัก ดังสมการที่ (3.15)
 และ (3.16) ตามลำดับ

$$\frac{\partial P_i}{\partial |V_i|} = 2 |V_i| |Y_{ii}| \cos \theta_{ii} + \sum_{j \neq i} |V_i| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j)$$
(3.15)

$$\frac{\partial P_i}{\partial |V_j|} = |V_i| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i$$
(3.16)

J₃ เป็นเมตริกซ์ ที่มีค่าในแนวทแยงมุมหลักและค่านอกแนวทแยงมุมหลัก ดังสมการที่ (3.17)
 และ (3.18) ตามลำดับ

$$\frac{\partial Q_i}{\partial \delta_i} = \sum_{j \neq i} |V_i| |V_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j)$$
(3.17)

$$\frac{\partial Q_i}{\partial \delta_j} = -|V_i| |V_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i$$
(3.18)

J₄ เป็นเมตริกซ์ ที่มีค่าในแนวทแยงมุมหลักและค่านอกแนวทแยงมุมหลัก ดังสมการที่ (3.19)
 และ (3.20) ตามลำดับ

$$\frac{\partial Q_i}{\partial |V_i|} = 2 |V_i| |Y_{ii}| \sin \theta_{ii} + \sum_{j \neq i} |V_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j)$$
(3.19)

$$\frac{\partial Q_i}{\partial |V_j|} = |V_i| |Y_{ij}| \sin(\theta_{ij} - \delta_i + \delta_j) \qquad j \neq i$$
(3.20)

จากสมการที่ (3.10) และ (3.11) เป็นการคำนวณแบบวนรอบเพื่อปรับค่าขนาดแรงดันและมุม แรงดันทุกบัสจนกระทั่งเงื่อนไขของการลู่เข้าสู่คำตอบเป็นจริง ในแต่ละรอบต้องหาค่าผลต่างของ กำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอคทีฟ ดังสมการที่ (3.21) และ (3.22) ตามลำดับ

$$\Delta P_i^{(k)} = P_{sch,i} - P_i^{(k)}$$
(3.21)

$$\Delta Q_i^{(k)} = Q_{sch,i} - Q_i^{(k)}$$
(3.22)

ปรับค่าขนาดและมุมแรงดันแต่ละบัสในแต่ละรอบ ดังสมการที่ (3.23) และ (3.24) ตามลำดับ

$$\delta_i^{(k)} = \delta_i^{(k-1)} + \Delta \delta_i^{(k-1)} \tag{3.23}$$

$$\left|V_{i}^{(k)}\right| = \left|V_{i}^{(k-1)}\right| + \Delta \left|V_{i}^{(k-1)}\right|$$
(3.24)

คำนวณหาค่า $\Delta P_i^{(k)}$ และ $\Delta Q_i^{(k)}$ ในแต่ละรอบจนกระทั่งลู่เข้าสู่คำตอบ และคำนวณหาค่า กำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอคทีฟได้ ผลที่ได้จากการคำนวณการไหลของกำลังไฟฟ้าจะใช้สำหรับ ประเมินจุดทำงานของระบบไฟฟ้ากำลังในภาวะปกติ ในบางสภาวะที่ระบบมีแรงดันไฟฟ้าต่ำมากการ คำนวณการไหลของกำลังไฟฟ้าแบบปกติไม่สามารถหาคำตอบได้เนื่องจากคุณสมบัติความเป็นเอกฐาน (singularity property) ของจาโคเบียนเมตริกซ์ จึงมีการคำนวณ CPF เพื่อให้สามารถคำนวณจุด ทำงาน ณ สภาสะใกล้เคียงเอกฐานได้

3.2 การคำนวณค่าจุดวิกฤตโดยใช้วิธีวิธีการไหลของกำลังไฟฟ้าแบบต่อเนื่อง (Continuation Power Flow: CPF) [19], [4] ,[12]

การคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องเป็นปรับปรุงมาจากการคำนวณการไหลของ กำลังไฟฟ้าแบบปกติเพื่อให้สามารถคำนวณหาคำตอบของระบบไฟฟ้าได้ ณ สภาวะวิกฤต ของระบบ ไฟฟ้ากำลัง ตามสมมติฐานการเพิ่มโหลดและเครื่องกำเนิดไฟฟ้า (loading scenario) โดยใช้เทคนิค เพิ่มค่าตัวแปรเพื่อหลีกเลี่ยงสภาวะเอกฐานของระบบ (local parameterization) ขั้นตอนการคำนวณมีดังนี้ เพิ่มตัวคูณกำลังไฟฟ้าที่บัส ג เข้าไปในสมการการไหลของกำลังไฟฟ้าแบบปกติ ดังสมการ

$$F(\delta, V, \lambda) = 0, \ 1 \le \lambda \le \lambda_{\max} \tag{3.25}$$

โดย δ และ V คือค่ามุมเฟสและขนาดของแรงดันที่บัส ตามลำดับ ในกรณีโหลดพื้นฐานในตอน เริ่มคำนวณตัวแปร λ มีค่าเป็นหนึ่งเพื่อให้การคำนวณรวดเร็วขึ้นจะใช้เทคนิคการคาดการณ์และปรับ ผลตาม (predictor and corrector) ดังนี้

$$dF(\delta, V, \lambda) = \frac{\partial F}{\partial \delta} \Delta \delta + \frac{\partial F}{\partial V} \Delta V + \frac{\partial F}{\partial \lambda} \Delta \lambda = 0$$
(3.26)

ตัวแปร *X* ที่เพิ่มขึ้นเข้ามาในสมการการไหลของกำลังไฟฟ้าปกติทำให้ต้องแปลงสมการการไหล ของกำลังไฟฟ้าไปจากเดิม ดังนี้

$$\begin{pmatrix} \frac{\partial F}{\partial \delta} \frac{\partial F}{\partial V} \frac{\partial F}{\partial \lambda} \\ e_k \end{pmatrix} (T) = \begin{pmatrix} \vec{0} \\ \pm 1 \end{pmatrix}$$
(3.27)

เมตริก T คือเมตริกหลัก (column matrix) ที่แสดงทิศทางการเคลื่อนที่ของตัวแปร ณ จุด ทำงานนั้น (tangent matrix) ค่าในแถวสุดท้ายมีขนาดเป็นบวกหนึ่งหรือลบหนึ่งทำให้ *e*_k เป็นเมตริก แถว (row matrix) มีค่าเป็นศูนย์ยกเว้นหลักที่ k จะมีค่าบวกหนึ่งจากคุณสมบัติของเมตริก T ทำให้ สมการที่ดัดแปลงไปสามารถหาคำตอบได้ ณ จุดวิกฤตได้ เมื่อแก้สมการ (3.27) จะได้ทิศทางการปรับ ค่าตัวแปร δ, *V* และ λ จุดทำงานต่อไปสามารถคาดการณ์ได้จากสมการที่ (3.28)

$$\begin{pmatrix} \delta \\ V \\ \lambda \end{pmatrix} = \begin{pmatrix} \delta_i \\ V_i \\ \lambda_i \end{pmatrix} + \sigma \begin{pmatrix} \Delta \delta \\ \Delta V \\ \Delta \lambda \end{pmatrix}$$
(3.28)

โดย σ คือระยะห่างที่เคลื่อนที่ในแต่ละช่วงโหลดที่เพิ่มขึ้น

การเปลี่ยนตัวแปรและปรับค่า ณ สภาวะใกล้จุดวิกฤตมีความสำคัญต่อการคำนวณ (parameterization and the corrector) โดยในขั้นตอนนี้จะต้องมีการกำหนดตัวแปรในสมการการ ไหลของกำลังไฟฟ้าที่แปลงไปแล้วใหม่ (local parameterization) ดังสมการ (3.29)

$$x = \begin{pmatrix} \delta \\ V \\ \lambda \end{pmatrix}, \ let x_k = \eta$$
(3.29)

จากสมการที่ (3.29) การระบุตัวแปรในแถวที่ นิยมเลือกจากตัวแปร ที่มีอัตราการเปลี่ยนแปลง สูงสุดในเมตริก T ท้ายสุดจะได้สมการของระบบ ณ สภาวะนี้คือ

$$\begin{pmatrix} F(x) \\ x_k - \eta \end{pmatrix} = [0]$$
 (3.30)

คำตอบของสมการ (3.30) สามารถคำนวณโดยขั้นตอนตามสมการที่ (3.25) - (3.29) อีกครั้ง ผล ที่ได้จากการคำนวณในแต่ละรอบสามารถนำมาเขียนกราฟการเพิ่มขึ้นของโหลดกับแรงดัน ในรูปกราฟ P-V กราฟ Q-V หรือ กราฟ λ-V

ผลจากการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องสามารถนำมาวิเคราะห์เสถียรภาพ แรงดันไฟฟ้าโดยอาศัยความสัมพันธ์ระหว่างการส่งผ่านกำลังไฟฟ้าจริงของโหลดและแรงดันที่บัสโหลด การเปลี่ยนแปลงของการส่งผ่านกำลังไฟฟ้าจากบัสหนึ่งสู่บัสอื่น ๆ จะส่งผลต่อแรงดันที่บัส ซึ่งสามารถ ศึกษาได้จากกราฟเส้นโค้ง P-V [29] ดังภาพที่ 3.1

ภาพที่ 3.1 กราฟเส้นโค้ง P-V

กราฟเส้นโค้ง P-V ในภาพที่ 3.1 แสดงถึงความสัมพันธ์ระหว่างกำลังไฟฟ้าจริงของโหลดในระบบ กับแรงดันไฟฟ้า โดยเมื่อกำลังไฟฟ้าเพิ่มขึ้นแรงดันไฟฟ้าจะค่อย ๆ ตกลงเรื่อย ๆ จนถึงจุดวกกลับที่จุด นี้เรียกว่าจุดวิกฤต ที่จุดวิกฤตหากโหลดกำลังไฟฟ้าเพิ่มขึ้นอีกเพียงเล็กน้อยจะทำให้เกิดสภาวะแรงดัน พังทลาย โดยสามารถแบ่งครึ่งเส้นโค้ง P-V ในแนวนอนเป็นสองส่วน โดยส่วนบนของเส้นโค้งคือส่วนที่ มีเสถียรภาพทางแรงดันไฟฟ้าเนื่องจากแรงดันไฟฟ้าของระบบมีค่าลดลงเมื่อโหลดเพิ่มขึ้น ส่วนล่างคือ ส่วนที่ไม่มีเสถียรภาพทางแรงดันไฟฟ้าเนื่องจากแรงดันของระบบจะมีค่าสูงขึ้นเมื่อโหลดเพิ่มขึ้นซึ่งไม่ สอดคล้องกับความเป็นจริง

ผลจากการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องสามารถนำมาวิเคราะห์เสถียรภาพ แรงดันไฟฟ้าโดยอาศัยความสัมพันธ์ระหว่างการส่งผ่านกำลังไฟฟ้ารีแอคทีฟของโหลดและแรงดันที่บัส โหลด การเปลี่ยนแปลงของการส่งผ่านกำลังไฟฟ้ารีแอคทีฟจากบัสหนึ่งสู่บัสอื่นๆจะส่งผลต่อแรงดันที่ บัส ซึ่งสามารถศึกษาได้จากกราฟเส้นโค้ง Q-V [28] ดังภาพที่ 3.2

ภาพที่ 3.2 กราฟเส้นโค้ง Q-V

กราฟเส้นโค้ง Q-V ในภาพที่ 3.2 แสดงถึงความสัมพันธ์ระหว่างโหลดกำลังไฟฟ้ารีแอคทีฟกับ แรงดันไฟฟ้า โดยเมื่อโหลดกำลังไฟฟ้ารีแอคทีฟเพิ่มขึ้นแรงดันไฟฟ้าจะค่อยๆ ตกลงเรื่อยๆ จนถึงจุด วกกลับของเส้นโค้งพาลาโบล่า จุดนี้เรียกว่าจุดวิกฤต ที่จุดวิกฤตหากโหลดกำลังไฟฟ้าเพิ่มขึ้นอีกเพียง เล็กน้อยจะทำให้เกิดสภาวะแรงดันพังทลาย โดยสามารถแบ่งครึ่งเส้นโค้ง Q-V วิกฤตออกเป็นสองส่วน โดยส่วนบนของเส้นโค้งคือส่วนที่มีเสถียรภาพทางแรงดันไฟฟ้าส่วนล่างคือส่วนที่ไม่มีเสถียรภาพทาง แรงดันไฟฟ้า อย่างไรก็ตามโดยทั่วไปสมมุติฐานการเพิ่มขึ้นของโหลด P และ Q จะมีอัตราส่วนตัว ประกอบไฟฟ้ากำลังคงที่ทำให้ในการวิเคราะห์จะเลือกใช้กราฟ P-V หรือ Q-V เพียงอย่างเดียว

3.3 การวิเคราะห์เส้นทางการไหลวิกฤต [20], [21]

เพื่อที่จะแสดงถึงความสัมพันธ์ระหว่างขีดจำกัดการไหลของกำลังไฟฟ้าในระบบส่งกับปัญหา เสถียรภาพของแรงดันไฟฟ้า วิธีการวิเคราะห์ปัญหาเสถียรภาพของแรงดันไฟฟ้าด้วยวิธีเส้นทางการ ไหลวิกฤตของกำลังไฟฟ้า (critical transmission flow path) จึงได้ถูกนำเสนอขึ้นเพิ่มเติมจากวิธีการ ไหลของกำลังไฟฟ้าแบบต่อเนื่อง โดยรายละเอียดที่วิเคราะห์ได้จากเส้นทางการไหลของกำลังไฟฟ้า วิกฤตนี้ จะช่วยขยายขอบเขตความเข้าใจที่มีต่อปัญหาเสถียรภาพทางแรงดันไฟฟ้า

สาระสำคัญของการวิเคราะห์ด้วยวิธีเส้นทางการไหลวิกฤตของกำลังไฟฟ้า ณ สภาวะที่ระบบ ไฟฟ้าไม่สามารถคำนวณหาคำตอบของระบบได้ เส้นทางการไหลของกำลังไฟฟ้าแบบไม่มีกิ่งแยก (fictitious radial flow path) จากบัสเครื่องกำเนิดไฟฟ้าไปยังบัสวิกฤตทุกเส้นทางจะไม่มีคำตอบ สามารถอธิบายรายละเอียดได้ดังต่อไปนี้

3.3.1 เส้นทางการไหลของกำลังไฟฟ้า [20], [21]

เส้นทางการไหลของกำลังไฟฟ้าในที่นี้หมายถึง เส้นทางการไหลของกำลังไฟฟ้าจริง (real power) จากเครื่องกำเนิดไฟฟ้าไปยังโหลดซึ่งสามารถมองได้สองแบบ ได้แก่ มองทิศทางการไหลจาก เครื่องกำเนิดไฟฟ้าไปยังโหลด (forward tracing) และมองจากโหลดย้อนกลับมาที่เครื่องกำเนิดไฟฟ้า (backward tracing) เส้นทางการไหลของกำลังไฟฟ้ารีแอคทีฟ (reactive power) ไม่มีการพิจาณา เนื่องจากในการไหลของกำลังไฟฟ้าในระบบจริงส่วนใหญ่เป็นกำลังไฟฟ้าจริงที่ไหลจากโรงไฟฟ้าไปยัง บริเวณโหลด โดยมีการจ่ายกำลังไฟฟ้ารีแอคทีฟสนับสนุนเฉพาะพื้นที่รายละเอียดของเส้นทางการไหล กำลังไฟฟ้าจริง อธิบายเพิ่มเติมได้ดังนี้

3.3.2 การติดตามทิศทางการไหลของกำลังไฟฟ้าแบบด้านหน้า (Forward Tracing Graph: FTP) [20], [21]

เมื่อมองทิศทางการไหลของกำลังไฟฟ้าจริงจากเครื่องกำเนิดตัวหนึ่ง จะพบว่ากำลังไฟฟ้า จริงอาจมีการแยกไหลหรือรับกำลังไฟฟ้าจากเครื่องกำเนิดไฟฟ้าตัวอื่นจากเส้นทางอื่นเมื่อเจอโหลดที่มี สายส่งเชื่อต่ออยู่มากกว่าสองเส้น เรียกว่าเส้นทางการไหลการไหลของกำลังไฟฟ้าแบบขนาน (parallel flow path) และเมื่อมองเส้นทางการไหลแบบขนานเหล่านี้ทุกเส้นทางที่เป็นไปได้พบว่าจะ ไปสิ้นสุดที่โหลดบัสบางบัสเรียกโหลดบัสเหล่านี้ว่าโหลดบัสปลายทาง (end load bus) ซึ่งเป็นไปได้ว่า FTP จากเครื่องกำเนิดไฟฟ้าหนึ่งตัวอาจไปสิ้นสุดที่โหลดบัสปลายทางหลายบัส แสดงดังภาพที่ 3.3

ภาพที่ 3.3 การติดตามทิศทางการไหลของกำลังไฟฟ้าแบบด้านหน้า

3.3.3 การติดตามทิศทางการไหลของกำลังไฟฟ้าแบบย้อนกลับ (Backward Tracing graph: BTP) [20], [21]

ในระบบจริง ณ สภาวะการไหลของกำลังไฟฟ้า ณ เวลาหนึ่ง จะมีเพียงบางโหลดบัสใน ระบบเป็นโหลดบัสปลายทาง เมื่อมองจากโหลดบัสปลายทางบัสหนึ่งย้อนกลับไปในระบบตามทิศทาง ของกำลังไฟฟ้าจริงที่ไหลเข้าสู่โหลดบัสนี้ จะพบเส้นทางการไหลของกำลังไฟฟ้าแบบขนานหลาย เส้นทางเมื่อพิจารณาเส้นทางกรไหลแบบขนานเหล่านี้ทุกเส้นทาง จะมีจุดเริ่มที่บัสเครื่องกำเนิดไฟฟ้า หลายบัส แสดงดังภาพที่ 3.4

ภาพที่ 3.4 การติดตามทิศทางการไหลของกำลังไฟฟ้าแบบย้อนกลับ

3.3.4 เส้นทางการไหลแบบเสมือนเรเดียล (Equivalent Radial Path: ERP) [20], [21] เส้นทางการไหลของกำลังไฟฟ้าทั้งแบบ FTP และ BTP ณ สภาวะการไหลของกำลังไฟฟ้า ในระบบไฟฟ้ากำลังหนึ่งมีได้หลายเส้นทาง และสามารถพิจารณาเสมือนเส้นทางการไหลของ กำลังไฟฟ้าแบบเรเดียลจากเครื่องกำเนิดไฟฟ้าไปยังโหลดบัสปลายทาง โดยสมมูลการไหลของ กำลังไฟฟ้าที่แยกออกจากเส้นทางเสมือนคล้ายกับโหลดเสมือน (ficticious load) แสดงในภาพที่ 3.5

ภาพที่ 3.5 เส้นทางการไหลแบบเสมือนเรเดียล

จากภาพที่ 3.5 แสดงเส้นทางการไหลแบบเสมือนเรเดียล เส้นทาง *i* ที่มีทั้งหมด *n* บัสโดยทาง ต้นทางเสมือนมีเครื่องกำเนิดไฟฟ้าอยู่ที่บัส (*i,a*) กำลังไฟฟ้าไหลไปยังบัส (*i,b*) และเพื่อให้ กำลังไฟฟ้าที่ไหลบนเส้นทางเสมือนนี้สมดุล จะต้องทำการเพิ่มโหลดเสมือนที่คำนวณจากส่วนต่างของ กำลังไฟฟ้าปรากฏที่ไหลเข้าและไหลออกในแต่ละบัส แสดงดังภาพที่ 3.6

ภาพที่ 3.6 โหลดไฟฟ้าเสมือน ณ บัส k ของ ERP เส้นทางที่ *i*

ในวิทยานิพนธ์ฉบับนี้ใช้ผลจากการคำนวณกรไหลของกำลังไฟฟ้าแบบต่อเนื่อง ณ สภาวะเกิดการ พังทลายของแรงดันไฟฟ้าในการวิเคราะห์เส้นทางการไหลวิกฤต โดยนำขอมูลการไหลของกำลังไฟฟ้า ในระบบทดสอบมาติดตามการไหลของกำลังไฟฟ้า

การติดตามการไหลแบบ FTP ใช้ในระบบทดสอบที่มีบัสปลายทางน้อยโดยติดตามการไหลของ กำลังไฟฟ้าจากบัสเครื่องกำเนิดไฟฟ้าต้นทางไปยังโหลดบัสปลายทาง

การติดตามการไหลของกำลังไฟฟ้าแบบ BTP ใช้ในระบบทดสอบที่มีบัสปลายทางหลายบัส เนื่องจากง่ายในการติดตามมากว่าแบบ FTP โดยติดตามการไหลของกำลังไฟฟ้าจากโหลดบัส ปลายทางมายังบัสเครื่องกำเนิดไฟฟ้า

เมื่อทราบเส้นทางการไหลของกำลังไฟฟ้าในระบบทดสอบจะทำการ ERP ในแต่ละเส้นทางการ ไหลของกำลังไฟฟ้า ทำการสมดุลกำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอคทีฟที่ไหลเข้าออกในบัสแต่ละบัส ส่วนต่างของกำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอคทีฟในแต่ละบัสจะกำหนดให้เป็นโหลดเสมือนของบัส นั้นๆ ดังภาพที่ 3.7

ภาพที่ 3.7 สมดุลกำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอคทีฟที่ไหลเข้าออกในบัสแต่ละบัส

จากนั้นทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF ในแต่ละเส้นทางการไหลของ กำลังไฟฟ้า โดยทำการเพิ่มกำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอคทีฟที่โหลดบัส และกำลังไฟฟ้าจริงที่บัส เครื่องกำเนิดขึ้นรอบละ 1 % จนกว่าการคำนวณจะหาคำตอบไม่ได้ เส้นทางการไหลของกำลังไฟฟ้าที่ สามารถรองรับการเพิ่มขึ้นของกำลังไฟฟ้าได้น้อยกว่า 1% คือเส้นทางการไหลวิกฤต วิทยานิพนธ์ฉบับ นี้จะแยกพิจารณาการวิเคราะห์เส้นทางการไหลวิกฤตออกเป็นสองกรณี คือ

กรณีที่ 1 วิเคราะห์เส้นทางการไหลวิกฤตตามสถานะปกติในขั้นตอนการทำ ERP โดยมี บัสอ้างอิง บัสเครื่องกำเนิดไฟฟ้า และโหลดบัส เพื่อพิจารณาการไหลของกำลังไฟฟ้าตามสถานะจริงของระบบ

กรณีที่ 2 วิเคราะห์เส้นทางการไหลวิกฤตโดยกำหนดให้บัสเครื่องกำเนิดไฟฟ้าเป็นโหลดบัสใน ขั้นตอนการทำ ERP เพื่อพิจารณาเสมือนเส้นทางการไหลของกำลังไฟฟ้าแบบเรเดียลจากเครื่องกำเนิด ไฟฟ้าไปยังโหลดบัสปลายทางในสภาวะมีบัสเครื่องกำเนิดไฟฟ้าเพียงบัสเดียว เพื่อแสดงให้เห็นถึงความ แตกต่างของกรณีที่วิเคราะห์ในสภาวะปกติที่มีบัสเครื่องกำเนิดไฟฟ้า และสภาวะเสมือนมีเครื่องกำเนิด ไฟฟ้าแห่งเดียว
บทที่ 4 ข้อมูลระบบทดสอบ

ในบทนี้จะกล่าวถึงกระบวนการจัดเตรียมข้อมูลของระบบทดสอบ ได้แก่ ข้อมูลบัส ข้อมูลสายส่ง และข้อมูลโครงสร้างของระบบทดสอบ ซึ่งในวิทยานิพนธ์ฉบับนี้จะใช้ข้อมูลระบบทดสอบ 5 บัส (Hadi Saadat) ระบบทดสอบ 9 บัส (Hadi Saadat) และระบบทดสอบ 39 บัส (New England) ในการ ทดสอบ ดังรายละเอียดต่อไปนี้

4.1 ระบบทดสอบที่ 1 ระบบทดสอบ 5 บัส มีโครงสร้างดังนี้

ภาพที่ 4.1 ระบบทดสอบ 5 บัส

ตารางที่ 4.1	ข้อมลาเัสของระบบทดสอบ	5	บัส
1 10 INVI 4.1		-	0.01

		Lo	Load		Generation					
Bus	Bus	Р	Q	P_{g}	$P_{\rm max}$	P_{\min}	Q_{\max}	Q_{\min}	Voltage	
Туре	(MW)	(Mvar)	(MW)	(MW)	(MW)	(Mvar)	(Mvar)	(pu)		
1	Slack	0	0	0	85	0	50	-10	1.060	
2	PV	20	10	30	80	0	50	-10	1.045	
3	PV	20	15	40	70	0	40	-10	1.030	
4	PQ	50	30	0	0	0	0	0	1.000	
5	PQ	60	40	0	0	0	0	0	1.000	

ตารางที่ 4.2 ข้อมูลสายส่งของระบบทดสอบ 5 บัส

	Bu	ses	lr	Rating		
Line	From	То	R	Х	B/2	(MVA)
1	1	2	0.02	0.06	0.06	20
2	1	3	0.08	0.24	0.05	25

ตารางที่ 4.2	ข้อมลสายส่งของระบบทดสอบ	5	บัส	(ຫ່ລ)
		5	061	(10)

Line	Bu	ses	Ir	Impedance (pu)				
	From	То	R	Х	B/2	(MVA)		
3	2	3	0.06	0.18	0.04	25		
4	2	4	0.06	0.18	0.04	15		
5	2	5	0.04	0.12	0.03	60		
6	3	4	0.01	0.03	0.02	60		
7	4	5	0.08	0.24	0.05	20		

4.2 ระบบทดสอบที่ 2 ระบบทดสอบ 9 บัส มีโครงสร้างดังนี้

ภาพที่ 4.2 ระบบทดสอบ 9 บัส

ตารางที่ 4.3 ข้อมูลบัสของระบบทดสอบ 9 บัส

	_	Load							
Bus	Bus Type	P (MW)	Q (Mvar)	P_{g} (MW)	P _{max} (MW)	P _{min} (MW)	$Q_{ m max}$ (MVar)	$Q_{ m min}$ (MVar)	Voltage (pu)
1	Slack	0	0	0	200	50	999	-999	1.03
2	PV	20	10	80	200	50	250	0	1.04
3	PQ	25	15	0	0	0	0	0	1.00
4	PQ	10	5	0	0	0	0	0	1.00
5	PQ	40	20	0	0	0	0	0	1.00
6	PQ	60	40	0	0	0	0	0	1.00
7	PV	10	5	120	100	50	100	0	1.01
8	PQ	80	60	0	0	0	0	0	1.00
9	PQ	100	80	0	0	0	0	0	1.00

	Bu	ses	Ir	mpedance (pi	J)	Rating
Line	From	То	R	Х	B/2	(MVA)
1	1	2	0.018	0.054	0.0045	100
2	1	8	0.014	0.036	0.0030	100
3	2	9	0.006	0.030	0.0028	100
4	2	3	0.013	0.036	0.0030	100
5	3	4	0.010	0.050	0.0000	100
6	4	5	0.018	0.056	0.0000	100
7	5	6	0.020	0.060	0.0000	100
8	6	7	0.015	0.045	0.0038	100
9	6	9	0.002	0.066	0.0000	100
10	7	8	0.032	0.076	0.0000	100
11	7	9	0.022	0.065	0.0000	100

ตารางที่ 4.4 ข้อมูลสายส่งของระบบทดสอบ 9 บัส

4.3 ระบบทดสอบที่ 3 ระบบทดสอบ 39 บัส มีโครงสร้างดังนี้

ภาพที่ 4.3 ระบบทดสอบ 39 บัส

masa	ด้วงเวงัสดเวงระงางเพดสวงเ	20 มัส	
ตารางพ 4.5	ขอมูลบลของระบบพิตลอบ	39 ปล	

		Lo	ad		(Generatio	n		
Bus	Bus	Р	Q	P_{g}	$P_{\rm max}$	P_{\min}	$Q_{\rm max}$	Q_{\min}	Voltage
	туре	(MW)	(Mvar)	(MW)	(MW)	(MW)	(MVar)	(MVar)	(pu)
1	Slack	9.2	4.6	0	0	0	0	0	0.9820
2	PV	0	0	250	0	0	0	0	1.0475
3	PV	0	0	650	0	0	0	0	0.9831
4	PV	0	0	632	0	0	0	0	0.9972
5	PV	0	0	508	0	0	0	0	1.0123
6	PV	0	0	650	0	0	0	0	1.0493
7	PV	0	0	560	0	0	0	0	1.0635
8	PV	0	0	540	0	0	0	0	1.0278
9	PV	0	0	830	0	0	0	0	1.0265
10	PV	1104	250	1000	0	0	0	0	1.0300
11	PQ	0	0	0	0	0	0	0	1
12	PQ	0	0	0	0	0	0	0	1
13	PQ	322	2.4	0	0	0	0	0	1
14	PQ	500	184	0	0	0	0	0	1
15	PQ	0	0	0	0	0	0	0	1
16	PQ	0	0	0	0	0	0	0	1
17	PQ	233.8	84	0	0	0	0	0	1
18	PQ	522	176	0	0	0	0	0	1
19	PQ	0	0	0	0	0	0	0	1
20	PQ	0	0	0	0	0	0	0	1
21	PQ	0	0	0	0	0	0	0	1
22	PQ	7.5	88	0	0	0	0	0	1
23	PQ	0	0	0	0	0	0	0	1
24	PQ	0	0	0	0	0	0	0	1
25	PQ	320	153	0	0	0	0	0	1
26	PQ	329	32.3	0	0	0	0	0	1
27	PQ	0	0	0	0	0	0	0	1
28	PQ	158	30	0	0	0	0	0	1
29	PQ	0	0	0	0	0	0	0	1
30	PQ	628	103	0	0	0	0	0	1
31	PQ	274	115	0	0	0	0	0	1
32	PQ	0	0	0	0	0	0	0	1
33	PQ	247.5	84.6	0	0	0	0	0	1
34	PQ	308.6	-92	0	0	0	0	0	1
35	PQ	224	47.2	0	0	0	0	0	1

	Load								
Bus	Bus Type	Р	Q	P_{g}	$P_{\rm max}$	P_{\min}	$Q_{ m max}$	Q_{\min}	Voltage (pu)
	Type	(MW)	(Mvar)	(MW)	(MW)	(MW)	(MVar)	(MVar)	(pu)
36	PQ	139	17	0	0	0	0	0	1
37	PQ	281	75.5	0	0	0	0	0	1
38	PQ	206	27.6	0	0	0	0	0	1

ตารางที่ 4.5 ข้อมูลบัสของระบบทดสอบ 39 บัส (ต่อ)

ตารางที่ 4.6 ข้อมูลสายส่งของระบบทดสอบ 39 บัส

283.5

26.9

PQ

	Bu	ses	li	mpedance (pi	u)	Rating
Line	From	То	R	Х	В	(MVA)
1	11	12	0.0035	0.0411	0.6987	100
2	11	10	0.0010	0.0250	0.7500	100
3	12	13	0.0013	0.0151	0.2572	100
4	12	35	0.0070	0.0086	0.1460	100
5	13	14	0.0013	0.0213	0.2214	100
6	13	28	0.0011	0.0133	0.2138	100
7	14	15	0.0008	0.0128	0.1342	100
8	14	24	0.0008	0.0129	0.1382	100
9	15	16	0.0002	0.0026	0.0434	100
10	15	18	0.0008	0.0112	0.1476	100
11	16	17	0.0006	0.0092	0.1130	100
12	16	21	0.0007	0.0082	0.1389	100
13	17	18	0.0004	0.0046	0.0780	100
14	18	19	0.0023	0.0363	0.3804	100
15	19	10	0.0010	0.0250	1.2000	100
16	20	21	0.0004	0.0043	0.0729	100
17	20	23	0.0004	0.0043	0.0729	100
18	23	24	0.0009	0.0101	0.1723	100
19	24	25	0.0018	0.0217	0.3360	100
20	25	26	0.0009	0.0094	0.1710	100
21	26	27	0.0007	0.0089	0.1342	100
22	26	29	0.0016	0.0195	0.3040	100
23	26	31	0.0008	0.0135	0.2548	100
24	26	34	0.0003	0.0059	0.0680	100
25	27	28	0.0007	0.0082	0.1319	100
26	27	27	0.0013	0.0173	0.3216	100
27	31	32	0.0008	0.0140	0.2565	100

24

1	Bus	ses	Ir	npedance (pu	ı)	Rating
Line	From	То	R	Х	В	(MVA)
28	32	33	0.0006	0.0096	0.1846	100
29	33	34	0.0022	0.0350	0.3610	100
30	35	36	0.0032	0.0323	0.5130	100
31	36	37	0.0014	0.0147	0.2396	100
32	36	38	0.0043	0.0474	0.7802	100
33	36	39	0.0057	0.0625	1.0290	100
34	38	39	0.0014	0.0151	0.2490	100
35	22	21	0.0016	0.0435	0	100
36	22	23	0.0016	0.0435	0	100
37	16	1	0	0.0250	0	100
38	20	3	0	0.0200	0	100
39	29	4	0.0007	0.0142	0	100
40	30	5	0.0009	0.0180	0	100
41	32	6	0	0.0143	0	100
42	33	7	0.0005	0.0272	0	100
43	35	8	0.0006	0.0232	0	100
44	12	2	0	0.0181	0	100
45	39	9	0.0008	0.0156	0	100
46	29	30	0.0007	0.0138	0	100

ตารางที่ 4.6 ข้อมูลสายส่งของระบบทดสอบ 39 บัส (ต่อ)

บทที่ 5 - ------

การคำนวณและผลการทดลอง

ในบทนี้จะกล่าวถึงขั้นตอนขั้นตอนการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง การคำนวณ การไหลของกำลังไหลของกำลังไฟฟ้าแบบปกติ และการวิเคราะห์เส้นทางการไหลวิกฤตในระบบ ทดสอบ 5 บัส ระบบทดสอบ 9 บัสและระบบทดสอบ 39 บัส

สามารถแบ่งออกเป็นขั้นตอนได้ดังนี้

(1) คำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องและผลการทดลอง

- (2) คำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF และผลการทดลอง
- (3) ติดตามการไหลของกำลังไฟฟ้าของระบบทดสอบ

(4) คำนวณการไหลของกำลังไฟฟ้าแบบปกติโดยเพิ่งกำลังไฟฟ้าจริงและไฟฟ้ารีแอคทีฟที่โหลด บัสและกำลังไฟฟ้าจริงที่บัสเครื่องกำเนิดไฟฟ้า

(5) วิเคราะห์เส้นทางการไหลวิกฤตของระบบทดสอบ โดยมีรายละเอียดแต่ละส่วนอธิบายได้ดังนี้

5.1 ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องระบบทดสอบ 5 บัส

วิธีการไหลของกำลังไฟฟ้าแบบต่อเนื่องเป็นวิธีการที่นิยมใช้กันอย่างแพร่หลายในการวิเคราะห์ เสถียรภาพแรงดันไฟฟ้าในระบบไฟฟ้ากำลัง ผลที่ได้จะเป็นบัสวิกฤตของระบบทดสอบและ ความสัมพันธ์ระหว่างแรงดันไฟฟ้ากับการเพิ่มขึ้นของโหลดตามรูปแบบที่กำหนด นอกจากนี้สามารถนำ ผลการคำนวณที่ได้ไปวาดกราฟเส้นโค้ง P-V ซึ่งการวิเคราะห์กราฟเส้นโค้ง P-V สามารถระบุบัส อ่อนแอในระบบได้

วิทยานิพนธ์ฉบับนี้ใช้โปรแกรม PSAT ในการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องเพื่อ ศึกษาการไหลของกำลังไฟฟ้า โดยใช้ข้อมูล bus data, line data, generator data ของระบบ ทดสอบในการคำนวณได้ผลการคำนวณดังนี้

ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง ณ สภาวะจุดเกิดการพังทลายของ แรงดันไฟฟ้าของระบบทดสอบ 5 บัสสามารถแสดงข้อมูลแรงดันไฟฟ้าที่บัสแต่ละบัสของระบบทดสอบ กำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอคทีฟของเครื่องกำเนิดไฟฟ้า กำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอค ทีฟของโหลดที่บัสแต่ละบัส ดังแสดงได้ดังตารางที่ 5.1

ตารางที่ 5.2 แสดงการไหลของกำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอคทีฟจากบัสต้นทางไปยังบัส ปลายทาง พร้อมแสดงกำลังไฟฟ้าจริงสูญเสียและกำลังไฟฟ้ารีแอคทีฟสูญเสียในสายส่งแต่ละเส้นใน ระบบทดสอบ 5 บัส

ผลการคำนวณแรงดันไฟฟ้าที่บัสจากระบบทดสอบ 5 บัส โดยวิธีการคำนวณการไหลของ กำลังไฟฟ้าแบบต่อเนื่องพบว่าจุดที่ระบบสามารถจ่ายกำลังไฟฟ้าได้สูงสุด ณ ค่าโหลดเป็น 4.6621 เท่า ของกรณีฐาน

	แรงดันไฟฟ้า		การจ่ายกำลังไฟฟ้า		โหลด	
ับล	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.06	0	539.4610	-81.5208	-	-
2	1.045	-0.2320	139.8641	588.7334	93.2427	46.6214
3	1.03	-0.3083	186.4855	380.7372	93.2427	69.9321
4	0.9288	-0.3614	-	-	233.1068	139.8641
5	0.5408	-0.5992	-	-	279.7282	186.4855
	รวม		3027.7283	3569.2620	2424.0278	1651.1493

ตารางที่ 5.1 แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้าจากผลการ คำนวณ CPF ของระบบทดสอบ 5 บัส

ตารางที่ 5.2 การไหลของกำลังไฟฟ้าระบบทดสอบ 5 บัส ณ สภาวะสุดท้ายก่อนเกิดการพังทลาย ของแรงดันไฟฟ้าจากผลการคำนวณ CPF

- da - da	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		P_{L}	QL
114WI	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	2	404.8230	-65.7201	-375.0330	141.7963	29.7900	76.0762
2	1	3	134.6380	-15.8007	-121.6575	43.8197	12.9805	28.0189
3	2	3	44.1469	-8.6365	-43.0661	3.2673	1.0808	5.3692
4	2	4	84.2150	39.5089	-79.2605	-32.4645	4.9545	7.0444
5	2	5	293.2925	369.4433	-210.8987	-126.4153	82.3938	243.0280
6	3	4	257.9664	263.7182	-245.0323	-228.7633	12.9341	34.9549
7	4	5	91.1859	91.1859	-68.8295	-60.0702	22.3565	61.2935
						รวม	166.4902	455.7851

จากการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องสามารถเขียนกราฟความสัมพันธ์ระหว่าง การเพิ่มขึ้นของโหลดกับค่าแรงดันไฟฟ้า (PV Curve) ของระบบทดสอบ 5 บัส ซึ่งกราฟเส้นโค้ง P-V สามารถระบุบัสอ่อนแอในระบบทดสอบโดยการวิเคราะห์การตกลงของแรงดันไฟฟ้าที่บัสเมื่อโหลดมี ค่าเพิ่มขึ้น ในระบบทดสอบ 5 บัส พบว่าบัสที่มีความอ่อนแอมากที่สุดคือบัสที่ 5 บัสที่อ่อนแอรองลงมา คือบัสที่ 4 กราฟความสัมพันธ์ระหว่างการเพิ่มขึ้นของโหลดกับค่าแรงดันไฟฟ้าของระบบทดสอบ 5 บัส แสดงได้ดังภาพที่ 5.1

ภาพที่ 5.1 ความสัมพันธ์ระหว่างกำลังไฟฟ้าและแรงดันไฟฟ้าของระบบทดสอบ 5 บัส

จากภาพที่ 5.1 แสดงกราฟเส้นโค้ง P-V จะเห็นว่ากราฟเส้นโค้งของบัสที่ 5 มีการลดของแรงดัน มากที่สุดเมื่อโหลดเพิ่มขึ้น แสดงถึงความอ่อนแอของบัส รองลงมาคือกราฟเส้นโค้งของบัสที่ 4 ส่วน กราฟเส้นโค้งของบัสที่ 1, 2 และ 3 มีค่าไม่เปลี่ยนแปลงเนื่องจากเป็นบัสเครื่องกำเนิดไฟฟ้าซึ่งมีแรงดัน คงที่ ดังนั้นบัสที่อ่อนแอที่สุดในระบบคือบัสที่ 5 รองลงมาคือบัสที่ 4

5.2 วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้าของระบบทดสอบ 5 บัส

วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้าโดยใช้วิธี FTP จากผลการคำนวณการไหลของ กำลังไฟฟ้าแบบต่อเนื่อง ณ สภาวะจุดเกิดการพังทลายของแรงดันไฟฟ้าระบบทดสอบ 5 บัส สามารถ เขียนเส้นทางการไหลของกำลังไฟฟ้าได้ดังรูป 5.2

ภาพที่ 5.2 เส้นทางการไหลของ P และ Q ณ สภาวะเกิดการพังทลายของแรงดันไฟฟ้า

จากภาพที่ 5.2 จะแสดงให้เห็นถึงการไหลของกำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอคทีฟทั้งหมด ของระบบทดสอบ 5 บัส เมื่อทำการติตตามการไหลของกำลังไฟฟ้าจริงจากบัสต้นกำเนิดไปยังโหลดบัส ปลายทางสามารถพบเส้นทางการไหลของกำลังไฟฟ้าได้ 4 เส้นทางดังนี้

เส้นทางการไหลของกำลังไฟฟ้าที่ 1 ไหลจากบัส 1-2-5

เส้นทางการไหลของกำลังไฟฟ้าที่ 2 ไหลจากบัส 1-2-4-5

เส้นทางการไหลของกำลังไฟฟ้าที่ 3 ไหลจากบัส 1-3-4-5

เส้นทางการไหลของกำลังไฟฟ้าที่ 4 ไหลจากบัส 1-2-3-4-5

จากการติดตามเส้นทางการไหลของกำลังไฟฟ้าจริงในแต่ละเส้นทางพบว่าบัสเครื่องกำเนิดไฟฟ้า ต้นทางคือบัสที่ 1 และโหลดบัสสุดท้ายของแต่ละเส้นทางการไหลของกำลังไฟฟ้าจริงคือบัสที่ 5 พิจารณาเส้นทางการไหลของกำลังไฟฟ้าทั้ง 4 เส้นทางโดยการคำนวณ ERP เสมือนเส้นทางการไหล ของกำลังไฟฟ้าแบบเรเดียลจากบัสเครื่องกำเนิดไฟฟ้าไปยังโหลดบัสปลายทาง และสมดุลโหลดที่บัสแต่ ละบัสของแต่ละเส้นทางการไหลของกำลังไฟฟ้า แสดงในภาพที่ 5.3 ถึงภาพที่ 5.6

ภาพที่ 5.4 เส้นทางการของกำลังไฟฟ้าเส้นที่ 2 ไหลจากบัส 1-2-4-5

ภาพที่ 5.5 เส้นทางการของกำลังไฟฟ้าเส้นที่ 3 ไหลจากบัส 1-3-4-5

ภาพที่ 5.6 เส้นทางการของกำลังไฟฟ้าเส้นที่ 4 ไหลจากบัส 1-2-3-4-5

จากภาพที่ 5.3 ถึงภาพที่ 5.6 จะเห็นการไหลของกำลังไฟฟ้าจริงและกำลังไฟฟ้าเสมือนของ เส้นทางการไหลของกำลังไฟฟ้าเส้นทางที่ 1 ถึงเส้นทางที่ 4 พร้อมทั้งแสดงโหลดเสมือนของกำลังไฟฟ้า จริงและกำลังไฟฟ้ารีแอคทีฟที่บัสแต่ละบัส

5.3 วิเคราะห์เส้นทางการไหลวิกฤติของกำลังไฟฟ้าของระบบทดสอบ 5 บัส

5.3.1 คำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 4.6621 เท่าของค่าฐาน โดยคิด บัสเครื่องกำเนิดไฟฟ้าร่วมในการคำนวณ

ทำการคำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 4.6621 เท่าของค่าฐาน ใน เส้นทางการของกำลังไฟฟ้าเส้นทางที่ 1, 2, 3 และ 4 ด้วยโดยวิธี NRPF โดยกำหนดให้บัสที่ 1 เป็นบัส อ้างอิงและบัสที่ 2 และ 3 เป็นเครื่องกำเนิด จากนั้นทำการเพิ่ม P และ Q ที่โหลดบัส และ P ที่บัส เครื่องกำเนิดขึ้นรอบละ 1% จนกว่าระบบจะคำนวณการไหลของกำลังไฟฟ้าพ้นจุดเกิดการพังทลาย ของแรงดันไฟฟ้า สามารถแสดงผลการคำนวณได้ดังตารางที่ 5.3

ตารางที่ 5.3 อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF โดยคิดบัสเครื่องกำเนิดไฟฟ้าร่วมในการคำนวณ

เส้นทางที่	กำลังไฟฟ้าไหลจากบัสต้นทางไปบัสปลายทาง	อัตราการเพิ่มขึ้นของโหลด
1	1-2-5	<1%
2	1-2-4-5	<1%
3	1-3-4-5	<1%
4	1-2-3-4-5	<1%

จากตารางที่ 5.3 อัตราการเพิ่มขึ้นของโหลดจากการคำนวณด้วยวิธี NRPF เส้นทางการ ไหลของกำลังไฟฟ้าเส้นทางที่ 1, 2, 3 และ 4 มีอัตราการเพิ่มขึ้นของโหลดน้อยกว่า 1% ในทุกเส้นทาง การไหลของกำลังไฟฟ้าจะเห็นว่าเส้นทางการไหลของกำลังไฟฟ้าทุกเส้นทางเป็นเส้นทางการไหลวิกฤต

5.3.2 คำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 4.6621 เท่าของค่าฐาน โดย กำหนดให้บัสเครื่องกำเนิดเป็นโหลดบัส

คำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 4.6621 เท่าของค่าฐาน ในเส้นทาง การของกำลังไฟฟ้าทุกเส้นทางด้วยโดยวิธี NRPF โดยกำหนดให้บัสที่ 1 เป็นบัสอ้างอิงและบัสเครื่อง กำเนิดอื่นๆ กำหนดให้เป็นโหลดบัสจากนั้นทำการเพิ่ม P และ Q ที่โหลดบัส ขึ้นรอบละ 1% จนกว่า ระบบจะคำนวณการไหลของกำลังไฟฟ้าพ้นจุดเกิดการพังทลายของแรงดันไฟฟ้า แสดงดังตารางที่ 5.4

ตารางที่ 5.4 อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธีNRPF โดยกำหนดให้บัสเครื่องกำเนิดเป็นโหลดบัส

เส้นทางที่	กำลังไฟฟ้าไหลจากบัสต้นทางไปบัสปลายทาง	อัตราการเพิ่มขึ้นของโหลด
1	1-2-5	6%
2	1-2-4-5	4%
3	1-3-4-5	10%
4	1-2-3-4-5	9%

จากตารางที่ 5.4 อัตราการเพิ่มขึ้นของโหลดโดยการคำนวณการไหลของกำลังไฟฟ้าด้วย วิธี NRPF เส้นทางการไหลของกำลังไฟฟ้าเส้นทางที่ 1, 2, 3 และ 4 มีอัตราการเพิ่มขึ้นของโหลดเป็น 6%, 4%, 10% และ 9% ตามลำดับจะเห็นว่าเส้นทางการไหลของกำลังไฟฟ้าเส้นทางที่ 2 มีอัตราการ เพิ่มของโหลดต่ำที่สุด

5.4 ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องระบบทดสอบ 9 บัส

ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง ณ สภาวะจุดเกิดการพังทลายของ แรงดันไฟฟ้าระบบทดสอบ 9 บัส สามารถแสดงได้ดังตารางที่ 5.4 และ 5.5 ผลการคำนวณ แรงดันไฟฟ้าที่บัสจากระบบทดสอบ 9 บัสจุดที่ระบบสามารถจ่ายกำลังไฟฟ้าได้สูงสุด ณ ค่าโหลดเป็น 7.0262 เท่าของกรณีฐาน

<u>ب</u>	แรงดันไฟฟ้า		การจ่ายกำลังไฟฟ้า		โหลด	
บล	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.030	0	1622.4883	354.0273	-	-
2	1.040	-25.667	562.0960	1883.9548	140.5234	70.2617
3	0.801	-32.892	-	-	175.6542	105.3925
4	0.622	-44.165	-	-	70.2617	35.1308
5	0.477	-56.854	-	-	281.0467	140.5234
6	0.649	-43.571	-	-	421.5700	281.0467
7	1.010	-28.428	843.1440	1331.2799	70.2617	35.1308
8	0.793	-15.845	-	-	562.0934	421.5700
9	0.766	-35.955	-	-	702.6167	562.0934
	รวม		3027.7283	3569.2620	2424.0278	1651.1493

ตารางที่ 5.5 แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้าจาก ผลการคำนวณ CPF ของระบบทดสอบ 9 บัส

จากการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องสามารถเขียนกราฟความสัมพันธ์ระหว่าง การเพิ่มขึ้นของกำลังไฟฟ้าในระบบกับค่าแรงดันไฟฟ้า (PV Curve) ของโหลดที่มีความอ่อนแอ โดยบัส ที่มีความอ่อนแอมากที่สุดคือบัสที่ 5 แสดงในภาพที่ 5.7

	กิ่งระห	ว่างบัส	S ไหลเ	S ไหลเข้าบัส i S ไหลเข้าบัส j		P_{L}	QL	
11111	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	2	826.3061	-99.2448	-708.8052	450.7830	117.5008	352.5024
2	1	8	796.1823	453.2720	-685.3791	-168.8568	110.8031	284.9224
3	2	9	646.2490	828.0975	-585.0128	-522.3880	61.2362	306.1811
4	2	3	484.1289	534.8126	-421.5384	-362.0020	62.5904	173.3274
5	3	4	245.8842	256.6095	-226.1783	-158.0799	19.7059	98.5296
6	4	5	155.9166	122.9491	-137.5508	-65.8110	18.3658	57.1381
7	5	6	-143.4959	-74.7124	166.4666	143.6245	22.9707	68.9121
8	6	7	-483.4137	-309.2621	600.7521	660.7297	117.3384	352.0152
9	6	9	-104.6229	-115.4091	105.7760	153.4608	1.1531	38.0517
10	7	8	-83.0927	348.1718	123.2857	-252.7132	40.1931	95.4586
11	7	9	255.2228	287.2476	-223.3799	-193.1662	31.8429	94.0814
	รวม		ม	603.7005	1921.1198			

ตารางที่ 5.6 การไหลของกำลังไฟฟ้าระบบทดสอบ 9 บัส ณ สภาวะสุดท้ายก่อนเกิดการพังทลาย ของแรงดันไฟฟ้าจากผลการคำนวณ CPF

ภาพที่ 5.7 ความสัมพันธ์ระหว่างกำลังไฟฟ้าและแรงดันไฟฟ้าของระบบทดสอบ 9 บัส

จากภาพที่ 5.7 แสดงกราฟเส้นโค้ง P-V ที่มีค่าแรงดันต่ำ 6 บัส จะเห็นว่ากราฟเส้นโค้งของบัสที่ 5 มีการลดของแรงดันมากที่สุดเมื่อโหลดเพิ่มขึ้น แสดงถึงความอ่อนแอของบัส รองลงมาคือกราฟเส้น โค้งของบัสที่ 4, 6, 9, 8 และ 3 ตามลำดับ ส่วนกราฟเส้นโค้งของบัสที่ 1, 2 มีค่าไม่เปลี่ยนแปลง เนื่องจากเป็นบัสเครื่องกำเนิดไฟฟ้าซึ่งมีแรงดันคงที่ ดังนั้นบัสที่อ่อนแอที่สุดในระบบคือบัสที่ 5

5.5 วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้าของระบบทดสอบ 9 บัส

วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้าโดยใช้วิธี FTP จากผลการคำนวณการไหลของ กำลังไฟฟ้าแบบต่อเนื่อง ณ สภาวะจุดเกิดการพังทลายของแรงดันไฟฟ้าระบบทดสอบ 9 บัส สามารถ เขียนเส้นทางการไหลของกำลังไฟฟ้าได้ดังรูป 5.8

ภาพที่ 5.8 เส้นทางการไหลของ P และ Q ณ สภาวะจุดเกิดการพังทลายของแรงดันไฟฟ้า ระบบทดสอบ 9 บัส

จากภาพที่ 5.8 จะแสดงให้เห็นถึงการไหลของกำลังไฟฟ้าจริงและกำลังไฟฟ้ารีแอคทีฟทั้งหมด ของระบบทดสอบ 9 บัส เมื่อทำการติตตามการไหลของกำลังไฟฟ้าสามารถพบเส้นทางการไหลของ กำลังไฟฟ้าได้ 4 เส้น โดยทางดังนี้

เส้นทางการไหลของกำลังไฟฟ้าที่ 1 ไหลจากบัส 1-2-3-4-5

เส้นทางการไหลของกำลังไฟฟ้าที่ 2 ไหลจากบัส 1-2-9-6-5

เส้นทางการไหลของกำลังไฟฟ้าที่ 3 ไหลจากบัส 1-8-7-9-6-5

เส้นทางการไหลของกำลังไฟฟ้าที่ 4 ไหลจากบัส 1-8-7-6-5

จากการติดตามเส้นทางการไหลของกำลังไฟฟ้าจริงในแต่ละเส้นทางพบว่าบัสเครื่องกำเนิดไฟฟ้า ต้นทางคือบัสที่ 1 และโหลดบัสสุดท้ายของแต่ละเส้นทางการไหลของกำลังไฟฟ้าจริงคือบัสที่ 5 พิจารณาเส้นทางการไหลของกำลังไฟฟ้าในแต่ละเส้นทางโดยการคำนวณ ERP เสมือนเส้นทางการไหล ของกำลังไฟฟ้าแบบเรเดียลจากเครื่องกำเนิดไฟฟ้าไปยังโหลดบัสปลายทางและสมดุลโหลดที่บัสแต่ละ บัสของแต่ละเส้นทางการไหลของกำลังไฟฟ้าแสดงในภาพที่ 5.9 ถึงภาพที่ 5.12

ภาพที่ 5.10 เส้นทางการของกำลังไฟฟ้าเส้นที่ 2 ไหลจากบัส 1-2-9-6-5

ภาพที่ 5.11 เส้นทางการของกำลังไฟฟ้าเส้นที่ 3 ไหลจากบัส 1-8-7-9-6-5

ภาพที่ 5.12 เส้นทางการของกำลังไฟฟ้าเส้นที่ 4 ไหลจากบัส 1-8-7-6-5

จากภาพที่ 5.9 ถึงภาพที่ 5.12 จะเห็นการไหลของกำลังไฟฟ้าจริงและกำลังไฟฟ้าเสมือนของ เส้นทางการไหลของกำลังไฟฟ้าเส้นทางที่ 1–4 พร้อมทั้งโหลดเสมือนที่บัสแต่ละบัส

5.6 วิเคราะห์เส้นทางการไหลวิกฤติของกำลังไฟฟ้าของระบบทดสอบ 9 บัส

5.6.1 คำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 7.0262 เท่าของค่าฐาน โดยคิดบัส เครื่องกำเนิดไฟฟ้าร่วมในการคำนวณ

ทำการคำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 7.0262 เท่าของค่าฐาน ใน เส้นทางการของกำลังไฟฟ้าเส้นทางที่ 1, 2, 3 และ 4 ด้วยโดยวิธี NRPF โดยกำหนดให้บัสที่ 1 เป็นบัส อ้างอิงและบัสเครื่องกำเนิดอื่นๆ กำหนดให้เป็นโหลดบัสจากนั้นทำการเพิ่ม P และ Q ที่โหลดบัส ขึ้น รอบละ 1% จนกว่าระบบจะคำนวณการไหลของกำลังไฟฟ้าพ้นจุดเกิดการพังทลายของแรงดันไฟฟ้า สามารถแสดงผลการคำนวณได้ดังตารางที่ 5.7

ตารางที่ 5.7 อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้า ด้วยวิธี NRPF โดยคิดบัสเครื่องกำเนิดไฟฟ้าร่วมในการคำนวณ

เส้นทางที่	กำลังไฟฟ้าไหลจากบัสต้นทางไปบัสปลายทาง	อัตราการเพิ่มขึ้นของโหลด
1	1-2-3-4-5	<1%
2	1-2-9-6-5	<1%
3	1-8-7-9-6-5	<1%
4	1-8-7-6-5	<1%

จากตารางที่ 5.7 อัตราการเพิ่มขึ้นของโหลดโดยการคำนวณด้วยวิธี NRPF เส้นทางการ ไหลของกำลังไฟฟ้าทุกเส้นทาง มีอัตราการเพิ่มขึ้นของโหลดน้อยกว่า 1% ในทุกเส้นทางการไหลขอ กำลังไฟฟ้าทุกเส้นทางจะเห็นว่าเส้นทางการไหลของกำลังไฟฟ้าทุกเส้นทางเป็นเส้นทางการไหลวิกฤต

5.6.2 คำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 7.0262 เท่าของค่าฐาน โดย กำหนดให้บัสเครื่องกำเนิดเป็นโหลดบัส

ทำการคำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 7.0262 เท่าของค่าฐาน ใน เส้นทางการของกำลังไฟฟ้าเส้นทางที่ 1, 2, 3 และ 4 ด้วยโดยวิธี NRPF และทำการเพิ่ม P และ Q ที่ โหลดบัส ขึ้นรอบละ 1% จนกว่าระบบจะคำนวณการไหลของกำลังไฟฟ้าพ้นจุดเกิดการพังทลายของ แรงดันไฟฟ้า สามารถแสดงผลการคำนวณได้ดังตารางที่ 5.8

ตารางที่ 5.8 อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF โดยกำหนดให้บัสเครื่องกำเนิดเป็นโหลดบัส

เส้นทางที่	กำลังไฟฟ้าไหลจากบัสต้นทางไปบัสปลายทาง	อัตราการเพิ่มขึ้นของโหลด
1	1-2-3-4-5	<1%
2	1-2-9-6-5	<1%
3	1-8-7-9-6-5	11%
4	1-8-7-6-5	11%

จากตารางที่ 5.8 อัตราการเพิ่มขึ้นของโหลดโดยการคำนวณการไหลของกำลังไฟฟ้าด้วย วิธี NRPF เส้นทางการไหลของกำลังไฟฟ้าเส้นทางที่ 1, 2, 3 และ 4 มีอัตราการเพิ่มขึ้นของโหลดเป็น น้อยกว่า 1%, น้อยกว่า 1%, 10% และ 9% ตามลำดับจะเห็นว่าเส้นทางการไหลของกำลังไฟฟ้า เส้นทางที่ 1 และ 2 มีอัตราการเพิ่มของโหลดต่ำที่สุดคือน้อยกว่า 1% ดังนั้นเส้นทางการไหลของ กำลังไฟฟ้าเส้นที่ 1 และ 2 จึงเป็นเส้นทางการไหลวิกฤต

5.7 ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องระบบทดสอบ 39 บัส

ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง ณ สภาวะจุดเกิดการพังทลายของ แรงดันไฟฟ้าระบบทดสอบ 39 บัส สามารถแสดงได้ดังตารางที่ 5.9 และ 5.10 ผลการคำนวณ แรงดันไฟฟ้าที่บัสจากระบบทดสอบ 39 บัสจุดที่ระบบสามารถจ่ายกำลังไฟฟ้าได้สูงสุด ณ ค่าโหลดเป็น 2.173 เท่าของกรณีฐาน

~~~	แรงดันไฟฟ้า		การจ่ายกำลังไฟฟ้า		โหลด	
ับส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	0.982	0	1375.9489	1485.8197	19.9900	9.9960
2	1.048	-0.4083	543.3000	814.1209	-	-
3	0.983	0.0445	1412	1463.7153	-	-
4	0.997	0.0038	1373	819.5600	-	-
5	1.012	-0.0473	1104	642.3421	-	-
6	1.049	0.1175	1412	1305.7740	-	-
7	1.063	0.2455	1217	915.2994	-	-
8	1.028	-0.1624	1173	544.5458	-	-
9	1.027	0.1258	1804	934.3376	-	-
10	1.030	-0.7222	2173	1198.5719	2399	543.3000
11	0.9896	-0.6506	-	-	-	-
12	0.9122	-0.5113	-	-	-	-
13	0.7948	-0.6566	-	-	699.7000	5.2150
14	0.6799	-0.6921	-	-	1087	399.8000
15	0.6866	-0.5770	-	-	-	-

### ตารางที่ 5.9 แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้าจาก ผลการคำนวณ CPF ของระบบทดสอบ 39 บัส

<i>.</i>	แรงดันไฟฟ้า		การจ่ายกำลังไฟฟ้า		โหลด	
บส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
16	0.6977	-0.5176	-	-	-	-
17	0.6610	-0.7004	-	-	508	182.5000
18	0.6633	-0.7441	-	-	1134	382.4000
19	0.8910	-0.7319	-	-	-	-
20	0.7431	-0.3524	-	-	-	-
21	0.7213	-0.4067	-	-	-	-
22	0.6594	-0.4109	-	-	16.3000	191.2000
23	0.7241	-0.4066	-	-	-	-
24	0.7029	-0.5419	-	-	-	-
25	0.7241	-0.5959	-	-	695.4000	264.7000
26	0.7779	-0.5050	-	-	714.9000	70.1900
27	0.7807	-0.5813	-	-	-	-
28	0.7798	-0.6384	-	-	343.3000	65.1900
29	0.8913	-0.2108	-	-	-	-
30	0.9082	-0.2588	-	-	1365	223.8000
31	0.7922	-0.3541	-	-	595.4000	249.9000
32	0.8920	-0.1000	-	-	-	-
33	0.8785	-0.1116	-	-	537.8000	183.8000
34	0.7938	-0.4983	-	-	670.6000	-199.9000
35	0.9356	-0.4457	-	-	486.8000	102.6000
36	0.8430	-0.4971	-	-	302	36.9400
37	0.7911	-0.6078	-	-	610.6000	164.1000
38	0.8761	-0.3108	-	-	447.6000	59.9700
39	0.9110	-0.1714	-	-	616	58.4500

ตารางที่ 5.9 แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้าจาก ผลการคำนวณ CPF ของระบบทดสอบ 39 บัส (ต่อ)

ตารางที่ 5.9	แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้าจาก
	ผลการคำนวณ CPF ของระบบทดสอบ 39 บัส (ต่อ)

บัส	แรงดันไฟฟ้า		การจ่ายกำลังไฟฟ้า		โหลด	
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
	รวม		13587.2489	10124.0868	13249.3900	2994.1510

# ตารางที่ 5.10 การไหลของกำลังไฟฟ้าระบบทดสอบ 39 บัส ณ สภาวะสุดท้ายก่อน เกิดการพังทลายของแรงดันไฟฟ้าจากผลการคำนวณ CPF

- da - da	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
กงท	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	11	12	-285.2832	197.6323	290.1131	-204.1995	4.8298	6.5672
2	11	10	285.2832	-197.6323	-284.1878	148.5116	1.0955	49.1207
3	12	13	755.0808	684.1471	-738.6316	-511.9091	16.4492	172.238
4	12	35	-501.8939	176.3007	525.8808	-159.2955	23.9869	17.0052
5	13	14	115.8764	416.3899	-111.9115	-363.5373	3.9649	52.8526
6	13	28	-76.9448	90.3042	77.2119	-100.3282	0.2671	10.0241
7	14	15	-417.7975	11.8505	420.8222	30.2801	3.0247	42.1306
8	14	24	-557.2911	-48.1133	562.7007	128.7359	5.4097	80.6226
9	15	16	-1107.6293	-177.0116	1112.9664	244.3151	5.3371	67.3035
10	15	18	686.8072	146.7315	-678.4181	-36.0102	8.3890	110.7213
11	16	17	930.9003	297.7904	-919.1047	-122.1441	11.7956	175.6463
12	16	21	-687.9078	-107.6020	694.8695	182.1602	6.9617	74.5582
13	17	18	411.1047	-60.3559	-409.5262	75.0890	1.5785	14.7331
14	18	19	-46.0557	-421.4788	55.0889	540.5784	9.0332	119.0996
15	19	10	-55.0889	-540.5784	58.1878	506.7603	3.0989	33.8181
16	20	21	707.6122	328.0086	-703.1961	-284.8822	4.4161	43.5645
17	20	23	704.3878	279.7796	-700.2184	-238.8822	4.1694	40.8973
18	23	24	691.5671	131.5364	-683.0390	-44.6042	8.5292	86.9322
19	24	25	120.3382	-84.1317	-119.6052	74.3330	0.7330	9.7987

	ู่ กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
กงท	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
20	25	26	-575.7948	-339.033	583.4077	408.8906	7.6130	69.8576
21	26	27	516.3692	-49.8132	-513.2602	81.1915	3.1090	31.3784
22	26	29	-1048.5911	-222.8660	1078.8742	570.6696	30.2831	347.8036
23	26	31	-685.6988	1.9870	691.9167	87.2355	6.2179	89.2226
24	26	34	-80.3870	-208.3885	80.6301	208.9700	0.2451	0.5816
25	27	28	422.5652	-19.1152	-420.5119	35.1382	2.0533	16.0231
26	27	37	90.6950	-62.0764	-90.4613	45.3230	0.2337	16.7534
27	31	32	-1287.3167	-337.1355	1309.8202	712.6921	22.5035	375.5566
28	32	33	102.1798	112.4145	-101.9929	-123.8919	0.1869	11.4774
29	33	34	770.9322	297.2074	-751.2301	-9.0700	19.7021	288.1374
30	35	36	150.8237	234.0796	-147.5861	-242.0772	3.2376	7.9975
31	36	37	527.1035	266.5435	-520.1387	-209.4230	6.9648	57.1205
32	36	38	-289.1776	-33.5069	294.2402	31.6497	5.0625	1.8572
33	36	39	-392.3398	-27.8994	404.6938	84.1063	12.3540	56.2069
34	38	39	-741.8402	-91.6797	752.0003	181.3165	10.1602	89.6969
35	22	21	-8.0027	-93.4775	8.3266	102.2839	0.3239	8.8065
36	22	23	-8.2973	-97.7225	8.6512	107.3459	0.3540	9.6233
37	16	1	-1355.9589	-434.5035	1355.9589	1475.8237	0	1041.3202
38	20	3	-1412.000	-607.7881	1412.0000	1463.7153	0	855.9272
39	29	4	-1355.0017	-454.4516	1373.0000	819.5600	17.9983	365.1084
40	30	5	-1089.6634	-355.6095	1104.0000	642.3421	14.3366	286.7326
41	32	6	-1412.000	-825.1066	1412.0000	1305.7740	0	480.6675
42	33	7	-1206.7393	-357.1156	1217.0000	915.2994	10.2607	558.1839
43	35	8	-1163.5044	-177.3842	1173.0000	544.5458	9.4956	367.1616

ตารางที่ 5.10 การไหลของกำลังไฟฟ้าระบบทดสอบ 39 บัส ณ สภาวะสุดท้ายก่อน เกิดการพังทลายของแรงดันไฟฟ้าจากผลการคำนวณ CPF (ต่อ)

	กิ่งระห	ว่างบัส	S ไหลเข้าบัส i		S ไหลเข้าบัส j		$P_{L}$	QL
1141	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
44	12	2	-543.3000	-656.2482	543.3000	814.1209	0	157.8726
45	39	9	-1772.6941	-323.8729	1804.0000	934.3376	31.3059	610.4647
46	29	30	276.1275	-116.218	-275.3366	131.8095	0.7909	15.5915
					รั	วท	337.8589	7129.9358

ตารางที่ 5.10 การไหลของกำลังไฟฟ้าระบบทดสอบ 39 บัส ณ สภาวะสุดท้ายก่อน เกิดการพังทลายของแรงดันไฟฟ้าจากผลการคำนวณ CPF (ต่อ)

จากการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องสามารถเขียนกราฟความสัมพันธ์ระหว่าง การเพิ่มขึ้นของกำลังไฟฟ้าในระบบกับค่าแรงดันไฟฟ้า (PV Curve) ของโหลดที่มีความอ่อนแอ โดยบัส ที่มีความอ่อนแอ 6 ลำดับคือบัสที่ 22, 17, 18, 14, 15 และ 16 แสดงในภาพที่ 5.13



ภาพที่ 5.13 ความสัมพันธ์ระหว่างกำลังไฟฟ้าและแรงดันไฟฟ้าของระบบทดสอบ 39 บัส

จากภาพที่ 5.13 กราฟเส้นโค้ง P-V ที่มีค่าแรงดันต่ำ 6 บัส จะเห็นว่ากราฟเส้นโค้งของบัสที่ 22 มีการลดของแรงดันมากที่สุดเมื่อโหลดเพิ่มขึ้น แสดงถึงความอ่อนแอของบัส รองลงมาคือกราฟเส้นโค้ง ของบัสที่ 18, 17, 14, 15 และ 16 ตามลำดับ เนื่องจากระบบทดสอบ 39 บัส เป็นระบบทดสอบขนาด ใหญ่จากการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องบัสที่มีแรงดันต่ำ 6 อันดับท้ายมีค่าใกล้เคียง กันมาก

#### 5.8 วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้าของระบบทดสอบ 39 บัส

เนื่องจากระบบทดสอบ 39 บัส เป็นระบบขนาดใหญ่ และมีโหลดบัสปลายทางหลายบัส การ วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้าจึงเลือกใช้วิธี BTP ที่ติดตามการไหลของกำลังไฟฟ้าจริงจาก โหลดบัสปลายทางมายังบัสเครื่องกำเนิดไฟฟ้า

จากผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง ณ สภาวะจุดเกิดการพังทลายของ แรงดันไฟฟ้าระบบทดสอบ 39 บัส เนื่องจากระบบทดสอบ 39 บัส เป็นระบบขนาดใหญ่ และสามารถ เขียนเส้นทางการไหลของกำลังไฟฟ้าโดยมีบัสปลายทาง 6 บัส คือ บัสที่ 14, 18, 22, 25, 30 และ 37 ตามลำดับ แสดงดังภาพที่ 5.14 เมื่อทำการติตตามการไหลของกำลังไฟฟ้าจริงสามารถพบเส้นทางการ ไหลของกำลังไฟฟ้าทั้งหมด 31 เส้นทาง โดยแยกเป็นเส้นทางการไหลจากบัสปลายทางถึงบัสกำเนิดบัส ที่ 14 มีเส้นทางการไหลของกำลังไฟฟ้า 9 เส้นทาง บัสที่ 18 มีเส้นทางการไหลของกำลังไฟฟ้า 6 เส้นทาง บัสที่ 22 มีเส้นทางการไหลของกำลังไฟฟ้า 2 เส้นทาง บัสที่ 25 มีเส้นทางการไหลของ กำลังไฟฟ้า 5 เส้นทาง บัสที่ 30 มีเส้นทางการไหลของกำลังไฟฟ้า 2 เส้นทาง และบัสที่ 37 มีเส้นทาง การไหลของกำลังไฟฟ้า 7 เส้นทาง



ภาพที่ 5.14 การไหลของกำลังไฟฟ้าจริงของระบบทดสอบ 39 บัส

# 5.8.1 ติดตามการไหลของกำลังไฟฟ้าจริงแบบ BTP จากบัสปลายทางบัสที่ 14

จากการติดตามการไหลของกำลังไฟฟ้าจริงจากบัสปลายทางบัสที่ 14 ไปยังบัสเครื่อง กำเนิดไฟฟ้าสามารถพบเส้นทางการไหลของกำลังไฟฟ้าทั้งหมด 9 เส้นทาง ดังแสดงในภาพที่ 5.15 สามารถแสดงข้อมูลเส้นทางการไหลของกำลังไฟฟ้าจริงของบัสที่ 14 ได้ดังตารางที่ 5.11

ทาวาศที่ 2.11 เล่นทาศการเทลของกาลงเพพางากกลายทางเบบลิตนทางของบลที่ 1	ตารางที่ 5.11	เส้นทางการไหล	ของกำลังไฟฟ้าะ	จากบัสปลาย	ทางไปบัสต้นทาง	ของบัสที่ 1
----------------------------------------------------------------------	---------------	---------------	----------------	------------	----------------	-------------

เส้นทางการไหลของกำลังไฟฟ้าเส้นที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง
1	14-15-16-1
2	14-15-16-21-20-23
3	14-24-23-20-3
4	14-13-28-27-26-29-4
5	14-13-28-27-26-31-32-6
6	14-13-28-27-26-34-33-7
7	14-13-28-27-26-34-33-32-6
8	14-13-12-2
9	14-13-12-35-8





# 5.8.2 ติดตามการไหลของกำลังไฟฟ้าจริงแบบ BTP จากบัสปลายทางบัสที่ 18

จากการติดตามการไหลของกำลังไฟฟ้าจริงจากบัสปลายทางบัสที่ 18 ไปยังบัสเครื่อง กำเนิดไฟฟ้าสามารถพบเส้นทางการไหลของกำลังไฟฟ้าทั้งหมด 6 เส้นทาง ดังแสดงในภาพที่ 5.16 สามารถแสดงข้อมูลเส้นทางการไหลของกำลังไฟฟ้าจริงของบัสที่ 18 ได้ดังตารางที่ 5.12

ตารางที่ 5.12 เส้นทางการไหลของกำลังไฟฟ้าจากบัสปลายทางไปบัสต้นทางของบัสที่ 18

เส้นทางการไหลของกำลังไฟฟ้าเส้นที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง
10	18-19-10-11-12-2
11	18-19-10-11-12-35-8
12	18-15-16-1
13	18-15-16-21-20-3
14	18-17-16-1
15	18-17-16-21-20-3



ภาพที่ 5.16 ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 18 ไปยังบัสต้นกำเนิด

## 5.8.3 ติดตามการไหลของกำลังไฟฟ้าจริงแบบ BTP จากบัสปลายทางบัสที่ 22

จากการติดตามการไหลของกำลังไฟฟ้าจริงจากบัสปลายทางบัสที่ 22 ไปยังบัสเครื่อง กำเนิดไฟฟ้าสามารถพบเส้นทางการไหลของกำลังไฟฟ้าทั้งหมด 2 เส้นทาง ดังแสดงในภาพที่ 5.17 สามารถแสดงข้อมูลเส้นทางการไหลของกำลังไฟฟ้าจริงของบัสที่ 22 ได้ดังตารางที่ 5.13

ตารางที่ 5.13 เส้นทางการไหลของกำลังไฟฟ้าจากบัสปลายทางไปบัสต้นทางของบัสที่ 22

เส้นทางการไหลของกำลังไฟฟ้าเส้นที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง
16	22-23-20-3
17	22-21-20-3



# ภาพที่ 5.17 ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 22 ไปยังบัสต้นกำเนิด

# 5.8.4 ติดตามการไหลของกำลังไฟฟ้าจริงแบบ BTP จากบัสปลายทางบัสที่ 25

จากการติดตามการไหลของกำลังไฟฟ้าจริงจากบัสปลายทางบัสที่ 25 ไปยังบัสเครื่อง กำเนิดไฟฟ้าสามารถพบเส้นทางการไหลของกำลังไฟฟ้าทั้งหมด 5 เส้นทาง ดังแสดงในภาพที่ 5.18 สามารถแสดงข้อมูลเส้นทางการไหลของกำลังไฟฟ้าจริงของบัสที่ 25 ได้ดังตารางที่ 5.14

ตารางที่ 5.14 เส้นทางการไหลของกำลังไฟฟ้าจากบัสปลายทางไปบัสต้นเ	ทางของบัสที่ 25
----------------------------------------------------------------	-----------------

เส้นทางการไหลของกำลังไฟฟ้าเส้นที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง
18	25-26-29-4
19	25-26-31-32-6
20	25-26-34-33-32-6
21	25-26-34-33-7
22	25-24-23-20-3



# ภาพที่ 5.18 ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 25 ไปยังบัสต้นกำเนิด

# 5.8.5 ติดตามการไหลของกำลังไฟฟ้าจริงแบบ BTP จากบัสปลายทางบัสที่ 30 จากการติดตามการไหลของกำลังไฟฟ้าจริงจากบัสปลายทางบัสที่ 30 ไปยังบัสเครื่อง กำเนิดไฟฟ้าสามารถพบเส้นทางการไหลของกำลังไฟฟ้าทั้งหมด 2 เส้นทาง ดังแสดงในภาพที่ 5.19 สามารถแสดงข้อมูลเส้นทางการไหลของกำลังไฟฟ้าจริงของบัสที่ 30 ได้ดังตารางที่ 5.15

ตารางที่ 5.15	เส้นทางการไหลง	ของกำลังไฟฟ้าจ [.]	ากบัสปลายทา	างไปบัสต้นทางข	องบัสที่ 30

เส้นทางการไหลของกำลังไฟฟ้าเส้นที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง
23	30-5
24	30-29-4



ภาพที่ 5.19 ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 30 ไปยังบัสต้นกำเนิด

# 5.8.6 ติดตามการไหลของกำลังไฟฟ้าจริงแบบ BTP จากบัสปลายทางบัสที่ 37

จากการติดตามการไหลของกำลังไฟฟ้าจริงจากบัสปลายทางบัสที่ 37 ไปยังบัสเครื่อง กำเนิดไฟฟ้าสามารถพบเส้นทางการไหลของกำลังไฟฟ้าทั้งหมด 6 เส้นทาง ดังแสดงในภาพที่ 5.20 สามารถแสดงข้อมูลเส้นทางการไหลของกำลังไฟฟ้าจริงของบัสที่ 37 ได้ดังตารางที่ 5.16

ตารางที่ 5.16 เส้นทางการไหลของกำลังไฟฟ้าจากบัสปลายทางไปบัสต้นทางของบัสที่ 37

เส้นทางการไหลของกำลังไฟฟ้าเส้นที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง
25	37-36-35-8
26	37-36-38-39-9
27	37-36-39-9
28	37-27-26-29-4
29	37-27-26-31-32-6
30	37-27-26-34-33-32-6
31	37-27-26-34-33-7



ภาพที่ 5.20 ติดตามการไหลของกำลังไฟฟ้าจริงโดยใช้วิธี BTP จากบัสปลายทางบัสที่ 37 ไปยังบัสต้นกำเนิด

### 5.9 วิเคราะห์เส้นทางการไหลวิกฤตของกำลังไฟฟ้าของระบบทดสอบ 39 บัส

ทำการคำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 2.173 เท่าของค่าฐาน ในทุกเส้นทาง การของกำลังไฟฟ้าด้วยโดยวิธี NRPF และทำการเพิ่ม P และ Q ที่โหลดบัส และ P ที่บัสเครื่องกำเนิด ไฟฟ้าขึ้นรอบละ 1% จนกว่าระบบจะคำนวณการไหลของกำลังไฟฟ้าพ้นจุดเกิดการพังทลายของ แรงดันไฟฟ้า โดยแยกการแสดงผลตามโหลดบัสสุดท้ายคือ บัสที่ 14, 18, 22, 25, 30 และ 37 ตามลำดับ แสดงผลการคำนวณได้ตารางที่ 5.17 ถึงตารางที่ 5.22

เส้นทางที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง	อัตราการเพิ่มขึ้นของโหลด
1	14-15-16-1	10%
2	14-15-16-21-20-23	11%
3	14-24-23-20-3	11%
4	14-13-28-27-26-29-4	7%
5	14-13-28-27-26-31-32-6	<1%
6	14-13-28-27-26-34-33-7	<1%
7	14-13-28-27-26-34-33-32-6	<1%

# ตารางที่ 5.17 อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้า ด้วยวิธี NRPF จากโหลดบัสปลายทางบัสที่ 14 ไปยังบัสเครื่องกำเนิดไฟฟ้า

# ตารางที่ 5.18 อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วย วิธี NRPF จากโหลดบัสปลายทางบัสที่ 18 ไปยังบัสเครื่องกำเนิดไฟฟ้า

เส้นทางที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง
10	18-19-10-11-12-2
11	18-19-10-11-12-35-8
12	18-15-16-1
13	18-15-16-21-20-3
14	18-17-16-1

# ตารางที่ 5.19 อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้า ด้วยวิธี NRPF จากโหลดบัสปลายทางบัสที่ 22 ไปยังบัสเครื่องกำเนิดไฟฟ้า

เส้นทางที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง
16	22-23-20-3
17	22-21-20-3

## ตารางที่ 5.20 อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วย วิธี NRPF จากโหลดบัสปลายทางบัสที่ 25 ไปยังบัสเครื่องกำเนิดไฟฟ้า

เส้นทางที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง	อัตราการเพิ่มขึ้นของโหลด
18	25-26-29-4	4%
19	25-26-31-32-6	<1%
20	25-26-34-33-32-6	8%
21	25-26-34-33-7	<1%
22	25-24-23-20-3	18%

# ตารางที่ 5.21 อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วย วิธี NRPF จากโหลดบัสปลายทางบัสที่ 30 ไปยังบัสเครื่องกำเนิดไฟฟ้า

เส้นทางที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง	อัตราการเพิ่มขึ้นของโหลด
23	30-5	71%
24	30-29-4	65%

# ตารางที่ 5.22 อัตราการเพิ่มขึ้นของโหลดเมื่อทำการคำนวณการไหลของกำลังไฟฟ้าด้วย วิธี NRPF จากโหลดบัสปลายทางบัสที่ 37 ไปยังบัสเครื่องกำเนิดไฟฟ้า

เส้นทางที่	กำลังไฟฟ้าไหลจากบัสปลายทางไปบัสต้นทาง	อัตราการเพิ่มขึ้นของโหลด
25	37-36-35-8	12%
26	37-36-38-39-9	5%
27	37-36-39-9	4%
28	37-27-26-29-4	13%
29	37-27-26-31-32-6	<1%
30	37-27-26-34-33-32-6	<1%
31	37-27-26-34-33-7	<1%

จากตารางที่ 5.17 ถึงตารางที่ 5.22 อัตราการเพิ่มขึ้นของโหลดโดยการคำนวณการไหลของ กำลังไฟฟ้าด้วยวิธี NRPF เส้นทางการไหลของกำลังไฟฟ้าที่ไหลจากบัสต้นทางไปที่บัสปลายทางบัสที่ 18 มีอัตราการเพิ่มขึ้นของโหลดน้อยที่สุดคือ น้อยกว่า 1% ในทุกเส้นทางการไหลของกำลังไฟฟ้า ซึ่ง จากการวิเคราะห์กราฟเส้นโค้ง P-V ในที่รูป 5.13 จะเห็นได้ว่า บัสที่ 18 เป็นบัสอ่อนแออันดับที่ 3 รอง จากบัสที่ 22 และ 17

จากการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องของระบบทดสอบ 5 บัส 9 บัส และ 39 บัส พบว่า ในระบบทดสอบ 5 บัส 9 บัส และ 39 บัส การคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง สามารถหาสภาวะสุดท้ายก่อนแรงดันพังทลายของแรงดันได้พร้อมทั้งระบุบัสอ่อนแอในระบบได้จาก การวิเคราะห์กราฟเส้นโค้ง P-V

การวิเคราะห์เส้นทางไหลวิกฤตของกำลังไฟฟ้าในระบบทดสอบ 5 บัส 9 บัส และ 39 บัส แสดง ให้เห็นถึงเส้นทางการไหลของกำลังไฟฟ้าทั้งหมดในระบบ

ในระบบทดสอบขนาดเล็ก 5 บัส และ 9 บัส วิเคราะห์เส้นทางไหลวิกฤตของกำลังไฟฟ้าสองกรณี คือ กรณีแรกวิเคราะห์โดยนำบัสเครื่องกำเนิดไฟฟ้าร่วมในการคำนวณ พบว่าเส้นทางการไหลของ กำลังไฟฟ้าทุกเส้นทาง ของทั้งสองระบบทดสอบเป็นเส้นทางไหลวิกฤตของกำลังไฟฟ้า

กรณีที่สองวิเคราะห์โดยกำหนดให้บัสเครื่องกำเนิดไฟฟ้าเป็นโหลดบัสในการคำนวณ พบว่าระบบ ทดสอบ 5 บัส ไม่มีเส้นทางการไหลของกำลังไฟฟ้าเส้นใดเป็นเส้นทางไหลวิกฤต ส่วนระบบทดสอบ 9 บัสพบว่ามีเส้นทางการไหลของกำลังไฟฟ้าสองเส้นทางเป็นเส้นทางไหลวิกฤต

ในส่วนของระบบทดสอบ 39 บัสซึ่งเป็นระบบขนาดใหญ่ ในการวิเคราะห์เส้นทางการไหลวิกฤต พบว่าบัสปลายทางของระบบทดสอบมี 6 บัส คือบัสที่ 14, 18, 22, 25, 30 และ 37 บัสปลายทางทั้ง 6 บัสนี้มี 3 บัสที่เป็นบัสอ่อนแอ 6 อันดับท้าย คือบัสที่ 14, 18 และ 22

การวิเคราะห์เส้นทางการไหลวิกฤตของระบบทดสอบ ในบัสที่ 14 มีเส้นทางการไหลของ กำลังไฟฟ้า 9 เส้นทางเมื่อทำการ ERP พบว่าเส้นทางไหลวิกฤตของกำลังไฟฟ้า 4 เส้นทาง

ในบัสที่ 18 มีเส้นทางการไหลของกำลังไฟฟ้า 6 เส้นทาง เมื่อทำการทดสอบด้วยวิธี ERP พบว่า ทุกเส้นทางเป็นเส้นทางไหลวิกฤตของกำลังไฟฟ้า

ในบัสที่ 22 มีเส้นทางการไหลของกำลังไฟฟ้า 2 เส้นทาง เมื่อทำการทดสอบด้วยวิธี ERP พบว่า ทั้งสองเส้นทางไม่เป็นเส้นทางไหลวิกฤตของกำลังไฟฟ้า

ในบัสที่ 25 มีเส้นทางการไหลของกำลังไฟฟ้า 5 เส้นทาง เมื่อทำการทดสอบด้วยวิธี ERP พบว่า เส้นทางไหลวิกฤตของกำลังไฟฟ้า 2 เส้นทาง

ในบัสที่ 30 มีเส้นทางการไหลของกำลังไฟฟ้า 2 เส้นทาง เมื่อทำการทดสอบด้วยวิธี ERP พบว่า ทั้งสองเส้นทางไม่เป็นเส้นทางไหลวิกฤตของกำลังไฟฟ้า

ในบัสที่ 37 มีเส้นทางการไหลของกำลังไฟฟ้า 7 เส้นทาง เมื่อทำการทดสอบด้วยวิธี ERP พบว่า เส้นทางไหลวิกฤตของกำลังไฟฟ้า 3 เส้นทาง

จะเห็นได้ว่าบัสอ่อนแอที่ระบุจากการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องในบางบัส สามารถรองรับการเพิ่มขึ้นของโหลดได้มาก บางบัสสามารถรองรับการเพิ่มขึ้นของโหลดได้น้อยซึ่งเมื่อ ใช้วิธีวิเคราะห์เส้นทางไหลวิกฤตของกำลังไฟฟ้าเข้ามาวิเคราะห์จะทำให้ทราบถึงเส้นทางไหลวิกฤตของ กำลังไฟฟ้าที่เกิดขึ้นในแต่ละเส้นทาง ข้อมูลเหล้านี้สามารถนำไปวิเคราะห์เพื่อแก้ปัญหาเสถียรภาพ แรงดันไฟฟ้าได้ในอนาคต

# บทที่ 6 สรุปและข้อแสนอแนะ

### 6.1 สรุปผล

วิท[์]ยานิพนธ์ฉบับนี้ได้นำเสนอการวิเคราะห์ปัญหาเสถียรภาพแรงดันไฟฟ้าด้วยวิธีเส้นทางการไหล วิกฤตของกำลังไฟฟ้าเพื่อเข้าใจปัญหาเสถียรภาพแรงดันไฟฟ้ามากยิ่งขึ้น สรุปผลการทดสอบได้ดังนี้

### 6.1.1 ระบบทดสอบ 5 บัส

ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง พบว่าระบบสามารถรองรับการ เพิ่มขึ้นของโหลดได้ 4.6621 เท่าของกรณีฐาน

จากการวิเคราะห์กราฟเส้นโค้ง P-V พบบัสที่อ่อนแอที่สุดในระบบคือบัสที่ 5

วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 4.6621 เท่า ของกรณีฐาน พบเส้นทางการไหลของกำลังไฟฟ้า 4 เส้นทาง

วิเคราะห์โดยนำบัสเครื่องกำเนิดไฟฟ้าร่วมในการคำนวณพบว่าเส้นทางการไหลของ กำลังไฟฟ้าทุกเส้นทางเป็นเส้นทางการไหลวิกฤตของกำลังไฟฟ้า

วิเคราะห์โดยกำหนดให้บัสเครื่องกำเนิดไฟฟ้าเป็นโหลดบัสในการคำนวณ พบว่าระบบ ทดสอบ 5 บัส ไม่มีเส้นทางการไหลของกำลังไฟฟ้าเส้นใดเป็นเส้นทางการไหลวิกฤต

## 6.1.2 ระบบทดสอบ 9 บัส

ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง พบว่าระบบสามารถรองรับการ เพิ่มขึ้นของโหลดได้ 7.0262 เท่าของกรณีฐาน

จากการวิเคราะห์กราฟเส้นโค้ง P-V พบบัสที่อ่อนแอที่สุดในระบบคือบัสที่ 5

วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่า ของกรณีฐาน พบเส้นทางการไหลของกำลังไฟฟ้า 4 เส้นทาง

วิเคราะห์โดยนำบัสเครื่องกำเนิดไฟฟ้าร่วมในการคำนวณพบว่าเส้นทางการไหลของ กำลังไฟฟ้าทุกเส้นทางเป็นเส้นทางการไหลวิกฤตของกำลังไฟฟ้า

วิเคราะห์โดยกำหนดให้บัสเครื่องกำเนิดไฟฟ้าเป็นโหลดบัสในการคำนวณ เส้นทางการ ไหลวิกฤตของกำลังไฟฟ้า 2 เส้นทาง คือ เส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1 และ 2

## 6.1.3 ระบบทดสอบ 39 บัส

ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง พบว่าระบบสามารถรองรับการ เพิ่มขึ้นของโหลดได้ 2.173 เท่าของกรณีฐาน

จากการวิเคราะห์กราฟเส้นโค้ง P-V พบบัสที่อ่อนแอในระบบคือบัสที่ 22, 17, 18 ตามลำดับ

วิเคราะห์เส้นทางการไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่า ของกรณีฐาน พบเส้นทางการไหลของกำลังไฟฟ้า 31 เส้นทาง โดยมีโหลดบัสปลายทาง 6 บัส คือบัสที่ 14, 18, 22, 25, 30 และ 37 บัส พบเส้นทางไหลวิกฤตทั้งหมดจำนวน 14 เส้นทาง และเส้นทางการไหลของกำลังไฟฟ้าที่ ไหลไปยังบัส 18 เป็นเส้นทางการไหลวิกฤตทุกเส้นทาง

จากผลการทดสอบทั้ง 3 ระบบพบว่า การคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง สามารถหาบัสอ่อนแอในระบบ ณ สภาพวะสุดท้ายก่อนเกิดการพังทลายของแรงดันได้รวดเร็วส่วนวิธี วิเคราะห์การไหลวิกฤตเป็นวิธีที่หาคำตอบได้ช้ากว่า แต่สามารถให้รายละเอียดของเส้นทางการไหล ของกำลังไฟฟ้าได้มากกว่าวิธีไหลของกำลังไฟฟ้าแบบต่อเนื่อง

ในระบบทดสอบ 5 บัส และ 9 บัส ผลการคำนวณ CPF และ การวิเคราะห์การไหลวิกฤต ระบุบัสอ่อนแอของระบบไปในทิศทางเดียวกัน แต่ในระบบทดสอบ 39 บัส บัสอ่อนแอในระบบมีค่า แรงดันที่ใกล้เคียงกันหลายบัส วิธี CPF ระบุบัสอ่อนแอที่สุดคือบัส ที่ 22 แต่ในการวิเคราะห์เส้นทาง การไหลวิกฤตพบว่าเส้นทางการไหลของกำลังไฟฟ้าที่ไหลมา ณ บัส 22 ไม่ใช่เส้นทางวิกฤตแต่บัสที่มี่ เส้นทางการไหลวิกฤตทุกเส้นทางการไหลของกำลังไฟฟ้าคือบัส ที่ 18

การวิเคราะห์เส้นทางการไหลวิกฤตของกำลังไฟฟ้าแสดงให้เห็นถึงเส้นทางการไหลของ กำลังไฟฟ้าของทั้งระบบทดสอบและแสดงให้ให้ถึงขีดจำกัดสูงสุดที่รองรับการไหลของกำลังไฟฟ้า ซึ่ง ข้อมูลเหล่านี้สามารถนำไปเป็นข้อมูลสำคัญในการวางแผนปรับปรุงแก้ไขปัญหาเสถียรภาพ แรงดันไฟฟ้าได้

#### 6.2 ข้อเสนอแนะ

วิทยานิพนธ์ฉบับนี้ได้ใช้ระบบทดสอบ ขนาดเล็ก 2 ระบบ และระบบขนาดใหญ่ 1 ระบบในการ ทดลอง ซึ่งระบบทดสอบมีค่าโหลดคงที่ซึ่งต่างจากระบบจริงที่มีการเปลี่ยนแปลงของโหลดตลอดเวลา อีกทั้งการทดสอบยังอยู่ในเชิงทฤษฎีค่าที่คำนวณได้อาจมีความคลาดเคลื่อน หากได้ทดสอบกับระบบ จำหน่ายจริงอาจนำไปสู้ความเข้าใจปัญหาเสถียรภาพแรงดันไฟฟ้าที่เพิ่มขึ้น เอกสารอ้างอิง

#### เอกสารอ้างอิง

- [1] Organisation For Economic co-operation and Devevelopment. Learning From the blackouts. International Energy Agency (IEA). Paris, France: Head of Publications Service, 2005.
- [2] อิสระชัย งามหรู. พลศาสตร์และเสถียรภาพของระบบไฟฟ้ากำลัง. กรุงเทพฯ: มีนเซอร์วิส ซัพพลาย, 2554.
- [3] รณนภา เผ่าเสถียรพันธ์. การวิเคราะห์เสถียรภาพแรงดันไฟฟ้ากำลังโดยใช้เส้นโค้ง P-Q. วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต: จุฬาลงกรณ์มหาวิทยาลัย, 2547.
- [4] พรประนด ดิษยบุตร์. การวิเคราะห์เสถียรภาพแรงดันไฟฟ้าในสภานะอยู่ตัวโดยอาศัยการไหล ของกำลังไฟฟ้าแบบต่อเนื่อง. วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต: จุฬาลงกรณ์มหาวิทยาลัย, 2539.
- [5] B. Gao, G. K. Morison, and P. Kundur. "Voltage stability evaluation using modal analysis", In IEEE Transactions on Power System. 4(7): 1529 – 1542; November, 1992.
- [6] P.A. Lof, G. Anderson, and D.J.Hill. "Voltage stability indices for stressed power systems", In IEEE Transaction on Power Systems. 1(8): 326 - 335, February, 1993.
- [7] I.Musirin and T.K.Abdul Rahman. "Estimating maximum loadability for weak bus identification using FVSI", In IEEE Power System. 4(7): 1529 - 1542, November, 1992.
- [8] M. Moghavemmi and F.M. Omar. "Technique for contingency monitoring and voltage collapse prediction", In IEE Proceedings Generation, Transmission and Distribution. 6(145): 634 640, November, 1998.
- [9] F.A. Althowibi, "Voltage Stability Calculations in Power Transmission Lines: Indications and Allocations", In IEEE International Conference on Power and Energy (PECon2010). unpaged Kuala Lumpur, Malaysia: IEEE, 2010.
- [10] P. Kessel and H. Glavitsch. "Estimating the voltage stability of a power system", In IEEE Transactions on Power Delivery. 3(1): 346 - 354, July, 1986.
- [11] Selangor, "Estimating Maximum Loadability for Weak Bus Identification Using FVSI", In IEEE Power Engineering Review. 11(22): 50-52, November, 2002.
- [12] Venkataramana Ajjarapu, Colin Christy, "The continuation power flow a tool for steady state voltage stability analysis", In Transactions on Power Systems. 1(7): 416-423, February, 1992.
## เอกสารอ้างอิง (ต่อ)

- [13] Judith Paniagua Ramírez, José Horacio Tovar Hernández. "Review of Methodologies for the Analysis of Voltage, Stability in Power Systems", IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC). unpaged Mexico City, Mexico: IEEE, 2013.
- [14] Farbod Larki, Mahmood Joorabian, "Voltage Stability Evaluation of The Khouzestan Power System in Iran Using CPF Method and Modal Analysis", In Asia-Pacific Power and Energy Engineering Conference. unpaged Chengdu, China: IEEE, 2010.
- [15] Vishwas Acharya N, Rajesh G. Kavasseri. "A Faster Continuation Power Flow in Rectangular Coordinates for Voltage Stability Assessment", In IEEE Power and Energy Society General Meeting (PESGM). unpaged Boston, MA, USA: IEEE, 2016.
- [16] P-A Liif, G Andersson, D J Hill. "Voltage stability indices for stressed power systems", IEEE Power & Energy Society. 1(8): 326 - 335, February, 1993.
- [17] ElFadil Zakaria, Kamal Ramadan, Dalia Eltigani. "Method of Computing Maximum Loadability, Using Continuation Power Flow, Case Study Sudan National Grid", International Conference on Computing, Electrical Engineering (ICCEEE). unpaged Khartoum, Sudan: IEEE, 2013.
- [18] Peyman Mohammadi, Heidar Dehghani, Hamid Lesani, Yousof mohammadiosmanvandi. "Improved Continuation Load Flow to Enhance Maximum Loadability Estimation", Modern Electric Power Systems (MEPS). unpaged Wroclaw, Poland: IEEE, 2015.
- [19] V. Ajjarapu. Computational Technique for Voltage Stability Assessment and Control. Springer-Verlag US: Springer US, 2007.
- [20] Komson Daroj, Somneuk Wainwattanachai, Keerati Chayakulkheeree, "Proposal of the Critical Power Flow Paths Concept to Detect Voltage Instability in a Power System", World Congress on Engineering and Technology (CET 2011). unpaged Beijing: IEEE, 2011.
- [21] Komson Daroj, Bundhit Eua-Arporn, "Security-Based Transmission System Planning Using Transmission Line Performance Indices", 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. unpaged Krabi, Thailand: IEEE, 2008.

## เอกสารอ้างอิง (ต่อ)

- [22] P.Kundur, et al., "Definition and classification of power system stability IEEE/CIGRE joint task force stability terms and definitions", IEEE
  Transactions on Power Systems. 3(19): 1387 - 1401, August, 2004.
- [23] O. I. Elgerd. Electric Energy Systems Theory, An Introduction. 2nd ed. New York: McGraw-Hill, 1983.
- [24] C. W. Taylor. Power System Voltage Stability. New York: McGraw-Hill, 1994.
- [25] T. V. Cutsem, C. Vournas. Voltage Stability of Electric Power systems. Dordrecht, the Netherlands: Kluwer Academic Publishers, 2003.
- [26] Allen J. Wood, Bruce F.Wollenberg. Power Generation, Operation, and control. New York: A Wiley-Interscience, 1984.
- [27] M. Moghavemmi and F.M. Omar. "Technique for contingency monitoring and voltage collapse prediction", IEE Proceedings - Generation, Transmission and Distribution. 6(145): 634 - 640, November, 1998.
- [28] Sandeep Gupta, Prof. R. K. Tripathi, Rishabh Dev Shukla, "Voltage Stability Improvement in Power Systems using Facts Controllers: State-of-the-Art Review", International Conference on Power, Control and Embedded Systems. unpaged Allahabad, India: IEEE, 2010.
- [29] T. Van Cutsem and C. Vournas. Voltage Stability of Electrical Power Systems. Springer-Verlag US: Springer US, 2007.
- [30] P. Kundur. Power System Stability and Control. New York: McGraw-Hill, 1994.

ภาคผนวก

ภาคผนวก ข ผลการคำนวณการไหลของกำลังไฟฟ้าระบบทดสอบ 9 บัส ภาคผนวก ข แสดงผลการคำนวณการไหลกำลังไฟฟ้าโดยโปรแกรม Matpower ของระบบ ทดสอบ 9 บัส ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องแสดงผลแรงดันไฟฟ้าและการไหล ของกำลังไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า สามารถแสดงได้ดังตารางที่ ข.1 และ ตารางที่ ข.2

บัส	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.030	0	1622.4883	354.0273	-	-
2	1.040	-25.667	562.0960	1883.9548	140.5234	70.2617
3	0.801	-32.892	-	-	175.6542	105.3925
4	0.622	-44.165	-	-	70.2617	35.1308
5	0.477	-56.854	-	-	281.0467	140.5234
6	0.649	-43.571	-	-	421.5700	281.0467
7	1.010	-28.428	843.1440	1331.2799	70.2617	35.1308
8	0.793	-15.845	-	-	562.0934	421.5700
9	0.766	-35.955	-	-	702.6167	562.0934
	รว:	и 	3027.7283	3569.2620	2424.0278	1651.1493

ตารางที่ ข.1 แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า จากผลการคำนวณ CPF

ตารางที่ ข.2	การไหลของกำลังไฟฟ้า ณ	สภาวะสุดท้ายก	า่อนเกิดการ	รพังทลายของแ	รงดันไฟฟ้า
	จากผลการคำนวณ CPF				

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	2	826.3061	-99.2448	-708.8052	450.7830	117.5008	352.5024
2	1	8	796.1823	453.2720	-685.3791	-168.8568	110.8031	284.9224
3	2	9	646.2490	828.0975	-585.0128	-522.3880	61.2362	306.1811
4	2	3	484.1289	534.8126	-421.5384	-362.0020	62.5904	173.3274
5	3	4	245.8842	256.6095	-226.1783	-158.0799	19.7059	98.5296
6	4	5	155.9166	122.9491	-137.5508	-65.8110	18.3658	57.1381

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
7	5	6	-143.4959	-74.7124	166.4666	143.6245	22.9707	68.9121
8	6	7	-483.4137	-309.2621	600.7521	660.7297	117.3384	352.0152
9	6	9	-104.6229	-115.4091	105.7760	153.4608	1.1531	38.0517
10	7	8	-83.0927	348.1718	123.2857	-252.7132	40.1931	95.4586
11	7	9	255.2228	287.2476	-223.3799	-193.1662	31.8429	94.0814
					รวม		221.1582	648.5190

ตารางที่ ข.2 การไหลของกำลังไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า จากผลการคำนวณ CPF (ต่อ)

ผลการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน สามารถแสดงค่าแรงดันไฟฟ้าและการไหลของกำลังไฟฟ้าได้ดังตารางที่ ข.3 และตาราง ที่ ข.4

ตารางที่ ข.3 แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน จากผลการคำนวณ PF

บัส	แรงดัน	ไฟฟ้า	การจ่ายกํ	าลังไฟฟ้า	โหลด	
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.030	0	1622.4883	354.0273	-	-
2	1.040	-25.667	562.096	1883.9548	140.5234	70.2617
3	0.801	-32.892	-	-	175.6542	105.3925
4	0.622	-44.165	-	-	70.2617	35.1308
5	0.477	-56.854	-	-	281.0467	140.5234
6	0.649	-43.571	-	-	421.57	281.0467
7	1.010	-28.428	843.144	1331.2799	70.2617	35.1308
8	0.793	-15.845	-	-	562.0934	421.57
9	0.776	-35.955	-	-	702.6167	562.0934
	ຽວນ		3569.262	2424.0278	1651.1493	3569.262

-d -d	กิ่งระห	เว่างบัส	S ไหลเ	ข้าบัส i	S ไหลเ	ข้าบัส j	PL	QL
11414	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	2	826.3061	-99.2448	-708.8052	450.7830	117.5008	352.5024
2	1	8	796.1823	453.2720	-685.3791	-168.8568	110.8031	284.9224
3	2	9	646.2490	828.0975	-585.0128	-522.3880	61.2362	306.1811
4	2	3	484.1289	534.8126	-421.5384	-362.0020	62.5904	173.3274
5	3	4	245.8842	256.6095	-226.1783	-158.0799	19.7059	98.5296
6	4	5	155.9166	122.9491	-137.5508	-65.8110	18.3658	57.1381
7	5	6	-143.4959	-74.7124	166.4666	143.6245	22.9707	68.9121
8	6	7	-483.4137	-309.2621	600.7521	660.7297	117.3384	352.0152
9	6	9	-104.6229	-115.4091	105.7760	153.4608	1.1531	38.0517
10	7	8	-83.0927	348.1718	123.2857	-252.7132	40.1931	95.4586
11	7	9	255.2228	287.2476	-223.3799	-193.1662	31.8429	94.0814
					57	ม	603.7005	1921.1198

ตารางที่ ข.4 การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน จากผลการคำนวณ PF

ผลคำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 7.0262 เท่าของค่าฐาน โดยกำหนดให้บัส เครื่องกำเนิดเป็นโหลดบัส สามารถแสดงผลการคำนวณแรงดันไฟฟ้าและการไหลของกำลังไฟฟ้าแต่ละ เส้นทางการไหลของกำลังไฟฟ้าได้ดังตารางที่ ข.5 ถึงตารางที่ ข.12

บัส	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.030	0	826.137	-99.3002	-	-
2	1.040	-25.662	-	-	224.6763	-985.5956
3	0.801	-32.885	-	-	175.6542	105.3925
4	0.622	-44.149	-	-	70.2617	35.1308
5	0.478	-56.817	-	-	137.5508	65.811
	รวม		826.1370	-99.3002	608.1430	-779.2613

ตารางที่ ข.5 แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1

ตารางที่ ข.6	การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน
	จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	2	826.1370	-99.3002	-708.6817	450.7018	117.4553	352.3658
2	2	3	484.0054	534.8938	-421.4629	-361.6990	62.5425	173.1947
3	3	4	245.8087	256.3065	-226.1387	-157.9566	19.6700	98.3499
4	4	5	155.8770	122.8258	-137.5508	-65.8110	18.3262	57.0148
					ຽວມ		217.9940	680.9253

บัส	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.030	0	785.6347	-302.1226	-	-
2	1.149	-23.851	-	-	62.5562	-1278.8805
5	0.816	-40.583	-	-	143.4959	74.7124
6	0.910	-35.078	-	-	-61.8437	-28.2154
9	0.964	-31.309	-	-	479.2368	368.9272
	รวม		785.6347	-302.1226	623.4452	-863.4563

ตารางที่ ข.7 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2 เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

ตารางที่ ข.8 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2 เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	2	785.6347	-302.1226	-665.4744	661.5322	120.1603	360.4810
2	2	9	602.9182	617.3483	-569.0541	-448.6582	33.8640	169.3201
3	5	6	-143.4959	-74.7124	151.3508	97.7097	7.8549	23.5648
4	6	9	-89.5071	-69.4943	89.8173	79.7310	0.3102	10.2367
					รวม		162.1895	563.6026

บัส	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.030	0.000	896.5820	501.5542	-	-
5	0.674	-53.866	-	-	159.2804	82.9308
6	0.803	-45.469	-	-	-68.6465	-31.3191
7	1.070	-32.865	-	-	-191.0644	-705.3155
8	0.773	-18.499	-	-	623.9237	467.9427
9	0.887	-40.047	-	-	130.5403	44.0730
	53:	ม	896.582	501.5542	654.0335	-141.6881

ตารางที่ ข.9 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3 เมื่อโหลด เพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

ตารางที่ ข.10 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3 เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	8	896.5820	501.5542	-757.2635	-143.8042	139.3184	358.2474
2	5	6	-159.2804	-82.9308	173.4806	125.1136	14.2002	42.6005
3	6	9	-104.8340	-93.7945	105.4474	114.0357	0.6134	20.2412
4	7	8	-67.4912	480.5290	133.3398	-324.1385	65.8486	156.3905
5	7	9	258.5556	224.7865	-235.9877	-158.1087	22.5679	66.6778
3				ม	242.5485	644.1574		

	แรงดัน	ไฟฟ้า	การจ่ายกํ	าลังไฟฟ้า	โหลด	
บล	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.03	0	1015.3682	554.5253	-	
5	0.694	-56.136	-	-	158.9471	82.9308
6	0.819	-48.171	-	-	351.8371	183.8577
7	1.108	-36.098	-	-	-1694.4829	
8	0.752	-21.819	-	-	722.9237	467.9427
	รว:	ม	1015.3682	554.5253	659.111	-385.1548

ตารางที่ ข.11 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4 เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

ตารางที่ ข.12 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4 เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	8	1015.3682	554.5253	-838.6924	-100.7040	176.6758	454.3092
2	5	6	-158.9471	-82.9308	172.2754	122.4775	13.3283	39.9850
3	6	7	-524.1125	-306.3352	606.4503	553.3485	82.3378	247.0133
4	7	8	-31.8534	566.5375	115.7687	-367.2387	83.9153	199.2988
					รวม		356.2572	940.6063

ผลคำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 7.0262 เท่าของค่าฐานกรณีคิดการ คำนวณของบัสเครื่องกำเนิดไฟฟ้า สามารถแสดงผลการคำนวณแรงดันไฟฟ้าและการไหลของ กำลังไฟฟ้าแต่ละเส้นทางการไหลของกำลังไฟฟ้าได้ดังตารางที่ ข.13 ถึงตารางที่ ข.20

	แรงดัน	ไฟฟ้า	การจ่ายกำลังไฟฟ้า		โหลด	
ับส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.0300	0.0000	132.9638	-58.0294	-	-
2	1.0400	-4.3990	562.0960	544.7760	224.6763	0.0000
3	0.8230	-11.5170	-	-	175.6542	105.3925
4	0.6690	-21.6160	-	-	70.2617	35.1308
5	0.5450	-31.9260	-	-	137.5508	65.8110
	รวม		695.0598	486.7466	608.1430	206.3343

ตารางที่ ข.13 แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่าของค่าฐาน จากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1

ตารางที่ ข.14 การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 7.0262 เท่า ของค่าฐานจากผลการคำนวณ PF ของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	2	132.9638	-58.0294	-129.4022	67.7500	3.5616	10.6848
2	2	3	466.8219	477.0260	-413.2791	-328.7535	53.5429	148.2725
3	3	4	237.6249	223.3610	-221.9175	-144.8240	15.7074	78.5369
4	4	5	151.6558	109.6932	-137.5508	-65.8110	14.1050	43.8822
	รวม		ม	86.9168	281.3765			

	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
บล	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.0300	0.0000	140.6129	-59.9246	-	-
2	1.0400	-4.6390	562.0960	849.5359	62.5562	0.0000
5	0.5340	-32.7320	-	-	143.4959	74.7124
6	0.6850	-21.5140	-	-	-61.8437	-28.2154
9	0.7910	-14.7310	-	-	479.2368	368.9272
	รว:	ม	702.7089	789.6113	623.4452	415.4242

ตารางที่ ข.15 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2 เมื่อโหลดเพิ่มขึ้น ได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

ตารางที่ ข.16 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2 เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	2	140.6129	-59.9246	-136.6586	70.8232	3.9543	11.8628
2	2	9	636.1984	778.7127	-580.0808	-498.6025	56.1176	280.5881
3	5	6	-143.4959	-74.7124	161.8247	129.4122	18.3288	54.9864
4	6	9	-99.9810	-101.1968	100.8440	129.6753	0.8630	28.4786
	รวม		79.2637	375.9159				

	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
บล	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.0300	0.0000	117.4308	875.7422	-	-
5	0.4760	19.2940	-	-	143.4959	74.7124
6	0.6480	32.6500	-	-	-61.8437	-28.2154
7	1.0100	47.8290	843.1440	602.0623	-172.1301	0.0000
8	0.7120	6.2910	-	-	562.0934	421.5700
9	0.7760	40.2960	-	-	117.6039	39.7054
	รวม		960.5748	1477.8045	589.2194	507.7724

ตารางที่ ข.17 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3 เมื่อโหลด เพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

ตารางที่ ข.18 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3 เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		$P_{L}$	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	8	117.4308	875.7422	-14.3315	-611.1001	103.0993	265.1126
2	5	6	-143.4959	-74.7124	166.6152	143.8250	23.1193	69.3580
3	6	9	-104.7715	-115.6096	105.9321	153.9084	1.1606	38.2988
4	7	8	759.7562	313.9564	-547.7619	189.5301	211.9943	503.4864
5	7	9	255.5179	288.1059	-223.5360	-193.6138	31.9819	94.4921
	รวม					371.3554	970.7479	

	แรงดัน	ไฟฟ้า	การจ่ายกำลังไฟฟ้า		โหลด	
ปล	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.0300	0.0000	117.5074	880.3569	-	-
5	0.4840	20.0880	-	-	143.4959	74.7124
6	0.6530	33.0970	-	-	316.9704	165.6376
7	1.0100	48.1470	843.1440	969.6505	-517.6549	0.0000
8	0.7110	6.3530	-	-	562.0934	421.5700
	รวม		960.6514	1850.0074	504.9048	661.9200

ตารางที่ ข.19 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4 เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

ตารางที่ ข.20 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4 เมื่อโหลดเพิ่มขึ้นได้ 0% จากกรณีฐาน ณ ระดับโหลดเป็น 7.0262 เท่า

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	1	8	117.5074	880.3569	-13.3359	-612.9571	104.1715	267.8696
2	5	6	-143.4959	-74.7124	165.7982	141.3682	22.3023	66.9068
3	6	7	-482.7686	-307.0058	597.9827	652.6482	115.2142	345.6425
4	7	8	762.8162	317.0023	-548.7575	191.3871	214.0587	508.3894
			รวม		455.7466	1188.8083		

ภาคผนวก ค ผลการคำนวณการไหลของกำลังไฟฟ้าระบบทดสอบ 39 บัส ภาคผนวก ค แสดงผลการคำนวณการไหลกำลังไฟฟ้า โดยโปรแกรม Matpower ของระบบ ทดสอบ 39 บัส ผลการคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องแสดงผลแรงดันไฟฟ้าและการไหล ของกำลังไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า สามารถแสดงได้ดังตารางที่ ค.1 และ ตารางที่ ค.2

บัส	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
ับส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	0.982	0	1375.9489	1485.8197	19.9900	9.9960
2	1.048	-0.4083	543.3000	814.1209	-	-
3	0.983	0.0445	1412	1463.7153	-	-
4	0.997	0.0038	1373	819.5600	-	-
5	1.012	-0.0473	1104	642.3421	-	-
6	1.049	0.1175	1412	1305.7740	-	-
7	1.063	0.2455	1217	915.2994	-	-
8	1.028	-0.1624	1173	544.5458	-	-
9	1.027	0.1258	1804	934.3376	-	-
10	1.030	-0.7222	2173	1198.5719	2399	543.3000
11	0.9896	-0.6506	-	-	-	-
12	0.9122	-0.5113	-	-	-	-
13	0.7948	-0.6566	-	-	699.7000	5.2150
14	0.6799	-0.6921	-	-	1087	399.8000
15	0.6866	-0.5770	-	-	-	-
16	0.6977	-0.5176	-	-	-	-
17	0.6610	-0.7004	-	-	508	182.5000
18	0.6633	-0.7441	-	-	1134	382.4000
19	0.8910	-0.7319	-	-	-	-
20	0.7431	-0.3524	-	-	-	-

ตารางที่ ค.1 แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า จากผลการคำนวณ CPF

ب	แรงดัน	ไฟฟ้า	การจ่ายกํ	าลังไฟฟ้า	โหลด	
บล	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
21	0.7213	-0.4067	-	-	-	-
22	0.6594	-0.4109	-	-	16.3000	191.2000
23	0.7241	-0.4066	-	-	-	-
24	0.7029	-0.5419	-	-	-	-
25	0.7241	-0.5959	-	-	695.4000	264.7000
26	0.7779	-0.5050	-	-	714.9000	70.1900
27	0.7807	-0.5813	-	-	-	-
28	0.7798	-0.6384	-	-	343.3000	65.1900
29	0.8913	-0.2108	-	-	-	-
30	0.9082	-0.2588	-	-	1365	223.8000
31	0.7922	-0.3541	-	-	595.4000	249.9000
32	0.8920	-0.1000	-	-	-	-
33	0.8785	-0.1116	-	-	537.8000	183.8000
34	0.7938	-0.4983	-	-	670.6000	-199.9000
35	0.9356	-0.4457	-	-	486.8000	102.6000
36	0.8430	-0.4971	-	-	302	36.9400
37	0.7911	-0.6078	-	-	610.6000	164.1000
38	0.8761	-0.3108	-	-	447.6000	59.9700
39	0.9110	-0.1714	-	-	616	58.4500
	รว:	ม	13587.2489	10124.0868	13249.3900	2994.1510

ตารางที่ ค.1 แรงดันไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า จากผลการคำนวณ CPF (ต่อ)

D_	กิ่งระห	ว่างบัส	S ไหลเ	ข้าบัส i	S ไหลเ	ข้าบัส j	PL	QL
กงท	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	11	12	-285.2832	197.6323	290.1131	-204.1995	4.8298	6.5672
2	11	10	285.2832	-197.6323	-284.1878	148.5116	1.0955	49.1207
3	12	13	755.0808	684.1471	-738.6316	-511.9091	16.4492	172.238
4	12	35	-501.8939	176.3007	525.8808	-159.2955	23.9869	17.0052
5	13	14	115.8764	416.3899	-111.9115	-363.5373	3.9649	52.8526
6	13	28	-76.9448	90.3042	77.2119	-100.3282	0.2671	10.0241
7	14	15	-417.7975	11.8505	420.8222	30.2801	3.0247	42.1306
8	14	24	-557.2911	-48.1133	562.7007	128.7359	5.4097	80.6226
9	15	16	-1107.6293	-177.0116	1112.9664	244.3151	5.3371	67.3035
10	15	18	686.8072	146.7315	-678.4181	-36.0102	8.3890	110.7213
11	16	17	930.9003	297.7904	-919.1047	-122.1441	11.7956	175.6463
12	16	21	-687.9078	-107.6020	694.8695	182.1602	6.9617	74.5582
13	17	18	411.1047	-60.3559	-409.5262	75.0890	1.5785	14.7331
14	18	19	-46.0557	-421.4788	55.0889	540.5784	9.0332	119.0996
15	19	10	-55.0889	-540.5784	58.1878	506.7603	3.0989	33.8181
16	20	21	707.6122	328.0086	-703.1961	-284.8822	4.4161	43.5645
17	20	23	704.3878	279.7796	-700.2184	-238.8822	4.1694	40.8973
18	23	24	691.5671	131.5364	-683.0390	-44.6042	8.5292	86.9322
19	24	25	120.3382	-84.1317	-119.6052	74.3330	0.7330	9.7987
20	25	26	-575.7948	-339.033	583.4077	408.8906	7.6130	69.8576
21	26	27	516.3692	-49.8132	-513.2602	81.1915	3.1090	31.3784
22	26	29	-1048.5911	-222.8660	1078.8742	570.6696	30.2831	347.8036
23	26	31	-685.6988	1.9870	691.9167	87.2355	6.2179	89.2226
24	26	34	-80.3870	-208.3885	80.6301	208.9700	0.2451	0.5816

ตารางที่ ค.2 การไหลของกำลังไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า จากผลการคำนวณ CPF

4 4	กิ่งระห	ว่างบัส	S ไหลเ	ข้าบัส i	S ไหลเ	ข้าบัส j	PL	QL
กงท	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
25	27	28	422.5652	-19.1152	-420.5119	35.1382	2.0533	16.0231
26	27	37	90.6950	-62.0764	-90.4613	45.3230	0.2337	16.7534
27	31	32	-1287.3167	-337.1355	1309.8202	712.6921	22.5035	375.5566
28	32	33	102.1798	112.4145	-101.9929	-123.8919	0.1869	11.4774
29	33	34	770.9322	297.2074	-751.2301	-9.0700	19.7021	288.1374
30	35	36	150.8237	234.0796	-147.5861	-242.0772	3.2376	7.9975
31	36	37	527.1035	266.5435	-520.1387	-209.4230	6.9648	57.1205
32	36	38	-289.1776	-33.5069	294.2402	31.6497	5.0625	1.8572
33	36	39	-392.3398	-27.8994	404.6938	84.1063	12.3540	56.2069
34	38	39	-741.8402	-91.6797	752.0003	181.3165	10.1602	89.6969
35	22	21	-8.0027	-93.4775	8.3266	102.2839	0.3239	8.8065
36	22	23	-8.2973	-97.7225	8.6512	107.3459	0.3540	9.6233
37	16	1	-1355.9589	-434.5035	1355.9589	1475.8237	0	1041.3202
38	20	3	-1412.000	-607.7881	1412.0000	1463.7153	0	855.9272
39	29	4	-1355.0017	-454.4516	1373.0000	819.5600	17.9983	365.1084
40	30	5	-1089.6634	-355.6095	1104.0000	642.3421	14.3366	286.7326
41	32	6	-1412.000	-825.1066	1412.0000	1305.7740	0	480.6675
42	33	7	-1206.7393	-357.1156	1217.0000	915.2994	10.2607	558.1839
43	35	8	-1163.5044	-177.3842	1173.0000	544.5458	9.4956	367.1616
44	12	2	-543.3000	-656.2482	543.3000	814.1209	0	157.8726
45	39	9	-1772.6941	-323.8729	1804.0000	934.3376	31.3059	610.4647
46	29	30	276.1275	-116.218	-275.3366	131.8095	0.7909	15.5915
					53	ม	337.8589	7129.9358

ตารางที่ ค.2 การไหลของกำลังไฟฟ้า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงดันไฟฟ้า จากผลการคำนวณ CPF (ต่อ)

ผลการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF ณ ระดับการเพิ่มขึ้นของโหลดเป็น 2.173 เท่าของค่าฐาน แสดงค่าแรงดันไฟฟ้าและการไหลของกำลังไฟฟ้าได้ดังตารางที่ ค.3 และตารางที่ ค.4

٩	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
บส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	0.9820	0.0000	1375.9489	1485.8197	19.9900	9.9960
2	1.0480	-0.4083	543.3000	814.1209	0.0000	0.0000
3	0.9831	0.0445	1412.0000	1463.7153	0.0000	0.0000
4	0.9972	0.0038	1373.0000	819.5600	0.0000	0.0000
5	1.0120	-0.0473	1104.0000	642.3421	0.0000	0.0000
6	1.0490	0.1175	1412.0000	1305.7740	0.0000	0.0000
7	1.0630	0.2455	1217.0000	915.2994	0.0000	0.0000
8	1.0280	-0.1624	1173.0000	544.5458	0.0000	0.0000
9	1.0270	0.1258	1804.0000	934.3376	0.0000	0.0000
10	1.0300	-0.7222	2173.0000	1198.5719	2399.0000	543.3000
11	0.9896	-0.6506	0.0000	0.0000	0.0000	0.0000
12	0.9122	-0.5113	0.0000	0.0000	0.0000	0.0000
13	0.7948	-0.6566	0.0000	0.0000	699.7000	5.2150
14	0.6799	-0.6921	0.0000	0.0000	1087.0000	399.8000
15	0.6866	-0.5770	0.0000	0.0000	0.0000	0.0000
16	0.6977	-0.5176	0.0000	0.0000	0.0000	0.0000
17	0.6611	-0.7004	0.0000	0.0000	508.0000	182.5000
18	0.6633	-0.7441	0.0000	0.0000	1134.0000	382.4000
19	0.8910	-0.7319	0.0000	0.0000	0.0000	0.0000
20	0.7431	-0.3524	0.0000	0.0000	0.0000	0.0000
21	0.7213	-0.4067	0.0000	0.0000	0.0000	0.0000

ตารางที่ ค.3 แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 2.173 เท่าของค่าฐาน จากผลการคำนวณ PF

	แรงดัน	ไฟฟ้า	การจ่ายกํ	าลังไฟฟ้า	โหลด	
ับส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
22	0.6594	-0.4109	0.0000	0.0000	16.3000	191.2000
23	0.7241	-0.4066	0.0000	0.0000	0.0000	0.0000
24	0.7029	-0.5419	0.0000	0.0000	0.0000	0.0000
25	0.7241	-0.5959	0.0000	0.0000	695.4000	264.7000
26	0.7779	-0.5050	0.0000	0.0000	714.9000	70.1900
27	0.7807	-0.5813	0.0000	0.0000	0.0000	0.0000
28	0.7798	-0.6384	0.0000	0.0000	343.3000	65.1900
29	0.8913	-0.2107	0.0000	0.0000	0.0000	0.0000
30	0.9082	-0.2588	0.0000	0.0000	1365.0000	223.8000
31	0.7922	-0.3541	0.0000	0.0000	595.4000	249.9000
32	0.8920	-0.1000	0.0000	0.0000	0.0000	0.0000
33	0.8785	-0.1116	0.0000	0.0000	537.8000	183.8000
34	0.7938	-0.4983	0.0000	0.0000	670.6000	-199.9000
35	0.9356	-0.4457	0.0000	0.0000	486.8000	102.6000
36	0.8430	-0.4971	0.0000	0.0000	302.0000	36.9400
37	0.7911	-0.6078	0.0000	0.0000	610.6000	164.1000
38	0.8761	-0.3108	0.0000	0.0000	447.6000	59.9700
39	0.9110	-0.1714	0.0000	0.0000	616.0000	58.4500
	รวม		13587.2489	10124.0868	13249.3900	2994.1510

ตารางที่ ค.3 แรงดันไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 2.173 เท่าของค่าฐาน จากผลการคำนวณ PF (ต่อ)

ם. 12.	กิ่งระห	ว่างบัส	S ไหลเข้าบัส i		S ไหลเ	ข้าบัส j	PL	$Q_L$
11411	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	11	12	-285.2832	197.6323	290.1131	-204.1995	4.8298	-6.5672
2	11	10	285.2832	-197.6323	-284.1878	148.5116	1.0955	-49.1207
3	12	13	755.0808	684.1471	-738.6316	-511.9091	16.4492	172.238
4	12	35	-501.8939	176.3007	525.8808	-159.2955	23.9869	17.0052
5	13	14	115.8764	416.3899	-111.9115	-363.5373	3.9649	52.8526
6	13	28	-76.9448	90.3042	77.2119	-100.3282	0.26711	-10.0241
7	14	15	-417.7975	11.8505	420.8222	30.2801	3.0247	42.1306
8	14	24	-557.2911	-48.1133	562.7007	128.7359	5.4097	80.6226
9	15	16	-1107.6293	-177.0116	1112.9664	244.3151	5.3371	67.3035
10	15	18	686.8072	146.7315	-678.4181	-36.0102	8.389	110.7213
11	16	17	930.9003	297.7904	-919.1047	-122.1441	11.7956	175.6463
12	16	21	-687.9078	-107.602	694.8695	182.1602	6.9617	74.5582
13	17	18	411.1047	-60.3559	-409.5262	75.089	1.5785	14.7331
14	18	19	-46.0557	-421.4788	55.0889	540.5784	9.0332	119.0996
15	19	10	-55.0889	-540.5784	58.1878	506.7603	3.0989	-33.8181
16	20	21	707.6122	328.0086	-703.1961	-284.4441	4.4161	43.5645
17	20	23	704.3878	279.7796	-700.2184	-238.8822	4.1694	40.8973
18	23	24	691.5671	131.5364	-683.039	-44.6042	8.5282	86.9322
19	24	25	120.3382	-84.1317	-119.6052	74.333	0.733	-9.7987
20	25	26	-575.7948	-339.033	583.4077	408.8906	7.613	69.8576
21	26	27	516.3692	-49.8132	-513.2602	81.1915	3.109	31.3784
22	26	29	-1048.5911	-222.866	1078.8742	570.6696	30.2831	347.8036
23	26	31	-685.6988	1.987	691.9167	87.2355	6.2179	89.2226
24	26	34	-80.387	-208.3885	80.6301	208.97	0.24312	0.5816

ตารางที่ ค.4 การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 2.0262 เท่า ของค่าฐานจากผลการคำนวณ PF

-0 -0	กิ่งระห	ว่างบัส	S ไหลเช	ข้าบัส i	S ไหลเ	ข้าบัส j	PL	QL
11411	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
25	27	28	422.5652	-19.1152	-420.5119	35.1382	2.0533	16.0231
26	27	37	90.695	-62.0764	-90.4613	45.323	0.23372	-16.7534
27	31	32	-1287.3167	-337.1355	1309.8202	712.6921	22.5035	375.5566
28	32	33	102.1798	112.4145	-101.9929	-123.8919	0.18688	-11.4774
29	33	34	770.9322	297.2074	-751.2301	-9.07	19.7021	288.1374
30	35	36	150.8237	234.0796	-147.5861	-242.0772	3.2376	-7.9975
31	36	37	527.1035	266.5435	-520.1387	-209.423	6.9648	57.1205
32	36	38	-289.1776	-33.5069	294.2402	31.6497	5.0625	-1.8572
33	36	39	-392.3398	-27.8994	404.6938	84.1063	12.354	56.2069
34	38	39	-741.8402	-91.6197	752.0003	181.3165	10.1602	89.6969
35	22	21	-8.0027	-93.4775	8.3266	102.2839	0.32392	8.8065
36	22	23	-8.2973	-97.7225	8.6512	107.3459	0.35396	9.6233
37	16	1	-1355.9589	-434.5035	1355.9589	1475.8237	0	1041.3202
38	20	3	-1412	-607.7881	1412	1463.7153	0	855.9272
39	29	4	-1355.0017	-454.4516	1373	819.56	17.9983	365.1084
40	30	5	-1089.6634	-355.6095	1104	642.3421	14.3366	286.7326
41	32	6	-1412	-825.1066	1412	1305.774	0	480.6675
42	33	7	-1206.7393	-357.1156	1217	915.2994	10.2607	558.1839
43	35	8	-1163.5044	-177.3842	1173	544.5458	9.4956	367.1616
44	12	2	-543.3	-656.2482	543.3	814.1209	0	157.8726
45	39	9	-1772.6941	-323.8729	1804	934.3376	31.3059	610.4647
46	29	30	276.1275	-116.218	-275.3366	131.8095	0.7909	15.5915
					53	าม	337.8589	7129.9358

ตารางที่ ค.4 การไหลของกำลังไฟฟ้า ณ ระดับการเพิ่มขึ้นของโหลดเป็น 2.0262 เท่า ของค่าฐานจากผลการคำนวณ PF (ต่อ)

ผลคำนวณการไหลของกำลังไฟฟ้า ณ ระดับโหลดเป็น 2.173 เท่าของค่าฐาน โดยกำหนดให้บัส เครื่องกำเนิดเป็นโหลดบัส สามารถแสดงผลการคำนวณแรงดันไฟฟ้าและการไหลของกำลังไฟฟ้าแต่ละ เส้นทางการไหลของกำลังไฟฟ้าได้ดังตารางที่ ค.5 ถึงตารางที่ ค.36

บัส	แรงดัน	ไฟฟ้า	การจ่ายกำลังไฟฟ้า		โหลด	
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
8	1.028	0	1328.5895	897.6369	0.0000	0.0000
35	0.86912	-0.34581	0.0000	0.0000	1134.0000	-63.5000
36	0.70972	-0.41854	0.0000	0.0000	-425.1000	-27.4000
37	0.63115	-0.6036	0.0000	0.0000	582.6000	234.6000
	53:	И	1328.5895	897.6369	1291.5000	143.7000

ตารางที่ ค.5 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1 เมื่อโหลดเพิ่มขึ้น ได้ 12% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.6	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 1
	เมื่อโหลดเพิ่มขึ้นได้ 12% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		$P_{L}$	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	35	36	179.9929	396.7365	-171.2853	-341.1386	8.7077	55.5979
2	36	37	596.3853	368.5386	-582.6000	-234.6000	13.7853	133.9386
3	35	8	-1313.9929	-333.2365	1328.5895	897.6369	14.5966	564.4004
					รว	าม	37.0895	753.9369

บัส	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
9	1.0280	0.0000	1904.9106	1149.7670	0.0000	0.0000
36	0.7725	-0.7047	0.0000	0.0000	-249.8000	-244.7000
37	0.7097	-0.8461	0.0000	0.0000	546.1000	219.9000
38	0.8344	-0.4805	0.0000	0.0000	470.0000	62.9700
39	0.8842	-0.3224	0.0000	0.0000	1072.0000	149.7000
	รว:	ม	1904.9106	1149.7670	1838.3000	187.8700

ตารางที่ ค.7 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2 เมื่อโหลด เพิ่มขึ้นได้ 5% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.8 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 2 เมื่อโหลดเพิ่มขึ้นได้ 12% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	36	37	555.6598	307.0942	-546.1000	-219.9000	9.5598	87.1942
2	36	38	-305.8598	-62.3942	312.7107	87.4718	6.8509	25.0777
3	38	39	-782.7107	-150.4418	795.4335	269.2638	12.7228	118.8219
4	39	9	-1867.4335	-418.9638	1904.9106	1149.7670	37.4771	730.8032
				53	าม	66.6106	961.8970	

			-			
<i>ع</i>	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
บส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
9	1.0280	0.0000	1884.4761	1103.2488	0.0000	0.0000
36	0.7833	-0.6912	0.0000	0.0000	-140.2000	-248.2000
37	0.7226	-0.8269	0.0000	0.0000	540.9000	217.8000
39	0.8902	-0.3169	0.0000	0.0000	1423.0000	249.3000
	รว:	μ	1884.4761	1103.2488	1823.7000	218.9000

ตารางที่ ค.9 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3 เมื่อโหลด เพิ่มขึ้นได้ 4% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.10 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 3 เมื่อโหลดเพิ่มขึ้นได้ 4% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

- - - - - - - - - - - - - - - - - - -	กิ่งระห	ว่างบัส	S ไหลเข้าบัส i		S ไหลเ	S ไหลเข้าบัส j		QL
11411	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	36	37	549.9454	299.1720	-540.9000	-217.8000	9.0454	81.3720
2	36	39	-409.7454	-50.9720	425.3785	150.0475	15.6332	99.0755
3	39	9	-1848.3785	-399.3475	1884.4761	1103.2488	36.0975	703.9013
					53	ม	60.7761	884.3488

ตารางที่ ค.11 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4 เมื่อโหลด เพิ่มขึ้นได้ 13% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

. v	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
ับส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
4	1.0280	0.0000	1571.1586	1228.8303	0.0000	0.0000
26	0.7124	-0.6151	0.0000	0.0000	601.4000	308.1000
27	0.7140	-0.7180	0.0000	0.0000	477.5000	-21.6000
29	0.8729	-0.2414	0.0000	0.0000	312.0000	-131.3000
37	0.7259	-0.7536	0.0000	0.0000	102.2000	-51.2100
	รว:	ม	1571.1586	1228.8303	1493.1000	103.9900

.0- 10-	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		$P_{L}$	QL
กงท	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	26	27	584.7728	-31.6046	-580.0456	84.8818	4.7272	53.2772
2	26	29	-1186.1728	-276.4954	1232.8051	825.5310	46.6323	549.0356
3	27	37	102.5456	-63.2818	-102.2000	51.2100	0.3456	-12.0718
4	29	4	-1544.8051	-694.2310	1571.1586	1228.8303	26.3535	534.5993
					53	าม	78.0586	1124.8403

ตารางที่ ค.12 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 4 เมื่อโหลดเพิ่มขึ้นได้ 13% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.13 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 8 เมื่อโหลด เพิ่มขึ้นได้ 4% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

<i>ع</i> .	แรงดัน	ไฟฟ้า	การจ่ายกํ	าลังไฟฟ้า	โหลด	
ับส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
4	0.9972	0.0000	1440.1889	1030.0491	0.0000	0.0000
25	0.6605	-0.6844	0.0000	0.0000	598.8000	352.6000
26	0.7228	-0.5729	0.0000	0.0000	483.8000	-193.5000
29	0.8634	-0.2312	0.0000	0.0000	287.2000	-120.9000
	ຊງ:	Ш	1440.1889	1030.0491	1369.8000	38.2000

ตารางที่ ค.14 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 8 เมื่อโหลดเพิ่มขึ้นได้ 4% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

0- 20-	กิ่งระห	ว่างบัส	S ไหลเข้าบัส i		S ไหลเ	S ไหลเข้าบัส j		QL
ואאו	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	25	26	-598.8000	-352.6000	608.7075	447.8807	9.9075	95.2807
2	26	29	-1092.5075	-254.3807	1130.9195	703.2549	38.4120	448.8743
3	29	4	-1418.1195	-582.3549	1440.1889	1030.0491	22.0694	447.6942
					57	ม	70.3889	991.8491

<i></i>	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
ับส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
6	1.0490	0.0000	1528.2786	1441.0715	0.0000	0.0000
25	0.7135	-0.7911	0.0000	0.0000	621.9000	366.2000
26	0.7729	-0.6909	0.0000	0.0000	-543.3000	-216.5000
32	0.8776	-0.2397	0.0000	0.0000	1415.0000	769.7000
33	0.8655	-0.2532	0.0000	0.0000	-722.5000	-187.2000
34	0.7911	-0.6835	0.0000	0.0000	724.2000	-287.9000
	30:	ม	1528.2786	1441.0715	1495.3000	444.3000

ตารางที่ ค.15 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 10 เมื่อโหลดเพิ่มขึ้นได้ 8% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.16 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 10 เมื่อโหลดเพิ่มขึ้นได้ 8% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

0 20			S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
กงท	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	25	26	-621.9000	-366.2000	631.0530	452.3383	9.1530	86.1383
2	26	34	-87.7530	-235.8383	88.0662	237.8397	0.3132	2.0014
3	32	33	113.2786	97.9786	-113.0926	-109.0256	0.1860	-11.0470
4	33	34	835.5926	296.2256	-812.2662	50.0603	23.3264	346.2859
5	32	6	-1528.2786	-867.6786	1528.2786	1441.0715	0.0000	573.3929
					57	ม	32.9786	996.7715

	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
ับส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
3	1.0490	0.0000	1670.0650	2005.5282	0.0000	0.0000
20	0.7388	-0.4456	0.0000	0.0000	835.0000	387.1000
23	0.7135	-0.5109	0.0000	0.0000	10.2100	126.7000
24	0.6850	-0.6772	0.0000	0.0000	664.0000	151.9000
25	0.7095	-0.7439	0.0000	0.0000	141.1000	-87.7100
	รว:	ม	1670.0650	2005.5282	1650.3100	577.9900

ตารางที่ ค.17 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 12 เมื่อโหลดเพิ่มขึ้นได้ 18% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.18 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 12 เมื่อโหลดเพิ่มขึ้นได้ 18% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
1141	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	20	23	835.0650	380.4685	-828.8823	-317.8490	6.1828	62.6195
2	23	24	818.6723	191.1490	-806.1478	-59.0240	12.5245	132.1249
3	24	25	142.1478	-92.8760	-141.1000	87.7100	1.0478	-5.1660
4	20	3	-1670.0650	-767.5685	1670.0650	2005.5282	0.0000	1237.9597
					รว	ม	19.7550	1427.5382

ตารางที่ ค.19 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 13 เมื่อโหลดเพิ่มขึ้นได้ 71% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

<i>.</i>	แรงดัน	ไฟฟ้า	การจ่ายกํ	าลังไฟฟ้า	โหลด	
ับส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
5	0.9820	0.0000	1949.4013	2336.1269	0.0000	0.0000
30	0.6325	-0.5599	0.0000	0.0000	1863.0000	608.1000
	รา:	ม	1949.4013	2336.1269	1863.0000	608.1000

ตารางที่ ค.20	การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 13
	เมื่อโหลดเพิ่มขึ้นได้ 71% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		$P_{L}$	QL
11411	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	30	5	-1863.0000	-608.1000	1949.4013	2336.1269	86.4013	1728.0269
					รวม		86.4013	1728.0269

ตารางที่ ค.21 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 14 เมื่อโหลดเพิ่มขึ้นได้ 65% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

บัส	แรงดัน	ไฟฟ้า	การจ่ายกํ	าลังไฟฟ้า	โหลด	
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
4	0.9820	0.0000	2394.5859	2904.8354	0.0000	0.0000
29	0.6347	-0.5386	0.0000	0.0000	1780.0000	940.6000
30	0.6654	-0.7086	0.0000	0.0000	506.9000	-217.5000
	รวม		2394.5859	2904.8354	2286.9000	723.1000

ตารางที่ ค.22 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 14 เมื่อโหลดเพิ่มขึ้นได้ 65% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

00- 50-	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
กงท	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	29	4	-2291.7109	-817.9438	2394.5859	2904.8354	102.8749	2086.8916
2	29	30	511.7109	-122.6562	-506.9000	217.5000	4.8109	94.8438
					รวม		107.6859	2181.7354

	แรงดัน	ไฟฟ้า	การจ่ายกํ	าลังไฟฟ้า	โหลด	
ับส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
3	0.9820	0.0000	1500.4824	1912.3343	0.0000	0.0000
20	0.6667	-0.4762	0.0000	0.0000	778.4000	360.8000
22	0.5588	-0.5519	0.0000	0.0000	9.1270	107.5000
23	0.6428	-0.5456	0.0000	0.0000	706.7000	144.7000
	รว:	ม	1500.4824	1912.3343	1494.2270	613.0000

ตารางที่ ค.23 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 15 เมื่อโหลดเพิ่มขึ้นได้ 10% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.24 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 15 เมื่อโหลดเพิ่มขึ้นได้ 10% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	Q _L
1141	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	20	23	722.0824	326.1225	-716.4234	-268.4143	5.6590	57.7083
2	22	23	-9.1270	-107.5000	9.7234	123.7143	0.5964	16.2143
3	20	3	-1500.4824	-686.9225	1500.4824	1912.3343	0.0000	1225.4117
					รวม		6.2554	1299.3343

ตารางที่ ค.25 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 16 เมื่อโหลดเพิ่มขึ้นได้ 8% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ب	แรงดัน	ไฟฟ้า	การจ่ายกํ	าลังไฟฟ้า	โหลด	
บส	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
3	0.9820	0.0000	1527.3026	1995.9307	0.0000	0.0000
20	0.6542	-0.4955	0.0000	0.0000	760.7000	302.2000
21	0.6260	-0.5723	0.0000	0.0000	750.5000	196.7000
22	0.5452	-0.5786	0.0000	0.0000	8.6690	101.0000
	รวม		1527.3026	1995.9307	1519.8690	599.9000

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	20	21	766.6026	383.7161	-759.7222	-312.7410	6.8803	70.9752
2	22	21	-8.6690	-101.0000	9.2222	116.0410	0.5532	15.0410
3	20	3	-1527.3026	-685.9161	1527.3026	1995.9307	0.0000	1310.0146
					<b></b> ຊວນ		7.4336	1396.0307

ตารางที่ ค.26 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 16 เมื่อโหลดเพิ่มขึ้นได้ 8% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.27 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 23 เมื่อโหลดเพิ่มขึ้นได้ 10% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

	แรงดัน	ไฟฟ้า	การจ่ายกํ	าลังไฟฟ้า	โหลด	
บล	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
1	1.0280	0.0000	1491.8813	1662.8626	0.0000	0.0000
14	0.7023	-0.7067	0.0000	0.0000	459.6000	-13.0400
15	0.7095	-0.5881	0.0000	0.0000	755.5000	161.4000
16	0.7215	-0.5269	0.0000	0.0000	267.3000	209.2000
	รวม		1491.8813	1662.8626	1482.4000	357.5600

ตารางที่ ค.28 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 23 เมื่อโหลดเพิ่มขึ้นได้ 10% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

- - - - - -	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
กงท	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	14	15	-459.6000	13.0400	463.0306	35.1629	3.4306	48.2029
2	15	16	-1218.5306	-196.5629	1224.5813	272.9999	6.0507	76.4370
3	16	1	-1491.8813	-482.1999	1491.8813	1662.8626	0.0000	1180.6627
					รวม		9.4813	1305.3026

บัส	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
3	1.0280	0.0000	1571.4216	1847.5635	0.0000	0.0000
14	0.6537	-0.8289	0.0000	0.0000	463.8000	-13.1500
15	0.6625	-0.6911	0.0000	0.0000	762.4000	162.9000
16	0.6760	-0.6205	0.0000	0.0000	-471.8000	-151.8000
20	0.7351	-0.4289	0.0000	0.0000	781.4000	310.6000
21	0.7073	-0.4910	0.0000	0.0000	9.2430	114.2000
	รวม		1571.4216	1847.5635	1545.0430	422.7500

ตารางที่ ค.29 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 24 เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.30 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 24 เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

00. 80.	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
ועניו	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	14	15	-463.8000	13.1500	467.8324	45.5571	4.0324	58.7071
2	15	16	-1230.2324	-208.4571	1237.3256	298.7244	7.0932	90.2673
3	16	21	-765.5256	-146.9244	774.8185	249.1348	9.2928	102.2105
4	20	21	790.0216	423.6127	-784.0615	-363.3348	5.9601	60.2778
5	20	3	-1571.4216	-734.2127	1571.4216	1847.5635	0.0000	1113.3508
					รวม		26.3786	1424.8135

	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด	
บล	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
3	1.0280	0.0000	1569.8931	1766.7055	0.0000	0.0000
14	0.6731	-0.7988	0.0000	0.0000	618.6000	53.4100
20	0.7494	-0.4198	0.0000	0.0000	785.4000	364.1000
23	0.7265	-0.4793	0.0000	0.0000	9.6030	119.2000
24	0.7001	-0.6295	0.0000	0.0000	133.6000	-93.3900
	รวม		1569.8931	1766.7055	1547.2030	443.3200

ตารางที่ ค.31 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 25 เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.32 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 25 เมื่อโหลดเพิ่มขึ้นได้ 11% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	14	24	-618.6000	-53.4100	625.4025	156.5835	6.8025	103.1735
2	20	23	784.4931	345.4713	-779.2488	-293.0663	5.2442	52.4050
3	23	24	769.6458	173.8663	-759.0025	-63.1935	10.6433	110.6728
4	20	3	-1569.8931	-709.5713	1569.8931	1766.7055	0.0000	1057.1342
					รวม		22.6901	1323.3855

	แรงดัน	ไฟฟ้า	การจ่ายกำลังไฟฟ้า		โหลด	
บล	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)
4	1.0280	0.0000	1476.0051	934.5844	0.0000	0.0000
13	0.7996	-0.6863	0.0000	0.0000	-38.4500	-542.2000
14	0.6757	-0.7243	0.0000	0.0000	119.7000	389.0000
26	0.7851	-0.5252	0.0000	0.0000	569.5000	291.8000
27	0.7868	-0.6058	0.0000	0.0000	97.0400	-66.4200
28	0.7849	-0.6665	0.0000	0.0000	367.3000	69.7500
29	0.9105	-0.2187	0.0000	0.0000	295.5000	-124.4000
	รวเ	ม	1476.0051	934.5844	1410.5900	17.5300

ตารางที่ ค.33 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 26 เมื่อโหลดเพิ่มขึ้นได้ 7% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.34 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 26 เมื่อโหลดเพิ่มขึ้นได้ 7% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

กิ่งที่	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	13	14	124.3052	452.3228	-119.7000	-389.0000	4.6052	63.3228
2	13	28	-85.8552	89.8773	86.1430	-99.8185	0.2877	-9.9413
3	26	27	556.3633	-40.5087	-552.8326	77.1089	3.5306	36.6002
4	26	29	-1125.8633	-251.2913	1160.2888	648.8821	34.4255	397.5908
	27	28	455.7926	-10.6889	-453.4430	30.0685	2.3497	19.3796
	29	4	-1455.7888	-524.4821	1476.0051	934.5844	20.2163	410.1023
					รวม		65.4151	917.0544
บัส	แรงดัน	ไฟฟ้า	การจ่ายกํ	ำลังไฟฟ้า	โหลด			
-----	----------------	------------	-----------	-----------	-----------	----------		
	ขนาด (pu)	มุม (องศา)	P (MW)	Q (MVar)	P (MW)	Q (MVar)		
2	1.0280 0.0000		568.4990	1036.0006	0.0000	0.0000		
12	0.8515 -0.1178		0.0000	0.0000	-218.1000	-28.7400		
13	0.7030	-0.2991	0.0000	0.0000	641.4000	98.3800		
14	0.5577 -0.3495		0.0000	0.0000	115.3000	374.4000		
	รว:	ม	568.4990	1036.0006	538.6000	444.0400		

ตารางที่ ค.35 แรงดันไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 30 เมื่อโหลดเพิ่มขึ้นได้ 3% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

ตารางที่ ค.36 การไหลของกำลังไฟฟ้าของเส้นทางการไหลของกำลังไฟฟ้าเส้นที่ 30 เมื่อโหลดเพิ่มขึ้นได้ 3% จากกรณีฐาน ณ ระดับโหลดเป็น 2.173 เท่า

กิ่งที่-	กิ่งระหว่างบัส		S ไหลเข้าบัส i		S ไหลเข้าบัส j		PL	QL
	บัส i	บัส j	P (MW)	Q (MVar)	P (MW)	Q (MVar)	(MW)	(MVar)
1	12	13	786.5990	825.5580	-763.0074	-567.2110	23.5916	258.3470
2	13	14	121.6074	468.8310	-115.3000	-374.4000	6.3074	94.4310
3	12	2	-568.4990	-796.8180	568.4990	1036.0006	0.0000	239.1827
					ຽວ	ม	29.8990	591.9606

ภาคผนวก จ การเผยแพร่ผลงานวิทยานิพนธ์

# การเผยแพร่ผลงานวิทยานิพนธ์

ระหว่างการศึกษาวิจัยเพื่อทำวิทยานิพนธ์ ผู้เขียนได้เสนอบทความทางวิชาการ ซึ่งเป็นส่วนหนึ่ง ของงานวิจัย จำนวน 1 บทความ โดยนำเสนอแบบบรรยายในงานประชุมวิชาการ "การประชุม วิชาการเสนอผลงานวิจัยระดับบัณฑิตศึกษาแห่งชาติ ครั้งที่ 19" "The 19th National Graduate Research Conference" ณ มหาวิทยาลัยขอนแก่น







# บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น

มอบเกียรติบัตรนี้ไว้เพื่อแสดงว่า

# นายณัฐพล ศิลปชัย

ได้นำเสนอผลงานวิจัยระดับบัณฑิตศึกษา แบบบรรยาย

ระดับปริญญาโท กลุ่มวิทยาศาสตร์กายภาพ

ในการประชุมวิชาการเสนอผลงานวิจัยระดับบัณฑิตศึกษาแห่งชาติ ครั้งที่ ๑๙

ณ มหาวิทยาลัยขอนแก่น

วันที่ ๙ มีนาคม ๒๕๖๑

HA

(ศาสตราจารย์ ดร. สุรศักดิ์ วงศ์รัตนชีวิน) คณบดีบัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น



107

# การวิเคราะห์ปัญหาเสถียรภาพแรงดันไฟฟ้าโดยใช้วิธีคำนวณเส้นทางการไหสวิกฤตเทียบกับวิธีการ คำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่อง Voltage Stability Problem Detection: Comparison between the Critical Power Flow Paths and the Continuation Power Flow Methodologies

ณัฐพล ศิลปชัย (Nuttapol Sinlapachai)* คร.คมสันต์ คาโรจน์ (Dr.Komson Daroj)**

### บทคัดย่อ

ความสามารถในการรับโหลดสูงสุดของระบบโดยทั่วไปจะถูกกำหนดให้เป็นโหลดสูงสุดของระบบที่ระบบ สามารถควบคุมได้โดยปราสจากเสถียรภาพของโหลด เหล่านี้เป็นสิ่งที่จำเป็นสำหรับขั้นตอนการวางแผนและกระบวน การผลิตไฟฟ้าในทางทฤษฎีโหลดสูงสุดของระบบจะถูกจำกัดด้วยเสถียรภาพแรงดันไฟฟ้าแสมอ เพื่อให้ได้โหลดสูงสุด ของระบบต้องใช้การจำลองการเพิ่มขึ้นของความสัมพันธ์ระหว่างเครื่องกำเนิดไฟฟ้าและโหลดกับประสิทธิ์ภาพการ คำนวณ บทความนี้นำเสนอผลการวิเคราะห์ปัญหาเสถียรภาพแรงดันไฟฟ้าของระบบไฟฟ้ากำลังโดยเปรียบเทียบ 2 วิธี ระหว่างวิธีการไหลของกำลังไฟฟ้าแบบต่อเนื่องซึ่งเป็นวิธีที่ได้รับความนิยมเนื่องจากสามารถคำนวณจุดที่เกิดสภาวะ แรงดันพังทลายได้ นอกจากนี้ยังสามารถเขียนกราฟการเพิ่มขึ้นของโหลดกับแรงดันไฟฟ้ากำลังโดยเปรียบเทียบ 2 วิธี ระหว่างวิธีการไหลของกำลังไฟฟ้าแบบต่อเนื่องซึ่งเป็นวิธีที่ได้รับความนิยมเนื่องจากสามารถคำนวณจุดที่เกิดสภาวะ แรงดันพังทลายได้ นอกจากนี้ยังสามารถเขียนกราฟการเพิ่มขึ้นของโหลดกับแรงดันไฟฟ้ากำลัง โดยผลที่ใด้จากการ เปรียบเทียบผลทั้งสองวิธีจะนำไปสู่ความเข้าใจต่อปัญหานี้ในเชิงลึก โดยในบทความนี้จะจำลองผลโดยใช้ระบบ ทดสอบ 5 บัส เพื่อให้สามารถเริ่มต้นการวิเคราะห์ผลได้อย่างรวดเร็ว

#### ABSTRACT

Maximum loadability of a system is basically defined as the maximum of system load that the system can be controlled without load of stability. This is necessary for both planning and generating stages. In theory, the maximum loading of a system is always limit by the voltage stability constraint. To obtain the maximum loading point of a system, the scenario of increasing generations and loads are required in association with efficient calculation approach. This paper presented the analysis of the voltage stability problem in a power system by comparing 2 methods i.e., the Continuation Power Flow (CPF) and the critical power flow path. The CPF is the most popular methodology due to the capability of tracing P-V curve. Thus, the voltage collapse point and the weakest bus of a system can be obtained. The obtained result of comparing there two methods can enhance for understanding the voltage stability problem in transmission system. A 5-bus system is used as a tested case to ease visualizing.

้ <mark>คำสำคัญ:</mark> เสถียรภาพแรงคันไฟฟ้าการไหลของกำลังไฟฟ้าแบบต่อเนื่อง วิเคราะห์เส้นทางการไหลวิกฤติ

Keywords: Voltage stability, Continuation power flow, Critical power flow path

** ผู้ช่วยศาสตราจารย์ ภากวิชาวิศวกรรมไฟฟ้าและอิเล็กทรอนิกส์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยอุบลราชธานี

^{*} นักศึกษา หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิศวกรรม ไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยอุบลราชธานี



#### บทนำ

ในปัจจุบันความต้องการพลังงานไฟฟ้าในมีอัตราที่สูงขึ้นตามการเติบโตทางเสรษฐกิจ ปัญหาเสลียรภาพ แรงคันไฟฟ้า (voltage stability) เป็นปัญหาที่ได้รับความสนใจนอกเหนือจากการควบคุมระบบไฟฟ้าในสภาวะปกติ ปัญหานี้เกิดขึ้นจากการทริปต่อเนื่องของสายส่งและโรงไฟฟ้า เหตุการณ์เหล่านี้ทำให้รูปแบบการไหลของกำลังไฟฟ้า ไหลผิดปกติไปจากเดิมจนท้ายที่สุดอาจส่งผลให้เกิดเหตุการณ์ไฟฟ้าดับทั้งระบบ (blackout) หรือแก่บางส่วน (browout) เช่น เหตุการณ์ไฟฟ้าดับครั้งใหญ่ที่สหรัฐอเมริกาเมื่อวันที่ 14 สิงหาคม 2003 (Oranisation for Economic Co-operation and Developement [OECD], 2005) เหตุการณ์ไฟฟ้าดับทั้งระบบที่ประเทศอิตาลีเมื่อวันที่ 28 กันขายน 2003 (OECD, 2005) เป็นด้น

แม้ในทางปฏิบัติจริงมีประเด็นการควบคุมและการทำงานของระบบป้องกันไฟฟ้ากำลังเข้ามาเกี่ยวข้องใน ปีญหาเสถียรภาพแรงคันไฟฟ้า แต่ในทางทฤษฎีประเด็นเกี่ยวกับขีดจำกัดการจ่ายโหลดให้ได้สูงสุดของระบบยังได้รับ ความสนใจเสมอมา วิธีการที่นิยมใช้หาคำตอบขีดจำกัดการจ่ายโหลดของระบบจะใช้การสมมุติให้โหลดมีการเพิ่มขึ้น โดยใช้เครื่องกำเนิดไฟฟ้ารองรับการเพิ่มขึ้นของโหลด

้โดยพื้นฐานการวิเคราะห์การไหลของกำลังไฟฟ้ามีหลายวิธีดังนี้ วิธีนิวตัน-ราฟสัน (Newton-Raphson Power Flow : NRPF) (Allen J. Wood, Bruce F. Wollenberg, 2013) เป็นการคำนวณการไหลของกำลังไฟฟ้าในสายส่งโดยหา แรงดันไฟฟ้า และมุมเฟสที่บัสต่างๆ ซึ่งเป็นข้อมูลเบื้องต้นที่ใช้ในการกำนวณก่ากระแสไฟฟ้า กำลังไฟฟ้าจริง และ ้ กำลังไฟฟ้ารีแอคทีฟที่ไหลในสายส่งณ สภาวะโหลดที่ใช้คำนวณ วิธีนี้จะไม่สามารถหาคำตอบได้ ณ สภาวะวิกฤตเนื่องจาก คุณสมบัติความเป็นเอกพจน์ของจาโคเบียนเมตริกซ์ วิธีการไหลของกำลังไฟฟ้าแบบต่อเนื่อง (continuation power flow) (C. W. Taylor, 1994) เป็นวิธีคำนวณหาคำตอบที่ประยุกต์จากวิธีนิวตัน-ราฟสันเพื่อให้คำนวณคำตอบ ณ สภาวะวิกฤต ของระบบได้ วิธีอื่นๆ ที่วิเคราะห์โดยใช้จาโคเบียนเมตริกซ์ ได้แก่ วิธีการวิเคราะห์แบบโมดอล (modal analysis) (B. Gao et al., 1992) วิธีนี้จะใช้กำลังไฟฟ้ารีแอกทีฟกับความไม่เป็นเสถียรภาพของแรงคันไฟฟ้า เป็นปัจจัยในการคำนวณ การใหลของกำลังไฟฟ้าโดยใช้จาโคเบียนเมตริกซ์ วิธีค่าเอกพจน์ต่ำสุด (minimum singular value method) (P.A. Lof et ้ al., 1993) เอกพจน์ต่ำสุดของจาโคเบียนเมตริกซ์สามารถใช้เป็นดัชนีประเมินเสถียรภาพแรงดันไฟฟ้า ในการวิเคราะห์ จะทำการเพิ่มระดับของ โหลดเพื่อกำนวณการลดลงของจา โคเบียนเมตริกซ์ของระบบ (J , )เมื่อค่าเอกพจน์ที่น้อยที่สุด ของเมตริกซ์  $J_{\pi}$  มีค่าใกล้สูนข์ พบว่าเมตริกซ์จาโคเบียนจะเป็นเมตริกซ์เอกฐาน (singular matrix) และใช้เป็นเงื่อนไข ประเมินค่าโหลดสูงสุดที่เพิ่มขึ้นในระบบได้ (maximum load capacity) วิธีวิเคราะห์เส้นทางไหลวิกฤต (critical power flow paths) (Komson D. et al., 2011) วิธีการนี้จะเป็นการวิเคราะห์เส้นทางการไหลของกำลังไฟฟ้าจากตั้งแต่ แหล่งกำเนิดไฟฟ้าไปจนถึงโหลดบัสสดท้าย โดยรายละเอียดที่วิเกราะห์ได้จากเส้นทางการไหลของกำลังไฟฟ้าวิกฤศนี้ ้จะช่วยขยายขอบเขตความเข้าใจปัณหาที่ระบบส่งไฟฟ้าได้มากยิ่งขึ้น

บทความฉบับนี้จะศึกษาปัญหาเสถียรภาพแรงค้นไฟฟ้า โดยการเปรียบเทียบสองวิธีกือ วิธีการไหลของ กำลังไฟฟ้าแบบต่อเนื่องเปรียบเทียบกับการวิเคราะห์เส้นทางไหลวิกฤตโดยใช้ระบบทดสอบมาตรฐาน 5 บัส ผลที่คาด ว่าจะได้รับจะนำไปสู่ความเข้าใจปัญหานี้เพิ่มเติมและสามารถวางแผนหรือควบคุมระบบไฟฟ้าเพื่อหลีกเลี่ยงปัญหานี้ได้ อย่างเป็นรูปธรรม



### วัตถุประสงค์

วิเคราะห์ปัญหาเสถียรภาพแรงดันไฟฟ้าโดยเปรียบเทียบวิธีการไหลของกำลังไฟฟ้าแบบต่อเนื่องกับวิธีการ วิเคราะห์เส้นทางการไหลวิกฤตเพื่อให้เห็นถึงความสัมพันธ์ของแนวทางการวิเคราะห์ปัญหาทั้งสองวิธี ซึ่งจะนำไปสู่ การเข้าใจปัญหาเสถียรภาพแรงดันไฟฟ้ามากยิ่งขึ้น

## ວີຮີກາຽວີຈັຍ

- การหาคำตอบของระบบ โดยการคำนวณการ ใหลของกำลัง ไฟฟ้าแบบต่อเนื่องเพื่อหาคำตอบ ณ สภาวะวิกฤติของระบบ
- การหาคำตอบของระบบ โดยการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF โดยสมมุติให้ไหลด มีการเพิ่มขึ้นและมีเครื่องกำเนิดไฟฟ้ารองรับการเพิ่มขึ้นของโหลด รอบละ 1% จนกว่าจะคำนวณ การไหลของกำลังไฟฟ้าหาคำตอบไม่ได้
- วิธีวิเคราะห์เส้นทางไหลวิกฤตของระบบทดสอบ
- เปรียบเทียบผลการทดสอบที่ได้ของทั้งสองวิธีเพื่อนำไปสู่ความเข้าใจปัญหาเสถียรภาพแรงดันไฟฟ้า เพิ่มเติม

#### โดยมี**ละเอียดดังนี้**

## การคำนวณการใหลของกำลังไฟฟ้าโดยวิธีนิวตัน-ราฟสัน (Newton-Raphson Power Flow ; NRPF)

การคำนวณการ ใหลของกำลังไฟฟ้าแบบ NRPF เป็นการคำนวณเพื่อหาแรงคันไฟฟ้าและมุมเฟสที่บัสต่างๆ โดยปกติกำลังไฟฟ้า ณ บัส i ที่มีเกรื่องกำเนิดไฟฟ้า โหลด และสายส่งต่ออยู่ดังรูปที่ เ



ร**ูปที่ 1** การใหลของกำลังไฟฟ้า ณ บัส *i* 

กำลังไฟฟ้า ณ บัส i สมารถเขียนได้ดังสมการที่ (เ)

$$S_{sch,i} = \left| V_i \right| \angle -\delta_i \sum_{j=l}^n \left| Y_{ij} \right| \left| V_j \right| \angle \theta_{ij} + \delta_j$$
⁽¹⁾

จากสมการที่ (1) สามารถแขกส่วนจริงและส่วนจินตภาพได้เป็น สมการที่ (2) และ (3) ตามลำดับ

$$P_{sch,i} = \sum_{j=l}^{n} \left| V_{i} \right| \left| V_{j} \right| \left| Y_{ij} \right| \cos\left(\theta_{ij} - \delta_{i} + \delta_{j}\right)$$
⁽²⁾



#### 19th NGRC การประชุมวิชาการเสนอผลงานวิจัยระดับบัณฑิตศึกษาแห่งชาติ ครั้งที่ 19 March 9, 2018 วันที่ 9 มีนาคม 2561 ณ แหว้ทยาลัยของแก่น **PMO12-4**

$$Q_{sch,i} = -\sum_{j=1}^{n} \left| V_{i} \right| \left| V_{j} \right| \left| Y_{ij} \right| sin\left( \theta_{ij} - \delta_{i} + \delta_{j} \right)$$
(3)

เมือ  $V_{,}$  คือ ค่าแรงคัน ณ บัสi

V, คือ ค่าแรงดัน ณ บัส j

 $\left|Y_{ij}
ight|$  คือ ขนาดของค่าแอตมิทแตนซ์ ที่แถว i และหลัก j ของเมตริกซ์แอตมิทแตนซ์

ในบทความฉบับนี้จะทำการเพิ่ม P และ Q ที่โหลดบัส และ Q ที่บัสเครื่องกำเนิดไฟฟ้า ขึ้นรอบละ เ% จนกว่า จะคำนวณการไหลของกำลังไฟฟ้าหาคำตอบไม่ได้

การคำนวณค่าจุดวิกฤตโดยใช้วิธีวิธีการไหลของกำลังไฟฟ้าแบบต่อเนื่อง (Continuation Power Flow; CPF)

การคำนวณการไหลของกำลังไฟฟ้าแบบต่อเนื่องเป็นวิธีการหาคำตอบของระบบที่ปรับปรุงมาจากการคำนวณ การไหลของกำลังไฟฟ้าแบบปกติเพื่อให้สามารถคำนวณหาคำตอบของระบบไฟฟ้าได้ ณ สภาวะวิกฤต ตามรูปแบบการ เพิ่มโหลดและเครื่องกำเนิดไฟฟ้า (loading scenario) โดยใช้เทคนิคเพิ่มค่าตัวแปรเพื่อหลีกเลี่ยงสภาวะเอกฐานของ ระบบ (local parameterization) ดังแสดงรูปแบบการกำนวณการ ใหลของกำลัง ใฟฟ้าแบบต่อเนื่องดังรูปที่ 2



รูปที่ 2 แสดงรูปแบบการคำนวณการ ใหลของกำลัง ไฟฟ้าแบบต่อเนื่อง

ขั้นตอนการคำนวณมีดังนี้ เพิ่มตัวคูณกำลังไฟฟ้าที่บัส A เข้าไปในสมการการไหลของกำลังไฟฟ้าแบบปกติ ดังสมการ

$$F(\delta, V, \lambda) = 0, 1 \le \lambda \le \lambda_{\max} \tag{4}$$

โดย  $\delta$  และ V คือค่ามุมเฟสและขนาดของแรงดันที่บัส ตามลำดับ ในกรณีโหลดพื้นฐานในตอนเริ่มคำนวณ ตัวแปร λมีค่าเป็นหนึ่งเพื่อให้การคำนวณรวดเร็วขึ้นจะใช้เทคนิคการคาดการณ์และปรับผลตาม(predictor and corrector) ดังนี้

$$dF(\delta, V, \lambda) = \frac{\partial F}{\partial \delta} \Delta \delta + \frac{\partial F}{\partial V} \Delta V + \frac{\partial F}{\partial \lambda} \Delta \lambda = 0$$
⁽⁵⁾

ตัวแปร λ ที่เพิ่มขึ้นเข้ามาในสมการการไหลของกำลังไฟฟ้าปกติทำให้ต้องแปลงสมการการไหลของ กำลังไฟฟ้าไปจากเดิม ดังนี้

### 19th NGRC การประชุมวิชาการเสนอผลงานวิจัยระดับบัณฑิตศึกษาแห่งชาติ ครั้งที่ 19 March 9, 2018 วันที่ 9 มีนาคม 2561 ณ แควกเกลียงอนแก่น

$$\begin{pmatrix} \frac{\partial F}{\partial \delta} \frac{\partial F}{\partial V} \frac{\partial F}{\partial \lambda} \\ e_k \end{pmatrix} (T) = \begin{pmatrix} \mathbf{r} \\ \mathbf{0} \\ \pm 1 \end{pmatrix}$$
(6)

เมตริก T คือเมตริกหลัก (column matrix) ที่แสดงทิศทางการเกลื่อนที่ของตัวแปร ณ จุดทำงานนั้น (tangent matrix) ก่าในแถวสุดท้ายมีขนาดเป็นบวกหรือลบหนึ่งทำให้ e_k เป็นเมตริกแถว (row matrix) มีก่าเป็นศูนย์ยกเว้นหลักที่ k จะมีก่าบวกหนึ่งจากคุณสมบัติของเมตริกT ทำให้สมการที่ดัดแปลงไปสามารถหากำตอบได้ ณ จุดวิกฤต เมื่อแก้ สมการ (6) จะได้ทิศทางการปรับก่าตัวแปร S, V และ A จุดทำงานต่อไปสามารถกาดการณ์ได้จากสมการที่ (7)

$$\begin{pmatrix} \boldsymbol{\delta} \\ \boldsymbol{V} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\delta}_i \\ \boldsymbol{V}_i \\ \boldsymbol{\lambda}_i \end{pmatrix} + \boldsymbol{\sigma} \begin{pmatrix} \Delta \boldsymbol{\delta} \\ \Delta \boldsymbol{V} \\ \Delta \boldsymbol{\lambda} \end{pmatrix}$$
(7)

โดย  $\sigma$  คือระยะห่างที่เคลื่อนที่ในแต่ละช่วงโหลดที่เพิ่มขึ้น

การเปลี่ยนตัวแปรและปรับค่า ณ สภาวะใกล้จุดวิกฤตมีความสำคัญต่อการคำนวณ (parameterization and the corrector) โดยในขั้นตอนนี้จะต้องมีการกำหนดตัวแปรในสมการการไหลของกำลังไฟฟ้าที่แปลงไปแล้วใหม่ (local parameterization) ดังสมการ (8)

$$x = \begin{pmatrix} \delta \\ V \\ \lambda \end{pmatrix}, \ let x_k = \eta \tag{8}$$

จากสมการที่ (8) การระบุตัวแปรในแถวที่ นิยมเลือกจากตัวแปร ที่มีอัตราการเปลี่ยนแปลงสูงสุดในเมตริก T ท้ายสุดจะได้สมการของระบบ ณ สภาวะนี้กือ

$$\begin{pmatrix} F(x) \\ x_k - \eta \end{pmatrix} = [0]$$
 (9)

คำตอบของสมการ (16) สามารถคำนวณโดยขั้นตอนตามสมการที่ (4)-(8) อีกครั้ง ผลที่ได้จากการคำนวณใน .แต่ละรอบนิยมนำมาเขียนกราฟการเพิ่มขึ้นของโหลดกับแรงดัน ในรูปกราฟ P-V กราฟ Q-V หรือ กราฟ λ-V

## เส้นทางการใหลแบบเสมือนเรเดียล (Equivalent Radial Flow Path; ERP)

นำผลการกำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF มาวิเกราะห์ ERP โดยพิจารณา ERP จากเกรื่องกำเนิด ไฟฟ้าไปยังโหลดบัสปลายทาง โดยสมมูลการไหลของกำลังไฟฟ้าที่แยกออกจากเส้นทางเสมือน กล้ายกับโหลดเสมือน (ficticious load) ดังแสดงในรูป 3



รูปที่ 3 Equivalent Radial Flow Path

จากรูปที่ 3 แสดง ERP เส้นทาง *i* ที่มีทั้งหมด *n* บัสโดยทางต้นทางเสมือนมีเครื่องกำเนิดไฟฟ้าอยู่ที่บัส (*i,a*) ไปยังบัส (*i,b*)และเพื่อให้กำลังไฟฟ้าที่ไหลบนเส้นทางเสมือนนี้สมคุล จะต้องเพิ่มโหลดเสมือนที่คิดจากส่วน ต่างของกำลังไฟฟ้าปรากฏที่ไหลเข้าและออกในแต่ละบัส แสดงดังรูปที่ 4



รูปที่ 4 โหลดไฟฟ้าเสมือน ณ บัส k ของ ERP เส้นทางที่ *i* 

#### ระบบทุดสอบ

ใช้ระบบทคสอบ 5 บัส (IIadi Saadat) โดยบัสที่ 1 เป็นอ้างอิง (slack bus) บัสที่ 2 และ 3 เป็นบัสเครื่องกำเนิด (PV bus) บัสที่ 4 และ 5 เป็นโหลดบัส (PQ bus) แสดงในรูปที่ 5



ตารางที่ เ ข้อมูลบัสของระบบทคสอบ 5 บัส

	Bus Type	Load		Generation					X7-14
Bus		Р	Q	$P_{g}$	$P_{\rm max}$	$P_{\min}$	$Q_{\rm max}$	$Q_{\min}$	voitage
		(MW)	(Mvar)	(MW)	(MW)	(MW)	(Mvar)	(Mvar)	(pu)
1	Slack	0	0	0	85	0	50	-10	1.060
2	PV	20	10	30	80	0	50	-10	1.045
3	PV	20	15	40	70	0	40	-10	1.030
4	PQ	50	30	0	0	0	0	0	1.000
5	PQ	60	40	0	0	0	0	0	1.000

ตารางที่ 2 ข้อมูลสายส่งของระบบทคสอบ 5 บัส

Time	Bu	ses	Impedance (pu)			
Line	From	То	R	X	B/2	
1	1	2	0.02	0.06	0.06	
2	1	3	0.08	0.24	0.05	
3	2	3	0.06	0.18	0.04	
4	2	4	0.06	0.18	0.04	
5	2	5	0.04	0.12	0.03	
6	3	4	0.01	0.03	0.02	
7	4	5	0.08	0.24	0.05	



#### ผลการทดสอบ

ผลการคำนวณ CPF จากระบบทคสอบ 5 บัส พบว่า ณ สภาวะสุดท้ายก่อนเกิดการพังทลายของแรงคันไฟฟ้า ระบบสามารถจ่ายกำลังไฟฟ้าได้สูงสุด ณ ค่าโหลดเป็น 4.6621 เท่าของกรณีฐาน สามารถเขียนกราฟความสัมพันธ์ ระหว่างการกำลังไฟฟ้าและแรงคันไฟฟ้า ได้ดังรูปที่ 6



ร**ูปที่ 6** กราฟแสดงความสัมพันธ์ระหว่างกำลังไฟฟ้าและแรงคันไฟฟ้าของระบบทคสอบ 5 บัส

จากกราฟความสัมพันธ์ระหว่างกำลังไฟฟ้าและแรงดันไฟฟ้าพบว่าบัสที่มีแรงดันต่ำที่สุดคือบัสที่ 5 ณ ก่าโหลดเป็น 4.6621 เท่าของกรณีฐาน

ผลกำนวณการไหลของกำลังไฟฟ้าโดยวิธี NRPF พบว่าระบบสามารถรองรับการเพิ่มขึ้นของโหลดได้เป็น 4.6600 เท่าของก่าฐาน สามารถแสดงผลการไหลของกำลังไฟฟ้าได้ดัง รูปที่ 7



รูปที่ 7 แสดงเส้นทางการ ไหลของ P และ Q ณ ระดับการเพิ่มขึ้นของ โหลดเป็น 4.6600 เท่าของก่าฐาน

จากรูปที่ 7 สามารถพบเส้นทางการไหลของกำลังไฟฟ้าดังนี้ เส้นทางการไหลของกำลังไฟฟ้าที่ 1 ไหลจากบัส 1-2-5 เส้นทางการไหลของกำลังไฟฟ้าที่ 2 ไหลจากบัส 1-2-4-5 เส้นทางการไหลของกำลังไฟฟ้าที่ 3 ไหลจากบัส 1-3-4-5 เส้นทางการไหลของกำลังไฟฟ้าที่ 4 ไหลจากบัส 1-2-3-4-5

ผลการวิเคราะห์ ERP ของเส้นทางการไหลวิกฤตแต่ละเส้นทางแสดงในรูปที่ 8-เ เ



**รูปที่ 8** แสดงเส้นทางการ ใหลของกำลังไฟฟ้าที่ เ ใหลจากบัส เ-2-5

196





รูปที่ 11 แสดงเส้นทางการไหลของกำลังไฟฟ้าที่ 4 ไหลงากบัส เ-2-3-4-5

พิจารณาเส้นทางการ ไหลของกำลังไฟฟ้าแบบ ERP พบว่าแรงคันไฟฟ้าที่บัส 5 มีค่าต่ำที่สุดคือ 0.0558 p.u. และการไหลของกำลังไฟฟ้าทุกเส้นทางไหลไปที่บัสที่ 5 ซึ่งเป็นบัสปลายทาง ทำให้ทราบว่าบัสวิกฤติ (critical bus) ใน ระบบคือบัสที่ 5

เมื่อนำเส้นทางการไหลของกำลังไฟฟ้าทุกเส้นทาง ณ ระคับโหลดเป็น 4.6600 เท่าของก่าฐาน มาทำการ กำนวณการไหลของกำลังไฟฟ้าด้วยวิธี NRPF โดยทำการเพิ่มโหลดที่โหลดบัส เพิ่มขึ้นรอบละ 1% พบว่าเส้นทางการ ไหลของกำลังไฟฟ้าเส้นทางที่ 1, 2, 3 และ 4 สามารถจ่ายกำลังไฟฟ้าได้สูงสุด ณ ก่าโหลดเป็น 1.0500, 1.0400, 1.0800 และ 1.0700 เท่าตามลำดับ ทำให้ทราบว่าเส้นทางการของกำลังไฟฟ้าทุกเส้นทางอยู่ในภาวะวิกฤตสามารถเพิ่มโหลดได้ อีกเพียงเล็กน้อยเท่านั่นก่อนที่ระบบจะหากำตอบไม่ได้

### อภิปรายและสรุปผลการวิจัย

จากการคำนวณการไหลของกำลังไฟฟ้าด้วยวิธี CPF พบว่า ระบบสามารถรองรับการเพิ่มขึ้นของโหลดได้เป็น 4.6621 เท่าของค่าฐาน ณ สภาวะเกิดการพังทลายของแรงดันไฟฟ้า (critical point) ซึ่งมีค่าสูงกว่าการคำนวณการไหล ของกำลังไฟฟ้าด้วยวิธี NRPF ซึ่งสามารถเพิ่มโหลดได้เป็น 4.6600 เท่าของกรณีฐาน แสดงให้เห็นว่าวิธีกำนวณการไหล ของกำลังไฟฟ้าด้วยวิธี NRPF ซึ่งสามารถเพิ่มโหลดได้เป็น 4.6600 เท่าของกรณีฐาน แสดงให้เห็นว่าวิธีกำนวณการไหล ของกำลังไฟฟ้าด้วยวิธี NRPF ซึ่งสามารถเพิ่มโหลดได้เป็น 4.6600 เท่าของกรณีฐาน แสดงให้เห็นว่าวิธีกำนวณการไหล ของกำลังของกำลังไฟฟ้าแบบ CPF สามารถกำนวณหาคำตอบของระบบ ณ สภาวะเกิดการพังทลายของแรงดันไฟฟ้าได้ เมื่อวิเคราะห์เส้นทางการไหลวิกฤติโดยทำหาร ERP ของเส้นทางการไหลของกำลังไฟฟ้า ณ สภาวะโหลดเพิ่มขึ้นเป็น 4.6600 เท่าของค่าฐานพบว่ากำลังไฟฟ้าที่ไหลในเส้นทางการไหลของกำลังไฟฟ้าแต่ละเส้นทางมีก่าเข้าใกล้จุดเกิด แรงดันพังทลายเช่นกันแต่การวิเคราะห์เส้นทางการไหลวิกฤตจะแสดงให้เห็นถึงเส้นทางการไหลของกำลังไฟฟ้าใน ทุกๆ เส้นทางของระบบทำให้สามารถนำข้อมูลที่ได้ไปวิเคราะห์วางแผนหรือควบคูมระบบไฟฟ้าต่อไป



19th NGRC การประชุมวิชาการเสนอผลงานวิจัยระดับบัณฑิตศึกษาแห่งชาติ ครั้งที่ 19 มีที่ 9 นิทคน 2561 ณ มหวิศษณ์ของแก่น

# PMO12-12

#### เอกสารอ้างอิง

Allen J. Wood, Bruce F. Wollenberg, Power Generation, Operation, and control, third edition, Hoboken, New Jersey, A Wiley-Interscience publication, 2013

B. Gao, G. K. Morison, and P. Kundur, "Voltage stability evaluation using modal analysis," IEEE Transactions on Power System 1992;7(4): 1529-1542.

C. W. Taylor, Power System Voltage Stability, London, Mc Graw IIill, 1994.

Komson Daroj, Somneuk Wainwattanachai, Keerati Chayakulkheeree, Proposal of the Critical

Power Flow Paths Concept to Detect Voltage Instability in a Power System, World Congress on Engineering and Technology Oct. 28, 2011, Shanghai, China, 2011

Oranisation for Economic Co-operation and Development. learning from the blackouts. International Energy Agency (IEA), Paris, France, Head of Publications Service, 2005

P.A. Lof, G. Anderson, and D.J.Hill, "Voltage stability indices for stressed power systems," IEEE Transaction on Power System 1993 ;8(1): 326-335.

# ประวัติผู้วิจัย

ชื่อ ประวัติการศึกษา

นายณัฐพล ศิลปชัย พ.ศ.2552-2555 วิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้าและ อิเล็กทรอนิกส์ มหาวิทยาลัยอุบลราชธานี