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tJ1'1fl\9l fJ'flil1~1'fl~f1t)~ (Abstract) 

In this research, we study a Poisson algebra A with three generators but having three 

relations different from the relations of T in [13]. We classify the finite-dimensional simple 

Poisson modules over A by considering its Lie structure J / J 2 , where J is a Poisson maximal 

ideal of A. We show that there are only two Poisson maximal ideals J1 and J2 • For the case 

Jtf J'f , the finite dimension Poisson modules annihilated by J1 is one-dimensional. For the 

case J2/ fi_, A is 1-homogeneous, that is, there is one d-dimensional simple Poisson module 

for each positive integer d. 
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nt!ifm~B.:Jifihm1~1'1~~::,)1u'Ufl finite-dimensional simple Poisson modules 1J'U~'Il'flrufl 
J.qv 1 o q v 9.1 9.1 v cv tJ' 

A= C[x, y, z] l'll.Jfl1fltlflll'UI'I 3 fl1 'VfHJl.J1'11£Jfl11l.Jt'fl.J'V'l'Uff 

xy- qyx 

yz- qzy 

zx- qxz 

( q - 1) (yx + x + y + z), 

( q - 1) ( zy + x + y + z), 

(q-1)(zx+x+y+z) 

Ldtl q ll.J'l<Ji root of unity ~-HU'Ufll':il9itl£Jtll'l'illflimnilvml'i'lltl'l [13] ~.:'ll~l'hnn,]lU'Uf1 finite

dimensional simple Poisson modules 1J'U~'!l'flrufl A= C[x, y, z] 'V'l~tll.J~1£Jfl11l.Jal.J'W'UTI 

xy- qyx 

yz- qzy 

zx- qxz 

J1 xA+yA+zA, 

(q- 1)z, 

(q- 1)x, 

(q- 1)y 

h (x+1)A+(y+1)A+(z+1)A, 

h (x+1)A+(y-1)A+(z-1)A, 

J4 (x -1)A+ (y + 1)A+ (z -1)A Ur:t:: 

J5 (x-1)A+(y-1)A+(z+1)A. 

lfl~t!.:Jilt!~L<fi'Ufll':i,)lu'Ufl finite-dimensional simple Poisson modules L'Uil'l£JlUVI'UTiif ¥it~ 
l~l.J~'Uftmn Poisson modules annihilated by J1 LI'I£JHfll'lf1Uflfll':ifll':ir:ti'I!U"'1Ll1h~'1Yu.u't~'Ur:t.:'l 
nB'U~'il::~hLil'Ufll':i'illU'Ufl finite-dimensional simple Poisson modules ur:t::r-Jmr'V'll'i~'1~'Ufl'JW'lltl.:'l 
Jl ¥it~ 
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"ri111f'IJU~!;l:; d ~ 1, ij d-dimensional simple Poisson modules over A annihilated by J1 L~ti.:.J 

1 ~1" 

"rl111i''Utt~!;l:; d ~ 1, 11 d-dimensional simple Poisson modules over A annihilated by h L~ti.:.J 

1 ~1" 

U~lt.!fll':iflfl'l!ll Poisson modules annihilated by J3, J4 U!;l:; J5 L ':il'l~fl11lJ~L~fi.:.J Poisson 

Automorphism <ihti'h..!fll':it~fllJ~eH·.JfiK'V'Hhnn J2 'b.hY.:.~ Ji, i = 3, 4, 5 ttfi::~>.Jf!Kvuirl111f1m~fl:: Ji 
... ,_, ... 

'U'U flfl 

"rl111i''IJU~B:; d ~ 1, 11 d-dimensional simple Poisson modules over A annihilated by J2 L~£.1.:.1 

1 ~1" 

~.:.li:I1UL~11 "rll11i''IJU~B:; d ~ 1, 11 d-dimensional simple Poisson modules over A annihilated 
... 

by J2 '!Y.:.J11lJI'I 5 ~1" 

'l mh 'U 'II fJ .:.1 .:.11 'Ui fm ~f) .:.I Umfimn ~'lffiW\91 A ~iifl1llJ a:w ~'U!i~sH'IJ~fi'U ,mill11''hJ i:lllJl':itl 

'l~t 'VIf1Ufl~mh1t1l 'Ui'VI tllU'V'I'Ufii1'1~ ~.:.J~fi.:.J'I'ilnum tfl~f.I.:.Jii fl'lm.i uB::'V'Iuil tfl~fl.:.~ii fl~thln.Q'l'U [9] 

i:lllJl'j(l'lhtiLLflUt1J111L~~.:.JI'.JBK'V'IB~L~Rfl A 11 Poisson maximal ideal 2 ~1«.:.~if 

J1 xA + yA + zA, 

h (x + 3)A + (y + 3)A + (z + 3)A. 

l'Umru'llfi.:.J J1 t':il'l'ilm'ifimn g(JI) = JdJ'f ~.:.~mm.:.~a~h.:.J'Ilf.I.:.J 
~'lffiWI'l~ L':ili.:.~a:w:wWi~l'Uil g(JI) LU'U Heisenberg algebra «.:.~L~f.IB'Ult1L1l'U'111oUf.l 2.5.2 UB::L~'I'il 

..,..r 
fl1 'j\91 ':i1 'il i:lfi'IJ 1'1.:.1 'U 

[x, y] = x + y + z, [y, z] = x + y + z, [z, x] = x + y + z 

LLB::rll«'IJ~fiLU~'ill':iilll derived algebra g(JI)' = [g(Jl), g(Jl)] 'Uf.I.:.J g(Jl) t':il'ii::L~il g(JI)' 

rimiltUI'ILI'ItJ x + y + z «·nY'U g(Jl)' iiilWittl'U 1 11K.:.J'illfl,Y'Uvilfll':il'l':i1'ili:lf.IU11 x + y + z 
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--

tfluam~n~u6mn~'lltl~ 9 ( J1) 1llflfl1'i~'i1111:1tl'U«~nrl11~1~~mi'11'11'VI'il'Uil 9( J1) L flu Heisen

berg algebra ~~'lllLU~f·H'Ii:i''VIB~il'VJfl, finite-dimensional simple Poisson A -modules i1 one

dimensionall~HJl<ti [6, Corollary 1.3.13] LL{I:: [9, Theorem 4] 

u = X + 3, v = y + 3 LL{I:; W = Z + 3 

[u, v] = w- 2u- 2v, [v, w] = u- 2v- 2w, [w, u] = v- 2u- 2w 

LL{I:; derived algebra 9(J~) = [9(h), 9(h)] = 9(h) Ll{I::L'i1LLI:1~~L~il { u, v, w} LU'UBI:1'i::t'lf~L1:f'U 

«~tY'U 9(Jz) :nm; 3 'l'h1m~il 9(h) ~ slz 

1llflf-.l{I'K'VIB~LU'U~LL'VI':h1{1lt1 (flmn1llfl [7] l11t~ [8]) 11::L~ ti111fuu~"':; d ~ 1, s[z i1 d

dimensional simple Poisson module annihilated by h t'lliti~'J1~L~ti1L'I'htYu 
' o\11,..11 OJ d".c:tl ..::t, 

Ll{l::'iJlfl [9, Theorem 4] LLI:l::'Ul LU\'Jf-.l{I{I'VIfi'VI11 :1..1 finite-dimensional simple Poisson A -modules 
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I 
.c::! 

1JVIVI 1 

Introduction 

In this research, we classify finite dimensional simple Poisson modules for some Poisson 

algebra by using the different method of Sasom's thesis [13]. In Sasom's thesis [13], we 

have seen the classification of the finite-dimensional simple Poisson Tq-modules where Tq rs a 

C-algebra with three generators U, V, lV subject to the relations 

UV-qVU 

VW-qWV 

WU-qUW 

(1- q2)W 

q-1(1- q2)U 

q-1 (1 - q2) v. 

If q2 -1- 1 then we shall change the generators to X, Y, Z and these three relations become 

XY- qYX = Z, YZ- qZY =X, ZX- qXZ = Y, ( 1.1) 

ql/2 y - ql/2 V z - q TV where X= ~U, - ~ , and - ~ . -q -q -q 

Sasom [13] studied Poisson algebra related to Tq and modified the generators so that the 

relations become 

xy- qyx = (q- 1)z, yz- qzy = (q- 1)x, zx- qxz = (q- 1)y, 

where q -1- 1 but when q = 1 it is a commutative polynomial algebra. Replacing q by an 

indeterminate. Thus we have seen the algebra T generated by x, y, z, t, C 1 subject to the 

relations 

xy- tyx = (t- l)z, yz- tzy = (t- l)x, zx- txz = (t- 1)y, 

9 



and 

xt = tx, yt = ty, zt = tz, tc1 = 1 = c 1t. 

In this algebra, t is a central non-unit non-zero-divisor such that T / ( t - 1 )T is commutative 

and isomorphic to A:= C[x, y, z]. This induces a Poisson bracket { -,-} on A such that, 

{a,/3} = (t -1)-I[a,/3]. 

for a, j3 E T. This implies the Poisson brackets, 

{x,y}=yx+z, {y,z}=zy+x, {z,x}=xz+y. 

Thus there are five Poisson maximal ideals Ji., 1 :::::; i :::::; 5, of A for the Poisson bracket: 

h xA+yA+zA, 

h (x+1)A+(y+1)A+(z+1)A, 

h (x+1)A+(y-l)A+(z-l)A, 

J4 (x-1)A+(y+1)A+(z-1)A and 

Js (x-1)A+(y-1)A+(z+1)A. 

For d 2: 1, the Poisson algebra A has precisely one d-dimensional simple Poisson module 

annihilated by each Ji. 

In our research, we use the same method of construction a Poisson algebra but different 

method for classifying finite dimensional Poisson simple modules which were not as hard to find 

as the finite dimensional simple modules over the deformation. If we change an indeterminate 

x's to X's and so on and then write x = (q -1)X and so on then the relations should become 

xy-yx 

yz- zy 

xz- zx 

(q- 1)yx + (q- 1)z + (q- 1)y + (q- 1)x 

(q- 1)zy + (q- 1)z + (q- 1)y + (q- 1)x 

(q- l)zx + (q- l)z + (q- l)y + (q- l)x. 

If we treat q like an indeterminate and factor out q- 1 we get commutative polynomials and 
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this gives a Poisson bracket on C[x, y, z] with 

{x,y} 

{y,z} 

{z,x} 

yx +x+y+ z, 

zy+x+ y+ z, 

xz +x+ y+z. 

There are two Poisson maximal ideals for this Poisson algebra as the following 

J1 xA + yA + zA, 

h (x + 3)A + (y + 3)A + (z + 3)A. 

We classify the Poisson simple modules by using the method in [9]. We find that there is one 

of the Poisson maximal, the Lie algebra Q(J1 ) is soluble so all its finite-dimensional simple 

modules are !-dimensional. The Lie algebra Q (h) is isomorphic to sl2 . So we find that 

there are infinitely many one-dimensional simple Poisson module related to J1 and one finite

dimensional simple Poisson module for each dimension related to J 2 • The material in Chapter 2 

contains the preliminary standard material that is applied elsewhere. Chapter 3 is original. This 

algebra studied in this research is suggested by D. A. Jordan and use the same method as his 

paper [9] to classify finite-dimensional simple Poisson modules. 
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1Jl'll'l 2 

Preliminaries 

This chapter contains some of the background material that will be used throughout this thesis. 

The main topics are algebras, Lie algebras, derived algebras, low-dimensional Lie algebras, 

homomorphisms Poisson algebras and Poisson modules. For more basic knowledge, we can also 

study in [1], [3], [10], [11] and [12]. 

2.1 Algebras 

An algebra over a field lF is a vector space A over lF together with a bilinear map, 

Ax A-----* A, (x,y) f---> xy. 

We say that xy is the product of x and y. 

The algebra A is said to be associative if 

(xy)z = x(yz) for all x, y, z E A 

and unital if there is an element lA in A such that lAx = x = xlA for all non-zero elements 

of A. 

Definition 2.1.1. A bilinear map or bilinear form is a map from cartesian product of vector 

spaces to some other vector space. Let a : U x V _____. lV be a bilinear map. Then a satisfies 
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1. a(x+y,z)=a(x,z)+a(y,z) for all x,yEU,zEV, 

n. a(x,y+z)=a(x,y)+a(x,z) for all xEU,y,zEV, 

m. a( ex, y) = ca(x, y) = a(x, cy) for all c E F and all x E U, y E V. 

Theorem 2.1.2 (Hilbert's Nullstellensatz Theorem). Let R = JF[x1, x2, ... , xn] be the polynomial 

ring over lF in the n(> 0) indeterminates x1, x2, ... , Xn. The ideal .M is a maximal ideal if 

and only if there exist a1, a2, ... , an such that M = (x1 - a1, x2- a2, ... , Xn- an)· 

Proof. See [14, Theorem 14.6]. D 

2.2 Lie Algebras 

Let F be a field. A Lie algebra over F is an F -vector space L, together with a bilinear map, 

the Lie bracket 

L x L ~ L, (x,y) r--+ [x,y] 

such that 

(Ll) [x,x] = 0 for all x E L 

(L2) (Jacobi Identity) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z E L. 

We call [x, y] a commutator of x and y. 

As the Lie bracket [-, -] is linear, we have 

0 = [x + y, x + y] = [x, y] + [y, x]. 

This implies, [x,y] = -[y,x] for all x,y,z E L. 

Example 2.2.1. Any vector space V endowed with the identically zero Lie bracket becomes a 

Lie algebra. Such Lie algebras are called abelian. Any one-dimensional Lie algebra over a field 

is abelian, by the antisymmetry of the Lie bracket. 
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Definition 2.2.2. Let L be a Lie algebra. We define a Lie subalgebra of L to be a vector space 

K ~ L such that 

[x,y] E K, for all x,y E K. 

We also define an ideal of a Lie algebra L to be a subspace I of L such that 

[x,y] E I, for all x E I.y E L. 

An ideal is always a subalgebra. On the other hand, a subalgebra need not be an ideal of L. 

Example 2.2.3. Let gl(n, F) be the vector space of all n x n matrices over F and b(n, F) be 

an upper triangular matrices in gl(n, F). A b(n, F) is a subalgebra of gl(n, F) but provided 

n ;::=: 2, is not an ideal of L. 

Example 2.2.4. Let lR be a set of real numbers. The Heisenberg algebra H3(JR) is a three

dimensional Lie algebras generated by elements x, y and z with Lie brackets 

[x,y] = z, [x,z] = 0, [y,z] = 0. 

It is explicitly realized as the space of 3 x 3 strictly upper-triangular matrices, with the Lie 

brackets given by the matrix commutator, 

x=(~ ~ ~),y=(~ ~ ~),z=(~ ~ ~) 
0 0 0 0 0 0 0 0 0 

We have [x, y] ~ ~ - yx ~ u ~ ~ ) , [z, x] ~ zx - xz ~ u ~ n 
and [y, z] = yz- zy = ( : : : ) . 

0 0 0 

The Lie algebra L is itself an ideal of L. At the other extreme, {0} is an ideal of L. We 

call these the trivial ideals of L. 
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An important example of an ideal which frequently is non-trivial is the centre of L, defined 

by 

Z(L) := {x E L: [x,y] = 0 for ally E L}. 

We know precisely when L = Z(L) as this is the case if and only if L is abelian. 

Remark 2.2.5. Let L be a Lie algebra. The Lie bracket is associative, that is, [x, [y, z]] 

[[x, y], z] for all x, y, z E L, if and only if for all a, b E L the commutator [a, b] lies in Z(L). 

2.3 Homomorphisms 

If L 1 and L 2 are Lie algebras over a filed F, then we say that a map :p : L 1 ----> L 2 is 

homomorphism if 

1. r.p is a linear map 

ii. r.p([x,y]) = [r.p(x),r.p(y)] for all x,y E L1. 

Notice that in this equation the first Lie bracket is taken in L1 and the second bracket is 

taken in L2. 

We say that r.p is an isomorphism if r.p is also bijective. 

An extremely important homomorphism is the adjoint homomorphism. If L is a Lie algebra, 

define 

ad: L----> gl(L) 

by (adx)(y) := [x,y] for all x,y E L. 

It follows from the bilinearity of the Lie bracket that the map ad x is linear for each x E L. 

For the same reason, the map x ~ ad x is itself linear. 

Definition 2.3.1. Let A be an algebra over a field lF. A derivation of A is an lF -linear map 

D : A ----> A such that 

D(ab) = aD(b) + D(a)b for all a, bE A. 
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Let Der A be the set of derivations of A. This set is closed under addition and scalar 

multiplication and contains the zero map. Hence Der A is a vector space of gl(A). Moreover, 

Der A is a Lie subalgebra of gl(A). 

2.4 Derived Algebras 

In order to find how many essentially different, that is, non-isomorphic, Lie algebras there 

are in order to classify them. The basic way is to understand the low-dimensions which we are 

going to do in this topic. Another reason to study the low-dimensional Lie algebras is that they 

often appear as subalgebras of the larger Lie algebras. We shall have a look at the Lie algebras 

of dimensions 1, 2 and 3. All the material in this topic is from [2]. 

First of all, we consider the abelian Lie Algebras. For n E N , there is an abelian Lie algebras 

L of dim n where for all x, y E £. We also know that if £1 and £2 are abelian algebras 

over the same field, then £ 1 ~ £2 if and only if they have the same dimension [2, Exercise 

1.11 ]. Hence the case of Abelian Lie algebras is solved completely. From now on, we focus 

only on non-abelian Lie algebras. We know that Lie algebras of different dimensions cannot be 

isomorphic. 

Before we continue to study the further results, we introduce the important algebra called 

derived algebras. Let I and J be ideals of a Lie algebra , we can define a product of ideals. 

Let 

[J, J] = Span{[x, y]l x E I, y E J}. 

Then [J,J] is an ideal of L [[2], 2.1]. When we take!= J = L, we obtain[£,£] denoted 

by L'. 

As above, L' is the derived algebra of L. Then 

L' = [£,£] Span{[x, y]l x E I, y E J} 

Span of the commutators of elements of L. 

Example 2.4.1. Let gl(n, F) be the vector space of all n x n matrices over F and sl(n, F) be 

the subspace of gl(n, F) consisting of all matrices of traces 0. Then 
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1. gl(n, F)' = [gl(n, F), gl(n, F)] = sl(n, F) 

ii. sl(n, F)' = [sl(n, F), sl(n, F)] = sl(n, F) 

2.5 Low-Dimensional Lie algebras 

2.5.1 Dimension 1 and Dimension 2 

Notice that for any one dimensional Lie Algebras is abelian. Now we consider the case 

of dimension 2. Suppose L is a non-abelian Low Algebras of dim 2 over the field lF. Claim 

that L' cannot be more than 1 - dim. Let { x, y} be a basis of L, then L' is spanned by [ x, y ]. 

And L' -=/=- 0 otherwise L would be abelian. Hence L' must have dimension 1. Now, take 

0 -=/=- x E L' and extend it in any way to a vector space basis { x, y} of L. Then [x, y] E L' 

and [ x, y] -=/=- 0 otherwise L would be abelian. So there is 0 -=/=- a E lF such that [ x, y] = ax. 

This scalar factor does not contribute anything to the structure of L, so if we replace y with 

y = a-1y, then [x,y] = x. Follow these ideas, we have the next Theorem 

Theorem 2.5.1. Let lF be a field. Up to isomorphism, there is a unique 2- dim non-abelian 

Lie Algebra over lF. This Lie algebra has a basis { x, y} such that its Lie bracket is described 

by [x, y] = x. The centre of this Lie algebra is 0. 

We have shown that if a 2-dim non-ableian Lie algebra exists, then it must have basis { x, y} 

with [x,y] = x. Note that the bracket[x,y] = x induces that [x,y] = 0 and [x,y] = -[y,x]. 

2.5.2 Dimension 3 

If L is a non-abelian 3 - dim Lie algebra over a field lF, then the derived algebra L' is 

non-zero. Hence dim L' = 1 or dim L' = 2 or dim L' = 3. And also the centre of L, Z ( L) , is 

a proper ideal of L (since L is a non-abelian so there are other elements than 0 ). We organize 

our search by relating L' to Z ( L). For the Lie algebras of dimension 3, there are 4 cases as 

following: 
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i. The Heisenberg Algebra 

n. Another Lie Algebras where dim L' = 1 

iii. Lie Algebras with a 2-dim Derived Algebra 

iv. Lie Algebras where L = L' 

Now, we study for each cases, 

i. The Heisenberg Algebra 

Assume that dim L' = 1 and L' ~ Z ( L). We show that there is a unique Lie algebra 

and it has a basis f, g, z where [f, g] = z = Z ( L) . This Lie algebra is known as the 

Heisenberg algebras. 

Take any J, g E L such that [J, g] -::/=- 0 as we assume that dim L' = 1, the commutator 

[f,g] spans L'. We also assume that L' ~ Z(L), so [f,g] commutes with all elements in 

L. Now let 

L := [J,g] 

To show that j,g,z are linearly independent, let a,f3,"f E F be such that af+f3g+"fz = 0. 

Consider [af + f3g + "fZ, g] = 0. Then a[f, g] + f3[g, g] + 1[z, g] = 0. Since [g, g] = 0 and 

[f,g] = z E Z(L). a[f,g] = 0. But [f,g]-# 0 so a= 0. Analogously. we can show that 

f3 = 0 and 1 = 0. Hence j, g, z form a basis of L. 

Example 2.5.2. As before, all other Lie brackets are already fixed. In this case, we observe 

that the Lie algebra of strictly upper triangular 3 x 3 matrices over lF has this form if one 

takes the basis, that is [e12,e23] = el3· Moreover L' S: Z(L). 

ii. Another Lie Algebras where dim L' = 1 

To consider these Lie algebras, we need to know the concept of the direct sum. Suppose 

L1 and L2 are Lie algebras. Let L = { (x1, x2) I Xi E Li} be the direct sum of their 

underlying vector spaces. Define 
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then L becomes a Lie algebra, the direct sum of £ 1 and £ 2 . As for vector space, we 

denote the direct sum of Lie algebras £1 and £2 by £1 = £1 EB £2. 

In this case, we consider the Lie algebra with dim L' = 1, and L' is not contained in the 

centre Z ( L) of L. We use the direct sum construction to give one such Lie algebra 

Namely, we use £ 1 = £ 1 EB £2, where £1 is 2- dim and a non-abelian (the one we found 

in Theorem 2.5.1) and £ 2 is 1- dim, that is L~ = 0 . Then 

Then L' is 1- dim. Moreover Z(L) = Z(L1) EB Z(£2) = 0 EB £2 = £2. Hence£' and 

Z(L) is 1- dim, so L' is not contained in Z(L) = £ 2. 

As the above idea, we have the next Theorem. 

Theorem 2.5.3. Let F be any field. There is a unique 3 - dim Lie algebra over F 

such that L' is 1 - dim and is not contained in Z ( L). This Lie algebra is the direct 

sum of the 2 - dim non-abelian Lie algebra with the 1 - dim Lie algebra. 

Proof. See [2, Theorem 3.2]. 0 

m. Lie Algebras with a 2-dim Derived Algebra 

Suppose that dimL = 3 and dimL' = 2. We shall see that, over C at least, there are 

infinitely many non-isomorphic such Lie algebras. 

Take a basis of L', say {y, z}, and extend it to a basis of L, say by x. To understand 

the Lie algebra L, we need to understand the structure of L' as a Lie algebras in its own 

right and how the linear map ad x : L ___... L act on L' . 

Lemma 2.5.4. (a) The derived algebra L' is abelian. 

(b) The linear map ad x : L' ___... L' is an isomorphism. 

Proof. See [2, Section 3.2.3]. 0 

IV. Lie Algebras where L' = L 
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Suppose L is a complex Lie algebra of dim 3 such that L' = L. We already know one 

example, namely, L = sl(2, C). We shall show that, up to isomorphism, it is the only 

one! For more detail, read [2, Section 3.2.4]. 
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Poisson Algebras and Poisson modules 

In this chapter, we shall determine definition of Poisson algebras, Poisson modules and Lie 

algebra g ( J) where J is a Poisson maximal ideal in order to classify the finite-dimensional 

simple Poisson modules. 

3.1 Definitions and Notations 

Throughout A will be a finitely generated commutative algebra over C. 

Defmition 3.1.1. A Poisson bracket on A is a Lie algebra bracket {-, -} satisfying the Leibniz 

rule 

{ ab, c} = a{b, c} + {a, c }b for all a, b, c E A. 

The pair (A, { -,-}) is called a Poisson algebra. 

Defmition 3.1.2. A subalgebra B of A is a Poisson subalgebra of A if {b, c} E B for all 

b,c E B. 

Defmition 3.1.3. An ideal I of a Poisson subalgebra A is a Poisson ideal if { i, a} E I for all 

i E I and all a E A. 

Defmition 3.1.4. If I is a Poisson ideal of A then A/ I is a Poisson algebra in the obvious 

way: {a+ I, b +I} = {a, b} +I. 
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Definition 3.1.5. A Poisson algebra A is said to be simple if its only Poisson ideals are ( 0) and 

A. 

Definition 3.1.6. Let P be an ideal of a Poisson algebra A. Then P is a Poisson prime ideal 

if P is both a prime ideal and a Poisson ideal. It follows from [?, 3.3.2] that this is equivalent 

to saying that P is a Poisson ideal and, for all Poisson ideals I, J ~ A, 

I J ~ P implies that I ~ P or J ~ P. 

Definition 3.1.7. By maximal Poisson ideal, we shall mean a Poisson ideal I of A such that if 

J is a Poisson ideal and I rJ;_ J then J = A. An ideal I of a Poisson algebra A is said to be 

a Poisson maximal ideal if I is a maximal ideal of A and also a Poisson ideal. For example, 

let A = q x, y] which is a Poisson algebra with the Poisson bracket { x, y} = 1. Then 0 is a 

maximal Poisson ideal but is not a Poisson maximal ideal. 

Definition 3.1.8. Let R be a commutative !(:>algebra and let hER. Let A be an R-algebra 

and suppose that h is not a zero divisor in A, and that A:= AjhA is a commutative !!:>algebra. 

Then there is a Poisson bracket {,} on A such that {a, b} = h-1 [a, b] for all a= a+ hA and 

b = b + hA. Following [1, Ill.5.4], we call A a quantization of the Poisson algebra A. 

There is more than one definition of Poisson module in the literature. We shall use the one 

introduced by D. R. Farkas [4]. 

Definition 3.1.9. Let A be a commutative Poisson algebra with Poisson bracket { -,-}. We shall 

say that an A -module 111 is a Poisson module if there is a bilinear form {-, -} M : A x M -----; M 

such that 

1. {a, a'm}M ={a, a'}m + a'{a, m}M ; 

ii. {aa', m}M =a{ a', m}M + a'{a, m}M ; 

iii. {{a, a'}, m} M = {a, {a', m} M} M - {a', {a, m} M} M; 

for all a, a' E A and all m E Jl.f. 

A submodule N of a Poisson module M is called a Poisson submodule if {a, n} M E N, for 

all a E A, n E N. 
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Definition 3.1.10. Let N be a left module over a nng R. Give any subset X C N, the 

annihilator of X is the set 

annR(X) = {r E R: rx = 0 for all x EX}, 

which is a left ideal of R. 

Lemma 3.1.11. Let A be a Poisson algebra and M be a Poisson A-module. 

i. The annihilator annA ( M) is a Poisson ideal of A; 

ii. if M is a simple Poisson module then annA(M) is a Poisson prime ideal of A; 

iii. if M is a finite-dimensional simple Poisson module then annA(M) is a Poisson maximal 

ideal of A. 

Proof. See[ 13, Lemma 4.1.1 ]. D 

Lemma 3.1.12. Let A= C[x1, x2, ... , xn] with a Poisson bracket { -,-}. Let V = Sp(x1, x2, ... , Xn) 

and let M be an A -module. Suppose that there is a bilinear form {-, -} M : V x M ----+ Jl.1. Ex-

tend this to a bilinear form { -,- }M: AxM----+ Musing Definition 3.1.9(ii) and {1, m}M = 0. 

If Definition 3.1.9(i) and (iii) hold, for all m E Jl.f, whenever a = Xi, and a' = Xj for 

1 ~ i < j ~ n then Definition 3.1.9(i) and (iii) hold for all a, a' E A. 

Proof. See[l3, Lemma 4.1.2]. D 

3.2 Lie algebra g ( J) where J 1s a Poisson maximal ideal 

Let I and J be Poisson ideals of a Poisson algebra A. Then I J is a Poisson ideal of 

A. Of course I and J are Lie subalgebra of A under { -,-}. If I~ J, then I is a Lie ideal 

of J and J I I is a Lie algebra. In particular, J I J 2 is a Lie algebra. 

Studying Poisson modules, one natural way to find Poisson modules is, for I and J 

are Poisson ideals of A with I ~ J, the factor J I I is a Poisson module with {a, j + I} J 1 I = 

{a, j} J + I. We can check that {-,-} J; I is well-defined, and all the axioms for a Poisson 
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module are hold. By above, J I I is also a Lie algebra. Every Poisson subalgebra of J I I is a 

Lie ideal, so if J I I is simple as a Lie algebra, then it is simple as a Poisson module. If A 

is affine and J is a Poisson maximal ideal, so that A = J + C, then the converse is also true 

because every Lie ideal of J I I is then a Poisson A -submodule. 

If I and J be Poisson ideals of a Poisson algebra A, then I I I J and J I I J are Poisson 

modules. 

The following is the main result of [9]. We use this result to tackle the later research problems. 

He proves the result giving a method to determine the finite-dimensional simple Poisson modules 

over any affine Poisson algebra (that is, a Poisson algebra that is finitely generated as a (:-algebra) 

If J is a Poisson maximal ideal of A, then J I J 2 has a Lie algebra structure. It is shown that 

there is a bijection, preserving dimension, between the isomorphism classes of finite-dimensional 

simple Poisson A -module and pairs ( J, M) when J is a Poisson maximal ideal of A and M) 

is an isomorphism classes of finite dimensional modules over the lie algebra J I J 2 • In this 

bijection, the simple Poisson modules in a class corresponding to the pair ( J, M) are annihilated 

by J. 

Let M be a Poisson module over a Poisson algebra A and let S ~ M. In the module sense, 

we denote the annihilator of S in A by annA ( S). And we denote 

PannA(S) ={a E A: {a,m}M = Ofor allm E S}. 

Lemma 3.2.1. Let A be an affine Poisson algebra and let M be a Poisson A -module. Let 

J = annA(M). 

1. J is a Poisson ideal of A. 

11. If M is simple, then J is a prime ideal of A. 

iii. If M is finite-dimensional and simple, then J is a maximal ideal of A. 

tv. C + J 2 ~ Pam1A(M) 

Proof. See [9, Lemma 3.1J. D 
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Remark 3.2.2. If A, M and J are as in 3.1 and I is a Poisson ideal such that I~ J 2 then, by 

3.l(iv), M becomes a Poisson A/I -module where (a+I)m =am and {a+ I, m}M ={a, m}M· 

Notation 3.2.3. Let A be an affine Poisson algebra. For a finite-dimensional simple Poisson 

A -module M, let M denote its isomorphism class. Similarly, for a Lie algebra g and a 

finite-dimensional simple g -module N, let N denote its isomorphism class. 

Theorem 3.2.4. Let A be an affine generated Poisson algebra. 

1. Let M be a finite-dimensional simple Poisson A -module and Jet J = annA ( .1\1). There 

is a simple module M* for the Lie algebra g ( J) such that M* = M, as <C -vector 

space, and [j + J2,m]M• = {j,m}M for all j E J and mE M. 

ii. Let J be a Poisson maximal ideal A of and Jet N be a finite-dimensional simple 

Q(J) -module. There exist a simple Poisson A -module N' and a Lie homomorphism 

f: A ----7 Q(J) such that N' = fN as a Lie module over A and annA(N') = J. 

111. For all finite-dimensional simple Poisson modules A1, M*' = M . For all Poisson 

maximal ideals J of A and all finite-dimensional simple g ( J) -modules N, N *' = N. 

Jv. (iv) The procedure in (i) and (ii) establish a bijection r from the set of isomorphism 

classes of finite-dimensional simple Poisson module over A to the set of pairs ( J, N) , 
where J is a Poisson maximal ideal of A and N is a finite-dimensional simple g ( J) -

module, given by r(M) = (annA(M),M*). 

Proof. See[9, Theorem 1]. D 
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Finite-dimensional simple Poisson 

Modules 

In this chapter, we classify the finite-dimensional simple Poisson modules over a Poisson algebra 

A. 

4.1 Poisson Algebra A 

In this section, we consider the Poisson algebra generated by three generators x, y, and z with 

three relations, say A. 

Let S be the «>algebra generated by x, y, z, q and q-1 subject to the relations 

xy- qyx 

yz- qzy 

zx- qxz 

(q-l)(x+y+z), 

(q-l)(x+y+z). 

( q - 1) ( x + y + z) and 

xq = qx, yq = qy, zq = qz, qq-1 = 1 = q-1q. 

Then q is a central element of S. Let 

A:= Sj(q- 1)S ~ C[x, y, z], 
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which is a commutative polynomial algebra. The induced Poisson bracket on A is such that 

Similarly, we obtain 

{x,y} q~ 1 [x,y] = q~ 1 (xy-yx) 

q~l (qyx- yx + (q- l)(x + y + z)) 

yx+x+y+z. 

{y,z} = zy + x + y + z, {z,x} = xz + x + y + z. 

Hence, these are the Poisson blacket of A 

{x,y} 

{y,z} 

{z,x} 

yx + x+y + z, 

zy+x+y+ z, 

xz + x+y+ z. 

(4.5) 

(4.6) 

(4.7) 

In the next lemma, we find the Poisson maximal ideals of A for this Poisson bracket. First 

of all, let J be a Poisson maximal ideal of A. Since Ais a commutative polynomial ring over 

C, by Theorem 2.1.2, J = (x- a,y- b,z- c) for suitable a, b, c E C. 

Lemma 4.1.1. In the above Poisson algebra A, there are only two Poisson maximal ideals of A. 

They are: 

.h xA+yA+zA, 

h (x + 3)A + (y + 3)A + (z + 3)A 

Proof. Let J = (x- a)A + (y- b)A + (z- c)A be a Poisson maximal ideal of A, for all 

a, b, c E C. Since J is a Poisson ideal, { x, J} <:;;; J, {y, J} <:;;; J, and { z, J} <:;;; J. Observe that 

J ~ {x.y-b}={x,y}-{x,b}={x,y}=yx+x+y+z, 

J ~ {y, z- c} = {y, z}- {y, c} = {y, z} = zy + x + y + z, 

J ~ {z,x-c}={z,x}-{z,c}={z,x}=xz+x+y+z. 

27 

(4.8) 

(4.9) 

( 4.1 0) 



By the above three equations, we have 

It induces that 

ab-ba 

ab- ac 

be- ac 

ab+a+b+c 

bc+a+b+c 

ac+a+b+c 

0 i.e b=O 

0 I.e a=O 

0 i.e c=O 

There are two cases to be considered. 

I. Case 1. b = 0. Consider 

0, 

0, 

0. 

or 

or 

or 

a= c, 

b = c, 

a= b. 

(4.11) 

(4.12) 

(4.13) 

By the equation ( 4.11), we have a = -c. Then Substitute this in the equation( 4.13 ), it 

must give c = 0. Hence it induces that a = 0. 

ii. Case 2. b -1- 0 and a = c. 

The equation ( 4.11) gives ab + 2a + b 0, and 

the equation (4.13) gives a2 + 2a + b 0. 

These give 0 = a2 - ab =a( a- b). Thus a= 0 or a= b. If c =a= 0, then it is forced 

by the equations (4.11), (4.12) and (4.13) that b = 0. 

Hence for both cases, it can be concluded that there are two possible solutions: 

I. a= b = c = 0, 

ii. a= b = c, where a -1- 0, b -1- 0 and c -1- 0. 

If a= b = c = 0 then we have J1 = xA + yA + zA. If a= b = c, where a -1- 0, b -1- 0 and 

c -1- 0 and we have a2 + 3a = 0. This implies that a= 0 or a= -3. But a -1- 0, then we have 

a= -3. Thus we have J2 = (x + 3)A + (y + 3)A + (z + 3)A. Therefore that result holds. D 
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We shall present the concepts of the proof for the next two sections as they need more 

accuracy to be made in the way. 

4.2 Finite-dimensional simple Poisson module over Q ( J1) 

The Sketch proof to the results 4.2 is in the following steps. 

i. Consider the Lie algebra Q ( J1) = J1 / J?, where h = xA + yA + zA. 

ii. The Lie algebra has dimension 3 and its bracket becomes 

[x, y] = x + y + z, [y, z] = x + y + z, [z, x] = x + y + z. 

iii. Consider the derived algebra Q(J1)' = [Q(Jl), Q(Jl)] of Q(J1). We obtain that Q(Jl)' is 

generated by x + y + z and it has dimension 1. 

iv. It is routine to check that x+y+z is in the centre of Q(h). 

v. By all the properties i-iv and theorem in Low dimension, we conclude that Q(J1) is the 

Heisenberg algebra . 

vi. Then we use the result proved in [6, Corollary 1.3.13] that every finite-dimensional simple 

Q(JI) -module N is one-dimensional and annihilated by Q(Jl)' = [Q(JI), Q(J1 )]. 

vii. Therefore, by [9, Theorem 4], there is a unique finite-dimensional simple Poisson A

modules for each dimension. 

4.3 Finite-dimensional simple Poisson module over g ( J 2) 

The Sketch proof to the results 4.3 is in the following steps. 

i. Consider the Lie algebra Q(h) = J2/ fJ. , where J2 = (x + 3)A + (y + 3)A + (z + 3)A. 

ii. To simplify these, we shall replace u = x + 3, v = y + 3 and w = z + 3. Then 

h = uA + vA + wA 
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iii. The bracket of Lie algebra Q ( J2) becomes 

[u, v] = w- 2u- 2v, [v, w] = u- 2v- 2w, [w, u] = v- 2u- 2w . 

iv. Consider the derived algebra Q(J~) = [Q(h),Q(J2)] of Q(J2), we obtain Q(J~) = Q(J2). 

v. Show that { u, v, w} is the linearly independent set. Then Q ( J2 ) has dimension 3. 

vi. By theorem in Low dimension, Q(J2) ~ sb. 

v11. It is well known result that, see [7] or [8] that for each d ~ 1, Q(J2) ~ sl2 has a unique 

d-dimensional simple Poisson module annihilated by h. 

viii. Again, by [9, Theorem 4], every finite-dimensional simple Poisson A-modules IS one

dimensional. 
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