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UNAAYDAHIOINGY (Abstract)

In this research, we study a Poisson algebra A with three generators but having three
relations different from the relations of 7" in [13]. We classify the finite-dimensional simple
Poisson modules over A by considering its Lie structure J/J?, where J is a Poisson maximal
ideal of A. We show that there are only two Poisson maximal ideals J; and Jy. For the case
J1 /J12 , the finite dimension Poisson modules annihilated by J; is one-dimensional. For the
case Jo/ J22, A is 1-homogeneous, that is, there is one d-dimensional simple Poisson module

for each positive integer d.
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Introduction

In this research, we classify finite dimensional simple Poisson modules for some Poisson
algebra by using the different method of Sasom’s thesis [13]. In Sasom’s thesis [13], we
have seen the classification of the finite-dimensional simple Poisson Tj-modules where T is a
C-algebra with three generators U, V, 1V subject to the relations

UV -qVU = (1-¢@&W
VW —gWV = ¢ '0-&)U

WU - qgUW = ¢ '(1-¢)V.

If g # 1 then we shall change the generators to X, Y, Z and these three relations become
XY —gYX =2 YZ—-qZY =X, ZX-qXZ=Y, (1.1)
here X = £5U, Y =25V, and Z = L, W
where = qy s = qﬁ' , an = 1——? .

Sasom [13] studied Poisson algebra related to T, and modified the generators so that the

relations become
vy —qur=(q— 1)z, yz—qzy=(q¢— 1)z, zz—quz=(¢— 1)y,

where ¢ # 1 but when ¢ = 1 it is a commutative polynomial algebra. Replacing g by an
indeterminate. Thus we have seen the algebra T generated by z, y, 2, ¢, t~! subject to the

relations

zy—tyx=(t—1)z, yz—tzy=({t— 1)z, zz—tez=(—-1)y,



1

and

st=tr, yt=ty, zt=tz, t#1=1=t"¢

In this algebra, ¢ is a central non-unit non-zero-divisor such that T'/(¢t — 1)1" is commutative

and isomorphic to A := C[z,y, z]. This induces a Poisson bracket {—,—} on A such that,

(@B} =(t-1)"a,A).
for «, 8 € T. This implies the Poisson brackets,

{:c,y}zy.z‘-{-z, {yyz}:Zy+l', {Z,.’E}ZSL‘Z-{-y.
Thus there are five Poisson maximal ideals J;, 1 < i <5, of A for the Poisson bracket:

J1 = zA4yA+2A,

Jo = (z+1D)A+(y+1)A+(z+1)A,

Jy =

(

J3 = (z+1)A+(y—-1)A+ (2 -1)A4,
(z-1)A+(y+1)A+(2—1)A and
(

J = (x—-DA+(y-1DA+(z+ 1A

For d > 1, the Poisson algebra A has precisely one d-dimensional simple Poisson module

annihilated by each J;.

In our research, we use the same method of construction a Poisson algebra but different
method for classifying finite dimensional Poisson simple modules which were not as hard to find
as the finite dimensional simple modules over the deformation. If we change an indeterminate

z’s to X’s and so on and then write £ = (¢ — 1)X and so on then the relations should become

zy—yr = (g—Dyz+(g—1)z+(¢—y+(¢g— 1z
yz—zy = (g—Dzy+(q—-1z+(q—-Ly+(¢—1)z
tz—zx = (g—1l)zz+(g—1)z+(g—L)y+(¢—z.

If we treat ¢ like an indeterminate and factor out ¢ — 1 we get commutative polynomials and

10



this gives a Poisson bracket on C[z,y, z] with

{z.y}

{v.2} = zy+z+y+z,

{22}

yr+xr+y+z,

Il

zz+zr+y+z

There are two Poisson maximal ideals for this Poisson algebra as the following

Ji = 1A+ yA+ 2A,

Jo = (+3)A+(y+3)A+(z+3)A

We classify the Poisson simple modules by using the method in [9]. We find that there is one
of the Poisson maximal, the Lie algebra G(J;) is soluble so all its finite-dimensional simple
modules are 1-dimensional. The Lie algebra G(J) is isomorphic to sly. So we find that
there are infinitely many one-dimensional simple Poisson module related to J; and one finite-
dimensional simple Poisson module for each dimension related to J,. The material in Chapter 2
contains the preliminary standard material that is applied elsewhere. Chapter 3 is original. This
algebra studied in this research is suggested by D. A. Jordan and use the same method as his

paper [9] to classify finite-dimensional simple Poisson modules.

11



This chapter contains some of the background material that will be used throughout this thesis.
The main topics are algebras, Lie algebras, derived algebras, low-dimensional Lie algebras,
homomorphisms Poisson algebras and Poisson modules. For more basic knowledge, we can also

study in [1], [3], [10], [11] and [12].

2.1 Algebras

An algebra over a field F is a vector space A over F together with a bilinear map,
AXA— A (z,y)— zy.
We say that zy is the product of = and y.
The algebra A is said to be associative if
(zy)z =xz(yz) forall z,y,z2€c A

and unital if there is an element 14 in A such that 142 = z = 14 for all non-zero elements

of A.

Definition 2.1.1. A bilinear map or bilinear form is a map from cartesian product of vector

spaces to some other vector space. Let a: U x V — W be a bilinear map. Then « satisfies

12



. alr+y,2)=az,z)+ay,z) forall 2,y €U,z €V,
ii. oz, y+2)=a(z,y)+a(r,z2) forall reU,y,z€V,
iii. a(ez,y) = ca(zr,y)=a(z,cy) forall ce F andall z€ U,y eV.

Theorem 2.1.2 (Hilbert’s Nullstellensatz Theorem). Let R = F[z1, T2, ...,y be the polynomial

ring over F in the n{>0) indeterminates x1,Z,...,2Zn. The ideal M is a maximal ideal if
and only if there exist aj,ay,...,a, such that M = (z1 — a1,Ta — @2,...,Tn — Qp).
Proof. See [14, Theorem 14.6]. O

2.2 Lie Algebras

Let F be a field. A Lie algebra over F' is an F-vector space L, together with a bilinear map,
the Lie bracket

LxL—L, (-’an)'—’[‘rvy]

such that

(L1) [z,z)=0 forall z € L

(L2) (Jacobi Identity) [z, [y, 2]] + [y, [z, z]] + [2.[z.y]] = O for all z,y,z € L.

We call [r,y] a commutator of = and y.
As the Lie bracket [—,—] is linear, we have
0=z +yz+yl =y + [y,
This implies, [z,y] = —[y,z] for all z,y,z € L.

Example 2.2.1. Any vector space V endowed with the identically zero Lie bracket becomes a
Lie algebra. Such Lie algebras are called abelian. Any one-dimensional Lie algebra over a field

is abelian, by the antisymmetry of the Lie bracket.

13



Definition 2.2.2. Let L be a Lie algebra. We define a Lie subalgebra of L to be a vector space
K C L such that

[z,y] € K, forall z,y € K.

We also define an ideal of a Lie algebra L to be a subspace I of L such that

[z,y] €I, forallzel.ye L.

An ideal is always a subalgebra. On the other hand, a subalgebra need not be an ideal of L.

Example 2.2.3. Let gl(n, F') be the vector space of all n x n matrices over F' and b(n, F') be
an upper triangular matrices in gl(n, F'). A b(n,F) is a subalgebra of gl(n, F') but provided

n > 2, is not an ideal of L.

Example 2.2.4. Let R be a set of real numbers. The Heisenberg algebra H3(R) is a three-

dimensional Lie algebras generated by elements x,y and z with Lie brackets
[Ia y} =z, [Ia Z] =0, [ya Z] =0.

It is explicitly realized as the space of 3 x 3 strictly upper-triangular matrices, with the Lie

brackets given by the matrix commutator,

010 0 00 0 01
z=10 0 0 },y=]1 0 0 1 |,2=] 0 0 O
0 00 0 00 0 00
0 01 000
We have [z,y]=zy~yz=| 0 0 0O s [zx]l=zz—z2=| 0 0 0O
0 00 000
0 00
and [y,z]=yz—2y=| 0 0 0
0 0 0

The Lie algebra L is itself an ideal of L. At the other extreme, {0} is an ideal of L. We
call these the trivial ideals of L.

14
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An important example of an ideal which frequently is non-trivial is the centre of L, defined
by
Z(L):={z € L:[z,y) =0 for all y € L}.
We know precisely when L = Z(L) as this is the case if and only if L is abelian.

Remark 2.2.5. Let L be a Lie algebra. The Lie bracket is associative, that is, [z,[y,z]] =

[z,y], 2] for all z,y,z € L, if and only if for all a,b € L the commutator [a,b] lies in Z(L).

2.3 Homomorphisms

If L; and Lo are Lie algebras over a filed F', then we say that a map ¢ : L1 — Lo is
homomorphism if
i. ¢ is a linear map
ii. ¢([z,y]) = [p(z), (y)] for all z,y € L.

Notice that in this equation the first Lie bracket is taken in L, and the second bracket is

taken in Ls.
We say that ¢ is an isomorphism if ¢ is also bijective.

An extremely important homomorphism is the adjoint homomorphism. If L is a Lie algebra,
define

ad : L — gl(L)
by (adz)(y) := [z,y] forall z,y € L.

It follows from the bilinearity of the Lie bracket that the map ad z is linear for each z € L.

For the same reason, the map z — ad z is itself linear.

Definition 2.3.1. Let A be an algebra over a field F. A derivation of A is an F-linear map
D : A — A such that

D(ab) = aD(b) + D(a)b for all a,b € A.

15
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Let Der A be the set of derivations of A. This set is closed under addition and scalar
multiplication and contains the zero map. Hence Der A is a vector space of gl(A). Moreover,

Der A is a Lie subalgebra of gl(A).

2.4 Derived Algebras

In order to find how many essentially different, that is, non-isomorphic, Lie algebras there
are in order to classify them. The basic way is to understand the low-dimensions which we are
going to do in this topic. Another reason to study the low-dimensional Lie algebras is that they
often appear as subalgebras of the larger Lie algebras. We shall have a look at the Lie algebras

of dimensions 1,2 and 3. All the material in this topic is from [2].

First of all, we consider the abelian Lie Algebras. For n € N , there is an abelian Lie algebras
L of dimn where for all z,y € L. We also know that if L; and Lo are abelian algebras
over the same field, then L; = Ly if and only if they have the same dimension [2, Exercise
1.11]. Hence the case of Abelian Lie algebras is solved completely. From now on, we focus
only on non-abelian Lie algebras. We know that Lie algebras of different dimensions cannot be

isomorphic.

Before we continue to study the further results, we introduce the important algebra called
derived algebras. Let I and J be ideals of a Lie algebra , we can define a product of ideals.
Let

[I,J] = Span{[z,y] |z € I,y € J}.

Then (I, J] is an ideal of L [{2], 2.1]. When we take] = J = L , we obtain (L, L] denoted
by L.
As above, L’ is the derived algebra of L. Then

L’:[L,L] = Span{[z,y] |z €l.ye J}

= Span of the commutators of elements of L.

Example 2.4.1. Let gl(n, F') be the vector space of all n x n matrices over F' and sl(n, F') be

the subspace of gl(n, F') consisting of all matrices of traces 0. Then

16



i. glin,F) =[gl(n, F),gl(n,F)] = sl(n, F)

ii. sl(n,F) =lsl(n,F),sl(n,F)] = sl(n,F)

2.5 Low-Dimensional Lie algebras

2.5.1 Dimension 1 and Dimension 2

Notice that for any one dimensional Lie Algebras is abelian. Now we consider the case
of dimension 2. Suppose L is a non-abelian Low Algebras of dim2 over the field F. Claim
that L' cannot be more thanl — dim. Let {x,y} be a basis of L, then L' is spanned by [z,y].
And L' # 0 otherwise L would be abelian. Hence L' must have dimension 1. Now, take
0+ z € L' and extend it in any way to a vector space basis {z,7} of L. Then [z,§] € L’
and [z,7] # 0 otherwise L would be abelian. So there is 0 # « € F such that [z,7] = ax.
This scalar factor does not contribute anything to the structure of L, so if we replace § with

y = o1, then [z,§] = z. Follow these ideas, we have the next Theorem

Theorem 2.5.1. Let F be a field. Up to isomorphism, there is a unique 2 — dim non-abelian
Lie Algebra over F. This Lie algebra has a basis {x,y} such that its Lie bracket is described
by [z,y] = z. The centre of this Lie algebra is 0.

We have shown that if a 2-dim non-ablejan Lie algebra exists, then it must have basis {z,y}

with [z,y] = z. Note that the bracket|z,y] = x induces that [z,y] =0 and [z,y] = ~[y, z].

2.5.2 Dimension 3

If L is a non-abelian 3 — dim Lie algebra over a field T, then the derived algebra L’ is
non-zero. Hence dimL' =1 or dim L' =2 or dim L' = 3. And also the centre of L, Z(L), is
a proper ideal of L (since L is a non-abelian so there are other elements than 0 ). We organize
our search by relating L' to Z(L). For the Lie algebras of dimension 3, there are 4 cases as

following:

17
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i

i

—

i

—

i

. The Heisenberg Algebra
. Another Lie Algebras where dim L'=1
. Lie Algebras with a 2-dim Derived Algebra

. Lie Algebras where L = L

Now, we study for each cases,

i

ii.

. The Heisenberg Algebra
Assume that dimL’ =1 and L' C Z(L). We show that there is a unique Lie algebra
and it has a basis f,g,z where [f,g] = z = Z(L). This Lie algebra is known as the
Heisenberg algebras.

Take any f,g € L such that [f,g] # 0 as we assume that dim L' =1, the commutator
[f,g] spans L'. We also assume that L' € Z(L), so [f,g] commutes with all elements in

L. Now let

L:={f.g]
To show that f, g, z are linearly independent, let «a, 3,y € F be such that af+3g+~vz = 0.
Consider [af + 89+ 7z,9) = 0. Then a(f, g] + B9, 9] + [z, 9] = 0. Since [g,9] =0 and
[f,9]l =2z¢€ Z(L), a[f,g] =0. But [f,g] # 0 so a = 0. Analogously, we can show that

B8 =0 and v = 0. Hence f,g,z form a basis of L.

Example 2.5.2. As before, all other Lie brackets are already fixed. In this case, we observe
that the Lie algebra of strictly upper triangular 3 x 3 matrices over F has this form if one

takes the basis, that is [e12, e23] = e13. Moreover L' cC Z(L).

Another Lie Algebras where dim L' = 1

To consider these Lie algebras, we need to know the concept of the direct sum. Suppose
L, and L, are Lie algebras. Let L = {(z1,22) | z; € L;} be the direct sum of their

underlying vector spaces. Define

[(l’l, 1.2)7 (yhy‘Z)] = ([1,'1, y1]7 [1’2, y2])7

18
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iii.

iv.

then L becomes a Lie algebra, the direct sum of L; and L. As for vector space, we

denote the direct sum of Lie algebras L; and Lo by L; = L, & Lo.

. . . . . . .
In this case, we consider the Lie algebra with dim L= 1, and L is not contained in the

centre Z(L) of L. We use the direct sum construction to give one such Lie algebra

Namely, we use Ly = L, & Lo, where L; is 2—dim and a non-abelian (the one we found

in Theorem 2.5.1) and Ly is 1 — dim, that is L/2 =0 . Then
L'=LoL,=L&0=1L,

Then L' is 1 — dim. Moreover Z(L) = Z(L1) ® Z(L3) = 0@® Ly = Ly. HenceL' and
Z(L) is 1 —dim, so L is not contained in Z(L) = Lo.

As the above idea, we have the next Theorem.

Theorem 2.5.3. Let F be any field. There is a unique 3 — dim Lie algebra over F
such that L' is 1 — dim and is not contained in Z(L). This Lie algebra is the direct

sum of the 2 —dim non-abelian Lie algebra with the 1 — dim Lie algebra.
Proof. See [2, Theorem 3.2]. O

Lie Algebras with a 2-dim Derived Algebra

Suppose that dim L = 3 and dim L' = 2. We shall see that, over C at least, there are

infinitely many non-isomorphic such Lie algebras.

Take a basis of L', say {y, 2}, and extend it to a basis of L, say by z. To understand
the Lie algebra L, we need to understand the structure of L' as a Lie algebras in its own

right and how the linear map adz : L — L act on L'.

Lemma 2.5.4. (a) The derived algebra L' is abelian.

(b) The linear map adz : L' — L' is an isomorphism.
Proof. See [2, Section 3.2.3]. O

Lie Algebras where L' = L
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Suppose L is a complex Lie algebra of dim3 such that L' = L. We already know one
example, namely, L = sl(2,C). We shall show that, up to isomorphism, it is the only

one! For more detail, read [2, Section 3.2.4].
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Poisson Algebras and Poisson modules

In this chapter, we shall determine definition of Poisson algebras, Poisson modules and Lie
algebra G(J) where J is a Poisson maximal ideal in order to classify the finite~dimensional

simple Poisson modules.

3.1 Definitions and Notations

Throughout A will be a finitely generated commutative algebra over C.

Definition 3.1.1. A Poisson bracketon A is a Lie algebra bracket {—, —} satisfying the Leibniz

rule

{ab,c} = a{b.c} + {a,c}b for all a,b,c € A.

The pair (A, {—,—}) is called a Poisson algebra.

Definition 3.1.2. A subalgebra B of A is a Poisson subalgebra of A if {b,c} € B for all
b,ce B.

Definition 3.1.3. An ideal I of a Poisson subalgebra A is a Poisson ideal if {i,a} € I for all
t €l and all a € A.

Definition 3.1.4. If I is a Poisson ideal of A then A/J is a Poisson algebra in the obvious
way: {a+ I,b+ I} = {a,b} +1I.
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Definition 3.1.5. A Poisson algebra A is said to be simple if its only Poisson ideals are (0) and

A.

Definition 3.1.6. Let P be an ideal of a Poisson algebra A. Then P is a Poisson prime ideal
if P is both a prime ideal and a Poisson ideal. It follows from [?, 3.3.2] that this is equivalent

to saying that P is a Poisson ideal and, for all Poisson ideals I, J C A,
IJC P impliesthat JTC Por JCP.

Definition 3.1.7. By maximal Poisson ideal, we shall mean a Poisson ideal 7 of A such that if
J is a Poisson ideal and I ¢ J then J = A. An ideal I of a Poisson algebra A is said to be
a Poisson maximal ideal if I is a maximal ideal of A and also a Poisson ideal. For example,
let A= C[z,y] which is a Poisson algebra with the Poisson bracket {z,y} = 1. Then 0 is a

maximal Poisson ideal but is not a Poisson maximal ideal.

Definition 3.1.8. Let R be a commutative C-algebra and let h € R. Let A be an R—algebra
and suppose that h is not a zero divisor in A, and that A := A/hA is a commutative C-algebra.
Then there is a Poisson bracket {,} on A such that {@,5} = h—1[a,b] for all @ =a+ hA and
b=0b+ hA. Following [1, 111.5.4], we call A a quantization of the Poisson algebra A.

There is more than one definition of Poisson module in the literature. We shall use the one

introduced by D. R. Farkas [4].

Definition 3.1.9. Let A be a commutative Poisson algebra with Poisson bracket {—, —}. We shall
say that an A-module M is a Poisson module if there is a bilinear form {—, —}p : AXM — M

such that

i. {a,a'm}ry ={a,d'}m+a'{a,m}r ;
ii. {ad,m}y =af{d ,m}ry+a{a,m}r ;

iii. {{a,a'},m}n ={a,{a’, minm}nr —{d,{a,m}rr}as;
for all a,a’ € A and all m € M.

A submodule NV of a Poisson module M is called a Poisson submodule if {a,n}p € N, for

all ae A, ne N.
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Definition 3.1.10. Let N be a left module over a ring R. Give any subset X C N, the
annihilator of X is the set

amng(X)={re€ R:rz =0 for all z € X},
which is a left ideal of R.

Lemma 3.1.11. Let A be a Poisson algebra and M be a Poisson A—module.

i. The annihilator ann4 (M) is a Poisson ideal of A;
ii. if M is a simple Poisson module then ann4(M) is a Poisson prime ideal of A;

iii. if M is a finite-dimensional simple Poisson module then anns(M) is a Poisson maximal

ideal of A.

Proof. See[13, Lemma 4.1.1]. O

Lemma 3.1.12. Let A = C[zy, z2,...,Z,] with a Poisson bracket {—, —}. Let V = Sp(zy,z2,...,2y)
and let M be an A-module. Suppose that there is a bilinear form {—,—}ar: VXM — M. Ex-
tend this to a bilinear form {—, —}as : AXM — M using Definition 3.1.9(ii) and {1,m}y = 0.
If Definition 3.1.9(1) and (iii) hold, for all m € M, whenever a = z;, and o’ = z; for

1 <4 < j < n then Definition 3.1.9(i) and (iii) hold for all a, a' € A.

Proof. See[13, Lemma 4.1.2]. O

3.2 Lie algebra G(J) where J is a Poisson maximal ideal

Let I and J be Poisson ideals of a Poisson algebra A. Then I.J is a Poisson ideal of
A. Of course I and J are Lie subalgebra of A under {—,—}. If I C J, then I is a Lie ideal
of J and J/I is a Lie algebra. In particular, .J/J? is a Lie algebra.

Studying Poisson modules, one natural way to find Poisson modules is, for I and J
are Poisson ideals of A with I C J, the factor J/I is a Poisson module with {a,j + I} =

{a,j}; + I. We can check that {—,—};/; is well-defined, and all the axioms for a Poisson



module are hold. By above, J/I is also a Lie algebra. Every Poisson subalgebra of J/I is a
Lie ideal, so if J/I is simple as a Lie algebra, then it is simple as a Poisson module. If A
is affine and J is a Poisson maximal ideal, so that A = J + C, then the converse is also true

because every Lie ideal of J/I is then a Poisson A-submodule.

If I and J be Poisson ideals of a Poisson algebra A, then I/IJ and J/IJ are Poisson

modules.

The following is the main result of [9]. We use this result to tackle the later research problems.
He proves the result giving a method to determine the finite-dimensional simple Poisson modules

over any affine Poisson algebra (that is, a Poisson algebra that is finitely generated as a C-algebra)

If J is a Poisson maximal ideal of A, then J/J? has a Lie algebra structure. It is shown that
there is a bijection, preserving dimension, between the isomorphism classes of finite-dimensional
simple Poisson A-module and pairs (J, M ) when J is a Poisson maximal ideal of A and M )
is an isomorphism classes of finite dimensional modules over the lie algebra J/J2. In this
bijection, the simple Poisson modules in a class corresponding to the pair (J, M ) are annihilated

by J.

Let M be a Poisson module over a Poisson algebra A and let S C M. In the module sense,

we denote the annihilator of S in A by annu(S). And we denote
Panny(S) = {a € A : {a, m}y = Ofor allm € S}.
Lemma 3.2.1. Let A be an affine Poisson algebra and let M be a Poisson A-module. Let
J =anns(M).
i. J is a Poisson ideal of A.
ii. If M is simple, then J is a prime ideal of A.
iii. If M is finite-dimensional and simple, then .J is a maximal ideal of A.

iv. C+ J% C Panny(M)

Proof. See [9, Lemma 3.1]. O

24



(1

Remark 3.2.2. IfA, M and J are as in 3.1 and [ is a Poisson ideal such that I C J? then, by

3.1(iv), M becomes a Poisson A/T -module where (a+I)m = am and {a+I,m}r = {a,m}r.

Notation 3.2.3. Let A be an affine Poisson algebra. For a finite-dimensional simple Poisson
A-module M, let M denote its isomorphism class. Similarly, for a Lie algebra G and a

finite-dimensional simple G-module NV, let N denote its isomorphism class.

Theorem 3.2.4. Let A be an affine generated Poisson algebra.

i. Let M be a finite-dimensional simple Poisson A-module and let J = anns(M). There
is a simple module M* for the Lie algebra G(J) such that M* = M, as C-vector
space, and [j + J?, m]p+ = {j,m}n forall j€J and me M.

fi. Let J be a Poisson maximal ideal A of and let N be a finite-dimensional simple
G(J) -module. There exist a simple Poisson A -module N' and a Lie homomorphism

f:A—G(J) such that N' ='N as a Lie module over A and annga(N') = J.

iii, For all finite-dimensional simple Poisson modules M, M * — M . For all Poisson

maximal ideals J of A and all finite-dimensional simple G(J)-modules N, N¥ = N.

iv. (iv) The procedure in (i} and (ii) establish a bijection I" from the set of isomorphism
classes of finite-dimensional simple Poisson module overA to the set of pairs (J, N ),

where J is a Poisson maximal ideal of A and N is a finite-dimensional simple G(J)-

module, given by T(M) = (anna (M), M*).

Proof. See[9, Theorem 1]. O
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Finite-dimensional simple Poisson

Modules

In this chapter, we classify the finite-dimensional simple Poisson modules over a Poisson algebra

A.

4.1 Poisson Algebra A

In this section, we consider the Poisson algebra generated by three generators z,y, and z with

three relations, say A.

1

Let S be the C-algebra generated by =, vy, 2, ¢ and ¢~ subject to the relations

zy—qyr = (¢—-1)(z+y+2), (4.1)
yz—qzy = (q—1)(z+y+2). (4.2)
ze—qrz = (g—-1)(z+y+2) and (4.3)
Tq=qz, Yq=qy, zq=qz, q¢ ' =1=q'q. (4.4)

Then ¢ is a central element of S. Let

A:=5/(¢g—1)S ~Clz,y,?z],
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which is a commutative polynomial algebra. The induced Poisson bracket on A is such that

{z.y} = Hloyl=5(zy—y2)

= ai—l(qyrn—yfl?-i-(tl—'l)(-'l7‘|‘?J‘|‘Z))

£~}

= yr+zx+y+=z
Similarly, we obtain

{y,2}=zy+z+y+2 {zz}=zz+x+y+2

Hence, these are the Poisson blacket of A

{z,y} = yz+z+y+z 4.5)
{v,2} = 2y+zt+y+z (4.6)
{z,2} = zz+z+y+z 4.7

In the next lemma, we find the Poisson maximal ideals of A for this Poisson bracket. First
of all, let J be a Poisson maximal ideal of A. Since Ais a commutative polynomial ring over

C, by Theorem 2.1.2, J = (z — a,y — b, 2 — ¢) for suitable a, b, c € C.

Lemma 4.1.1. In the above Poisson algebra A, there are only two Poisson maximal ideals of A.

They are:

J1 = A+ yA+ zZA,

Jo = (z+3)A+(y+3)A+(2+3)A

Proof. Let J = (z —a)A + (y — b)A + (2 — ¢)A be a Poisson maximal ideal of A, for all
a,b,c € C. Since J is a Poisson ideal, {z,J} C J, {y,J} C J, and {z,J} C J. Observe that

J 2 {zy-b={zy}—{z,b}={z, g} =yz+a+y+z (4.8)
J 2 {y,z—c}z{y,z}—{y,c}:{y,z}:zy+z+y+z, 4.9)
J 2 {z,z—ct={z,z}—{2,c}={z2}=z2+2+y+ 2. (4.10)
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By the above three equations, we have

ab+a+b+c = 0, (4.11)
be+a+b+c = 0, (4.12)
ac+a+b+c = 0. (4.13)
It induces that
ab—ba = 0 ie b=0 or a=c,
ab—ac = 0 ie a=0 or b=c,
bc—ac = 0 e ¢c=0 or a=b

There are two cases to be considered.

i. Case 1. b= 0. Consider

By the equation (4.11), we have a = —c. Then Substitute this in the equation(4.13), it

must give ¢ = 0. Hence it induces that a = 0.

ii. Case 2. b#0 and a=c.

The equation (4.11) gives ab+2a+b = 0, and

the equation (4.13) gives a?4+2a+b = 0.

These give 0 =a? —ab=a(a—b). Thus a =0 or a = b. If ¢ = a = 0, then it is forced

by the equations (4.11), (4.12) and (4.13) that b = 0.
Hence for both cases, it can be concluded that there are two possible solutions:

LhLa=b=c=0,
ii. a=b=c, where a #0,b#0 and c¢#0.
If a=b=c=0 then we have J; = 1A+ yA+2A. f a=b=c, where a #0, b# 0 and

¢ # 0 and we have a? + 3a = 0. This implies that @ = 0 or a = —3. But a # 0, then we have

a = —3. Thus we have J, = (@ + 3)A + (y + 3)A + (2 + 3) A. Therefore that result holds. [
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We shall present the concepts of the proof for the next two sections as they need more

accuracy to be made in the way.

4.2 Finite-dimensional simple Poisson module over G(J;)

The Sketch proof to the results 4.2 is in the following steps.

i. Consider the Lie algebra G(J1) = J1/J?, where J; = zA + yA + 2A.

ii. The Lie algebra has dimension 3 and its bracket becomes
[z, y]=z+y+2 [y2l=z+y+z [z,z7]=z+y+z.

iii. Consider the derived algebra G(J1)' = [G(J1),G(J1)] of G(J1). We obtain that G(J;)  is

generated by = + y + z and it has dimension 1.
iv. It is routine to check that z + y + z is in the centre of Q(Jl).

v. By all the properties i-iv and theorem in Low dimension, we conclude that G(J;) is the

Heisenberg algebra.

vi. Then we use the result proved in [6, Corollary 1.3.13] that every finite-dimensional simple

G(J1)-module N is one-dimensional and annihilated by G(J1)' = [G(J1), G(J1)]-

vii. Therefore, by [9, Theorem 4], there is a unique finite-dimensional simple Poisson A-

modules for each dimension.

4.3 Finite-dimensional simple Poisson module over G(.Js)
The Sketch proof to the results 4.3 is in the following steps.

i. Consider the Lie algebra G(J2) = Jo/J2 , where Jo = (z + 3)A + (y + 3)A + (2 + 3)A.

ii. To simplify these, we shall replace u = ¢+ 3, v = y+ 3 and w = z + 3. Then
Js =uA+vA+wA
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iv.

Vi.

vil.

viii.

The bracket of Lie algebra G(J2) becomes

[u,v] =w —2u — 20, [v,w] =u—2v—2w, [w,u]=v—-2u—2w.

Consider the derived algebra G(J,) = [G(J2),G(J2)] of G(Ja), we obtain G(Jy) = G(Ja).
Show that {u,v,w} is the linearly independent set. Then G(J2) has dimension 3.
By theorem in Low dimension, G(J2) = slo.

It is well known result that, see [7] or [8] that for each d > 1, G(J2) = sly has a unique

d-dimensional simple Poisson module annihilated by Js.

Again, by [9, Theorem 4], every finite-dimensional simple Poisson A-modules is one-

dimensional.
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