รายงานการวิจัย เรื่อง

การศึกษาระดับความต้องการโปรตีนในอาหารของกบบูลฟรอก Study on Dietary Protein Requirement for Bull Frog (Rana catesbeiana) นายเฉลียว บุญมั่น นายชำนาญ แก้วมณี นายวิชาญ แก้วเลื่อน คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี

นายเข็มชาติ จิวประสาท สถานีประมงจังหวัดแม่ฮ่องสอน

ได้รับทุนอุดหนุนการวิจัยจากสำนักงานคณะกรรมการวิจัยแห่งชาติ

กิตติกรรมประกาศ

รายงานวิจัยฉบับนี้สำเร็จลุล่วงได้โดยการสนับนุนทุนในการทำวิจัยจากสำนักงานคณะ กรรมการวิจัยแห่งชาติ ซึ่งเป็นทุนอุดหนุนการวิจัยประเภททั่วไป ประจำปี 2538 จำนวนเงิน 54,000 บาท (ห้าหมื่นสี่พันบาทถ้วน) ทำให้คณะผู้ทำการวิจัยได้มีโอกาสในการศึกษาค้าคว้าหา ความรู้ที่เป็นประโยชน์ต่อการพัฒนาวิชาการทางด้านการเกษตร อันจะเป็นการช่วยให้เกิดการ พัฒนาการศึกษา วิจัย ค้นคว้าเพิ่มเติมเพื่อให้สามารถนำมาใช้ประโยชน์ได้อย่างหมาะสมและมีประ สิทธิภาพในอนาคต คณะผู้วิจัยใคร่ขอขอบพระคุณมา ณ โอกาสนี้

คณะผู้วิจัย

พฤษกาคม 2542

ชื่อโครงการ

การศึกษาระดับความต้องการโปรตีนในอาหารของกบบูลฟรอก Study on Dietary Protein Requirement for Bull Frog (Rana catesbeiana)

ชื่ผู้วิะ นายเฉถียว บุญมั่น ${ }^{1}$, นายชำนาญ แก้วมณี ${ }^{1}$, นายวิชาญ แก้วเลื่อน ${ }^{1}$ และนายเข็มชาติ จิวประสาท ${ }^{2}$
ได้รับทุนอุดหนุนประเภท ทั่วไป ประจำปี 2538 จำนวนเงิน 54,000 บาท ระยะเวลาทำการวิจัย 8 เดือน ตั้งแต่เดือน กันยายน 2538 เมษายน 2539

บทคัดย่อ
การทดลองเลี่ยงกบบูลฟรอกขนาดน้ำหนักเฉลี่ย 20 กรัม ด้วขอาหาหที่มีรงับโโรตีน ร้อยละ $25,30,35,40$ และ 45 อาหารแต่ละสูตรมีพลังงานเท่ากัน ทำการเลี้ยงในบ่อคอนกรีตกลม ขนาคเส้นผ่าศูนย์กลาง 1.2 เมตร เป็นเวลา 12 สัปดาห์ ผลการทดลองพบว่าน้ำหนักเฉลี่ยที่เพิ่มขึ้น กบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ 45 มีค่าน้อยที่สุดและแตกต่าง $(\mathrm{P}<0.05)$ จากกลุ่มที่ได้รับ อาหารที่มีระดับโปรตึนร้อยละ 30 และ 40 แต่กบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ $25,30,35$ และ 40 ไม่มีความแตกต่างกัน $(\mathrm{P}>0.05)$ และแนวโน้มของการเพิ่มขึ้นของน้ำหนักฉฉลี่ยนั้นแสดงให้ เห็นว่ากบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ 40 มีค่าสูงที่สุด อัตราแลกเนื้อต่ำที่สุด และประ สิทธิกาพการใช้โปรตึนดีที่สุด กบทุกลุ่มมีอัตรารอดไม่แตกต่างกัน $(\mathrm{P}>0.05)$ กบที่ได้รับอาหาร โปรตีนร้อยละ 45 มีระดับโปรตีนในตัวมากที่สุดและแตกต่างจากกลุ่มอื่น $(\mathrm{P}<0.05)$ ระดับไขมันใน ตัวกบพบว่ามีค่าลดลงเมื่อระดับโปรตีนในอาหารเพิ่มขึ้น $(\mathrm{P}<0.05)$ ส่วนปริมาณเถ้าในตัวกบนั้นมีค่า ไม่แตกต่างกัน $(\mathrm{P}>0.05)$ ไนกบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ $25,30,35$ และ 40 แต่กบที่ ได้รับอาหารที่มีระดันโปรตีนร้อยละ 45 มีปริมาณมากที่สุคและแตกต่างจากทุกลุ่ม ($\mathrm{P}<0.05$)

Abstract

Dietary protein requirement of bullfrog (Rana catesbeiana) was determined. Baby frogs with average weight of 20 grams were fed on five iso-caloric diets of graded levels of crude protein content ($25 \%, 30 \%, 35 \%, 40 \%$ and 45% crude protein), for 12 weeks in ponds with 1.2 meters diameter. It was found that the average weight gain of frogs fed the 45% crude protein diet was significantly lower than those of frogs fed the 30% and 40% crude protein levels ($\mathrm{P}<0.05$), but was not different from those of other treatments ($\mathrm{P}>0.05$). The average weight gains of treatments with $25 \%, 30 \%, 35 \%$, and 40% crude protein were insignificantly different ($\mathrm{P}>0.05$). However, the 40% crude protein treatment gave the best weight gain, the best feed efficiency. The surviving rates of frogs fed the different dietary treatments were insignificantly different ($\mathrm{P}>0.05$). The body protein content of frogs fed the 45% crude protein was significantly higher

than those of other treatments ($\mathrm{P}<0.05$). The body fat contents of frogs significantly decreased as their dietary protein increased ($\mathrm{P}<0.05$). The body ash contents of frogs fed the 45% crude protein diet was significantly higher than the others frogs ($\mathrm{P}<0.05$) which were insignificantly different $(P>0.05)$ in these treatments
' คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชฐานี โทรศัพท์ 045-288374-5
2 สถานีประมงจังหวัดแม่ฮ่องสอน
สารบัญหน้า
1
บทนำ
2
วัตถุประสงค์ของโครงการ
2
อุปกรณ์และวิธีการทดลอง 7
ผลการทดลอง
11
11
สรุปและวิจารณ์ผลการทดลอง 13

สารบัญตาราง

> เรื่อง หน้า

ตารางที่ 1 แสคงผลการวิเคราะห์องค์ประกอบทางโกชนะ ของวัตถุคิบอาหารสัตว์......... 4 ตารางที่ 2 แสดงส่วนประกอบของวัตถุดิบอาหารสัตว์ในอาหารทดลองสูตรต่าง $ๆ ~ 5$ ตารางที่ 3 แสดงผลการวิคราะห์องค์ประกอบทางโกชนของอาหารทคลองสูตรต่าง $q \ldots . .5$

ตารางที่ 5 แสดงประสิทธิกาพการใช้โปรตีน (PER) อัตราแลกเนื้อ (FCR) และอัตรารอด ของกบทดลอง10
ตารางที่ 6 องค์ประกอบทางเคมีของกบทดลอง 11

สารบัญภาพ

เรื่อง

 หน้ารูปที่ 1 กราฟแสดงน้ำหนักเพิ่มเฉลี่ย (กรัม/ตัว)ของกบทดลอง

การศึกษาระดับความต้องการโปรตีนในอาหารของกบบูลฟรอก

Study on Dietary Protein Requirement for Bull Frog (Rana catesbeiana)
บทนำ
การลี้ยงกบในประเทศไทยได้มีการกระทำกันมาช้านานแล้ว และได้รับความสนใจ จากเกษตรกรเพิ่มขื้นเรื่อยมาเป็นลำดับจนกระทั่งในปัจุุบันได้รับการพัฒนาเข้าสู่ระบบรุรกิจ ทั้งนี้เพราะว่ากบเป็นสินค้าที่นิยมบริโกคทั้งในเละต่างประเทศ ตลาคต่างประเทศที่สำคัญที่ ประเทศไทยส่งกบออกไปจำหน่ายได้เก่ย่องกง,สิงคโปร์ สหรัธอเมริกา การลี้ยงกบจึงนับ ได้ว่าเป็นอาชีพที่มีโอกาสสูงมากที่จะช่วยเพิ่มรายได้ไห้กับเกษตรกรอีกทางหนึ่ง โดยเฉพาะใน แหล่งที่เคยมีกบธรรมชาติอาศัยอยู่อย่างชุกชุมช่น แม่ฮ่องสอน อุบลราชธานี อุดรธานี สิงห์ทุรี อ่างทอง นครนายก ปทุมธานี อย่างไรก็ตามการเีี้ยงกบเพื่อการค้าเกษตรกรควรจะได้คำนึงกึง ปัจจัยหลักที่สำคัญไดด้แก่ พันธุ์ อาหาร การจัดการที่เหมาะสมเพื่อนำไปสู่กรรลี้หงที่ประสบ ผลสำเร็จ โดยเฉพาะอย่างยิ่งปัจจัยด้านอาหารซึ่งนับได้ว่าเ็็นปัจจัยการผลิตที่มีต้นทุนสูงสุด แม้ว่าการเลี้ยงกบจะทำกันมานานแล้วและได้รับการทดลองศึกษาโดย เมมและคณะ (2520) ได้ ทำการศึกษานกี่ยวกับการเจริญเติบโตของกบพื้นเมือง แต่การศึกษาค้นคววาในวลาต่อมากี่ยวกับ อาหารกบขังไม่แพร่หลายเท่าที่ควร ทั้งนี้อาจเนื่องจากว่าการเลี้ยงกบในอดีดทำกันในปริมาณ เพียงเล็กน้อยสามารถที่จะหาอาหารที่มีอยู่ในธรรมชาติให้กบกินอย่างเพียงพอ เช่น ไส้เดือน แมลง ปลาเป็ดสด หนอน เมื่อมีการเลี้ยงกบมากขึ้นการให้อาหารธรรมชาติจึงมีปัญูหามากชื้น เนื่องจากปริมาณไม่เพียงพอ จึงมีการพัฒนาอาหารสำเร็จรูปเพื่อสะดวกต่อการใช้ อาหารที่ใช้ เลี้ยงในปัจจุบันได้แก่ อาหารสำเร็จสำหรับเลี้ยงปลาดุก ซึ่งโดยความเป็นจริงแล้วอาหารดัง กล่าวได้รับการศึกษา วิจัย เพื่อให้มีคุณค่าทงโกชนาการที่หมมาสสต่อการเริิญเติโโตของ ปลาดุก การนำอาหารปลลคุกมาใช้สำหรับเลี้ยงกบจึงอาจทำให้คุณค่าทางโกชนการของ อาหารไม่เหมาะสมต่อการเจิญเติมโตสูงสุดของกบ ดังนั้นเพื่อเป็นการส่งเสริมและพัฒนา อาหารสำหรับเลี้ยใกบให้มีคุณค่าทางโกชนาการที่เหมาะสม จึงควรได้มีการศึกษาวิจัยเกี่ยวกับ ความด้องการโปรตีนที่เหมาะสมในอาหารกบ อันเป็นแนวทางหนึ่งที่จะช่วยให้กรรเลี้ยงกบ ประสบผลสำเร็จมากยิ่งขึ้น

วัตถุประสงค์ของโครงการ
1.เพื่อศึกษาระดับความต้องการโปรตีนที่เหมาะสมในอาหารกบบูลฟรอก
2.พื่อศึกษาสมรรกนะด้านการเดริญเติบโต อัตราเลกเนื้อ อัตรารอดของกบที่ได้รับอาหาร ทคลอง
3 เพื่อศึกษบาประสิทธิกาพในการใช้โปรตีนในอาหาร ระดับโปรตีนและไขมันในตัวกบ 4.เพื่อศึกษาการเปลี่ยนแปลงองค์ประกอบทางเคมีบางประการของเนื้อกบที่ได้รับอาหาร ทคลอง
ประโยชน์ที่คาดว่าจะได้รับ
การศึกษาครั่งนี้เป็นการศึกษาในเชิงปริมาณเพื่อให้ทราบข้อมูลเกี่ยวกับระดับโปรตีนที่ เหมาะสมในอาหารสำหรับเลี้ขงกบบูลฟรอก ทราบผลของการตอบสนองด้านการเงริญเติบโต ประสิทธิกาพในการใช้โปรตีนในอาหารระดับโปรตีนและไขมันในตัวกบ อัตราแลกเนื้อ อัตรา รอด ต่ออาหารทดลองที่ใช้เลี้ยงกบตลอคจนองค์ประกอบทางเคมีบางประการของเนื้อกบ ซึ่ง ข้อมูลที่ได้ในการศึกษาครั้งนี้จะนำไปใช้เป็นฐานข้อมูลในการพัฒนาอาหารทคลองเพื่อใช้ใน การศึกษาความต้องการโกชนะตัวอื่นของกบต่อไป นอกจากนี้ผลการศึกษาสามารถนำไป ประยุกต์ใช้ในการผลิตอาหารกบโดยกษตรกรโดยตรงบนพื้นฐานของระดับโปรตีนในอาหาร ที่เหมาะสม เนื่องจากกปปรตนนเป็นโภชนะที่สำคัญที่สุดเละเป็นตัวกำหนดคุณกาพและต้นทุน ของอาหารที่สำคัญที่สุดตัวหนึ่ง

อุปกรณ์และวิธีการทดลอง
อุปกรณ์

1. ลูกกบพันธุ์มูจฟรอก(Rana catesbeiana) ขนาดน้ำหนักเฉลี่ยตัวละ 20 กรัม จำนวน 375 ตัว
2. บ่อซีเมนต์ทรงกระบอกเส้้ผ่านศูนย์กลาง 120 เซนติเมตรจำนวน 15 บ่อ
3. วัสดุดุยตรประะกทวัตถุดิบอาหารสัตว์ได้แก่ปลาป่น กากถั่วเหลือง ปลายข้าว รำละะอียด น้ำมันตับปลา น้ำมันพืช วิตามิน และแร่กาตุ
4. วัสดุที่จำเป็น ได้แก่ ตาข่าย ไนล่อน ไม้ไผ่ ปูนซีเมนต์ ทราย หินกรวด ถาดอาหาร กล่องโฟ ม ถุงพลาสติก สารเคมี ๆลฯ
5. เครื่องบควัตกุดิบอาหารสัตว์ เคร่่องผุสมอาหารสัตว์เละเครื่องอัดเม็ดอาหารสัตว์น้ำ
6. เครื่องชั่งอาหารสัตว์และเครื่องชั่งตัวอย่างในห้องปฏิบัติการ

อุปกรณ์และคครื่องมือวิทยาศาสตร์ที่เกี่ยวข้องสำหรับการวเคราะห์ในห้องปฏิบิติการ

วิธีการทดลอง

การวางแผนการทดลอง จัดการทดลองแบบสุ่มตลอด (Completely random design) การทดลองแบ่งเป็น 5 ทรีทเมนต์ ๆ ละ 3 ซ้ำ โดยมีปัจจัยที่ต้องศึกษาระดับโปรตีนในอาหาร ทดลองระดับต่าง ๆ กัน ดังนี้

ทรีทเมนต์ที่ 1 อาหารทดลองที่มีระดับโปรตีนร้อยละ 25
ทรีทเมนต์ที่ 2 อาหารทดลองที่มีระดับโปรตีนร้อยละ 30
ทรีทเมนต์ที่ 3 อาหารทคลองที่มีระดับโปรตีนร้อยละ 35
ทรีทเมนต์ที่ 4 อาหารทคลองที่มีระดับโปรตีนร้อยละ 40
ทรีทเมนต์ที่ 5 อาหารทดลองที่มีระดับโปรตีนร้อยละ 45

การเตรียมสัตว์ทดลอง นำกบพ่อแม่พันธุ์ที่มีความพร้อมใส่ในบ่อผสมพันธุ์ ขนาค 8 ตารางเมตร ที่มีน้ำบ่อประมาณ 15 เซนติเมตร จำนวน 4 คู่ ใส่ผักบุ้งกระจายให้ทั่วบ่อเพื่อ เป็นวัสดุให้ไข่ติด และให้อากาศในบ่อเพาะพันธุ์เพื่อเพิ่มออกซิเจนในน้ำ เมื่อกบวางไข่เสร็จ เรียบร้อยแล้วทำการจับกบพ่อแม่พันธุ์ออกจากบ่อ เพิ่มระดับน้ำในบ่อให้ลึกประมาณ 30 เซนติเมตร ไข่ที่ถูกผสมแล้วจะฟักออกเป็นตัวกายใน 3 วัน หลังจากที่ถุงอาหารของลูกอ๊อดยุบ ลงแล้วลูกอ๊อดจว่ายน้ำไปเกาะตามผนังบ่อและเริ่มกินอาหารได้ ในระยะแรกจะให้ไรแดง และไช่ตุ๋น ประมาณ 2 สัปดาห์ หลังจากนั้นเริ่มให้อาหารเม็ด (อาหารปลาดุกเล็กพิเศษ และ อาหารลูกกบ) ทำการถ่ายน้ำอย่างสม่ำสสมอเพื่อป้องกันไม่ให้น้ำเสียและช่วยกระตุ้นการเจริญ เติบโต ใส่ทุ่นลอยลงในบ่อ เช่น แผ่นโฟม ผักบุ้ง ลงในบ่อ เมื่อสังเกตพบว่าขาหลังและขาหน้า ของลูกกบเจริญดีและเริ่มที่จะขึ้นบก เพื่อให้ลูกกบได้ยึดเกาะหรือขึ้นพัก หลังจากที่ลูกอ๊อด เจริญเติบโตและพัฒนาเป็นกบที่สมบูรณ์แล้ว ทำการย้ายไปเลี้ยงในบ่ออนุบาลอัตราประมาณ 100 ตัวต่อตารางเมตร ให้อาหารปลาดุกเล็กวันละ 2 ครั้งในช่วงเช้าเละช่วงเย็นป่ระมาณร้อย ละ 2 ของน้ำหนักตัว เมื่อกบได้ขนาดที่ต้องการแล้ว ทำการคัดเลือกลูกกบจากการอนุบาลที่มี ขนาดน้ำหนักเฉลี่ยประมาณ 20 กรัม โส่ในบ่อทดลองเส้นผ่าศูนย์กลางขนาด 1.2 เมตร จำนวน 15 บ่อๆ ละ 25 ตัว ฝึกลูกกบให้ได้รับอาหารสูตรควบคุมเพื่อให้คุ้นเคยกับสภาพแวด ล้อม ให้อาหารวันละ 2 ครั้งเวลา 08.00 น.และ 16.00 น. เป็นเวลา 2 สัปดาห์ สุ่มตัวอย่างลูก กบที่คัดเลือกไว้ประมาณ 500 กรัม เพื่อนำไปวิเคราะห์หาองค์ประกอบทางเคมีบางประการของ ลูกกบได้แก่ ความชื้น โปรตีน ไขมัน เยื่อใย และเถ้า ด้วยวิธี oven drying, macro-kjeldahl, ether extraction, acid-alkali digestion และ muffle furnace combustion ตามลำดับ (A.O.A.C., 1990)

การเตรียมอาหารทดลอง นำวัตถุดิบอาหารสัตว์ที่จะใช้ประกอบในอาหารทดลองได้ แก่ ปลาป่น กากถั่วเหลือง ข้าวโพด ปลายข้าวและรำละเอียด ไปวิเคราะห์หาองค์ประกอบทาง

เคมีตามวิธีข้างต้น (A.O.A.C., 1990) ค่าไนโตรเจนฟรีแอกแทรกท์ (Nitrogen Free Extracted, $\mathrm{NFE})$ ได้จากการคำนวณ จากสูตร NFE $($ ร้อยละ $)=100-($ ร้อยละของโปรตีน + ร้อยละของ ไขมัน + ร้อยละของเยื่อใย + ร้อยละของเถ้า) ผลการวิเคราะห์ดังแสดงในตารางที่ 1 จากนั้นนำ ผลการวิเคราะห์ที่ไต้มาใซ้ในการคำนวณสร้างสูตรอาหารทดลองดังแสดงใน ตารางที่ 2 อาหารแต่ละสูตรมีระดับโปรตีนร้อยละ $25,30,35,40$ และ 45 ตามลำดับ แหล่งโปรตีนที่าใ้้ ในอาหารแต่ละสูตรกำหนคให้มาจากแหล่งเดียวกันเป็นหลัก เพื่อให้คุณภาพของโปรตีนใน อาหารให้ใกล้เคียงกั่นมากที่สุด ปรับระดับพลังงานในอาหารแต่ละสูตรให้เท่ากัน ที่ระดับ 395 กิโลแคลอรี/100 กรัม และนำอาหารทดลองสูตรต่างๆไปอัดเม็ด และทำการวิเคราะห์หาองค์ ประกอบทางเคมีของอาหารทคลองเช่นเดียวกับการหาในวัตถุดิบอาหารสัตว์ ผลการวิเคราะห์ อาหารทดลองแต่ละสูตรดังแสดงในตารางที่ 3

ตารางที่ 1 แสดงผลการวิเคราะห์องค์ประกอบทางโภชนะ ของวัตถุดิบอาหารสัตว์

วัตถุดิบ	\%ดวามชื้น	\%โปรตีน	\%ไขมัน	\%เยื่อใย	\%เถ้า	\%NFE
ปลาป่น	6.55	67.81	9.48	0.00	12.33	3.83
ข้าวโพด	9.48	8.26	3.75	2.69	1.22	74.60
กากถั่วเหลือง	9.91	42.44	4.75	6.10	6.12	30.68
ปลาขข้าว	9.36	7.53	0.85	0.46	1.25	80.55
รำละเคียด	8.00	12.68	20.29	8.11	9.72	41.20

ตารางที่ 2 แสดงส่วนประกอบของวัตถุคิบอาหารสัตว์ในอาหารทดลองสูตรต่าง ๆ

วัตถุดิบ	โปรตีน 25	โปรตีน 30	โปรตีน 35	โปรตีน 40	โปรตีน 45
ปลาป่น	18.6	22.25	25.9	29.54	33.18
กากถั่วเหลือง	17.4	25.55	33.7	41.85	50
ข้าวโพด	30	25.5	21	16.5	12
ปลายข้าว	22	16.5	11	5.5	0
รำละเอียด	8.61	6.45	4.3	2.15	0
น้ำมันปลา	1.39	1.05	0.7	0.35	0
น้ำมันพืช	0	0.7	1.4	2.11	2.82
วิตามิน	1	1	1	1	1
แร่ซาตุ	1	1	1	1	1
	100	100	100	100	100

Proximate Composition

โปรตีน	25	30	35	40	45
ไขมัน	7	7.45	7.9	8.35	8.8
03	0.78	0.78	0.78	0.78	0.78
06	1.93	2.15	2.37	2.59	2.81
Energy (Kcal)	395	395	395	395	395

ตารางที่ 3 แสดงผลการวิเคราะห์องค์ประกอบทางโภชนของอาหารทคลองสูตรต่าง ๆ

อาหารทดลอง	\% ความชื้น	\% น้าหนักเห้ง	\% โปรตีน	\% ไขมัน	\% เยื่อใย	\% เถ้า	\% NFE
โปรตีน25 \%	6.62	93.38	25.26	6.42	2.24	5.19	54.27
โปรตีน 30%	7.86	92.14	29.65	6.75	2.58	5.87	47.29
โปรตีน 35%	7.15	92.85	35.69	7.58	2.59	6.64	40.35
โปรตีน 40%	8.21	91.79	40.02	7.87	2.95	7.34	33.61
โปรตีน 45%	7.54	92.46	44.58	7.93	3.6	7.87	28.48

การจัดการและการเก็บข้อมูล กบในแต่ละบ่อจัดให้ได้รับอาหารแต่ละสูตรอย่างเต็มที่ วันละ 2 ครั้ง เวลา 8.00 น.และ 16.00 น.ทุกวันยกเว้นวันทำการชั่งวัดน้ำหนัก ทำการบันทึก น้ำหนักอาหารก่อนการให้และรวบรวมอาหารที่เหลือก่อนการให้อาหารในมื้อถัดไปทุกครั้ง ทำ การชั่งวัดน้ำหนักรวมในแต่ละบ่อทุกสัปดาห์เพื่อตรวจสอบอัตราการเจริญเติบโตและอัตรา รอด การเปลี่ยนถ่ายน้ำระหว่างการเลี้ยงทำทุกวันก่อนการให้อาหารในมื้อเช้า เพื่อเป็นการทำ ความสะอาดบ่อทำการเลี้ยงเป็นเวลา 12 สัปดาห์ เก็บตัวอย่างกบทดลองบ่อละ 500 กรัม เพื่อ นำไปวิเคราะห์หาองค์ประกอบทางเคมีบางประการของกบทดลองได้แก่ ความชื้น โปรตีน ไขมัน เยื่อใย และเถ้า ตามวิธีเช่นเดียวกับการวิเคราะห์ในลูกกบ การศึกษาอิทธิพลของอาหาร การวัดการตอบสนองของกบทดลองต่ออาหารแต่ละสูตร พิจารณาจากค่าต่าง ๆ ดังนี้

1. น้ำหนักเมื่อสิ้นสุดการทดลอง (Weight Gain, WG)

น้ำหนักเพิ่ม $=$ น้ำหนักเฉลี่ยของกบหลังการทดลอง - น้ำหนักเฉลี่ยของกบก่อน การทดลอง
2. อัตราการเปลี่ยนอาหารเป็นเนื้อ (Feed Conversion Ratio, FCR)
$\mathrm{FCR}=$ น้ำหนักอาหารแห้งที่กบกิน / น้ำหนักกบที่เพิ่มขึ้น
3. ประสิทธิภาพ ปปรตีนในอาหาร (Protein Efficiency Ratio, PER)

PER $=$ (น้ำหนักกบที่เพิ่ม / น้ำหนักแห่งโปรตีนที่กิน)
4. อัตรารอด (ร้อยละ) $=$ (จำนวนกบที่เหลือ / จำนวนกบที่เริ่มการทดลอง) $\times 100$

การวิเคราะห์ข้อมูลทางสถิติ •ทำการวิเคราะห์ ข้อมูลโดยวิธีวิเคราะห์วาเรียนซ์ (analysis of variance) และเปรียบเทียบความแตกต่างทางสถิติของค่าเฉลี่ยโดยวิธี Duncan's new Multiple Range Test (จรัญ, 2534)

สถานที่ทำการวิจัย
หมวดประมง สำนักงานไรฝึกทดลองและห้องปฏิบัติการกลาง คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี

ผลการศึกษาอัตราการเจริญูเติบโตของกบทดลองที่ได้รับอาหารทดลองที่มีระดับ โปรตีนแตกต่างกัน ได้แก่ ร้อยละ $25,30,35,40$ และ 45 ตามลำดับ เป็นเวลา 12 สัปดาห์ เพื่อ ศึกษาอิทธิพลของอาหารต่ออัตราการเจริญเติบโต อัตราแลกเนื้อ อัตรารอด ประสิทธิกาพใน การใช้โปรตีนในอาหาร ระดับโปรตีนและไขมันในตัวกบที่ได้รับอาหารทดลอง ปรากฏผลดัง นี้

อัตราการเจริญเติบโต
ผลการศึกษาอัตราการเจริญเติบโตของกบที่ได้รับอาหารทดลองที่มีระดับโปรตีนร้อย ละ $25,30,35,40$ และ 45 ซึ่งรายงานในรูปของน้ำหนักเพิ่ม ดังแสดงในตารางที่ 4 และรูปที่ 1 และสามารถอธิบาะผลการทดลองได้ดังต่อไปนี้

สัปดาห์ที่ 2 กบทคลองที่ได้รับอาหารที่มีโปรตีนแตกต่างกัน มีน้ำหนั่กเฉลี่ยเพิ่ม ขึ้น $7.47,6.22,4.78,7.03$ และ 2.27 กรัม ตามลำดับ ซึ่งน้ำหนักเฉลี่ยที่เพิ่มขึ้นของกบที่ได้รับ อาหารที่มีระดับโปรตีนร้อยละ $25,30,35$ และ 40 ไม่มีความแตกต่างกัน ($\mathrm{P}>0.05$) ส่วนกบที่ ได้รับอาหารที่มีระดับโปรตีนร้อยละ 45 มีน้ำหนักเฉลี่ยเพิ่มขึ้นแตกต่าง $(\mathrm{P}<0.05)$ จากทุกกลุ่ม แต่ไม่แตกต่างจากกบที่ได้รับโปรตีนที่ระดับร้อยละ 35 ($\mathrm{P}>0.05$)

สัปดาห์ที่ 4 กบทดลองมีน้ำหนักเฉลี่ยเพิ่มขึ้น $14.28,13.26,9.11,14.86$ และ 7.60 กรัม ตามลำดับ กบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ 25,30 เเละ 45 มีน้ำหนักเฉลี่ยเพิ่ม ขึ้นไม่แตกต่างกัน $(\mathrm{P}>0.05)$ แต่แตกต่างจากกบที่ได้รับอาหารที่มีระดับโปรตีน 45 ร้อยละ (P <0.05) และกบที่ไต้รับอาหารที่มีระดับโปรตีนร้อยละ 25,30 และ 35 มีน้ำหนักเฉลี่ยเพิ่มขึ้นไม่ แตกต่างกัน $(\mathrm{P}>0.05)$ ขณะที่กบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ 45 มีน้ำหนักเพิ่มเฉลี่ย แตกต่าง $(\mathrm{P}<0.05)$ กับกลุ่มอื่นๆ ยกเว้นกบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ $35(\mathrm{P}>0.05)$

สัปดาห์ที่ 6 กบทดลองมีน้ำหนัก!ฉลี่ยเพิ่มขึ้น $22.79,23.34,21.28,23.43$ และ 12.13 กรัม ตามลำตับ กบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ 45 มีน้ำหนักเฉลี่ยเพิ่มขึ้นน้อย กว่ากลุ่มอื่น ๆ $(\mathrm{P}<0.05)$ ส่วนกบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ $25,30,35$ และ 40 มี น้ำหนักเฉลี่ยเพิ่มขึ้นไม่แตกต่างกัน $(\mathrm{P}>0.05)$

สัปดาห์ที่ 8 กบทดลองมีน้ำหนักเฉลี่ยเพิ่มขึ้น $28.79,31.76,30.17,31.30$ และ 17.01 กรัม ตามลำคับ กบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ 45 มีน้ำหนักเฉลี่ยเพิ่มขึ้นน้อย กว่ากลุ่มอื่น ๆ $(\mathrm{P} 40.05)$ ส่วนกบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ $25,30,35$ และ 40 มี น้ำหนักเฉลี่ยเพิ่มขึ้นไม่แตกต่างกัน $(\mathrm{P}>0.05)$

สัปดาห์ที่ 10 กบทดลองมีน้ำหนักเฉลี่ยเพิ่มขึ้น $38.26,40.65,39.20,44.93$ และ 25.50 กรัม ตามลำดับ กบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ 45 มีน้ำหนักเฉลี่ยเพิ่มขึ้นน้อย

กว่ากลุ่มอื่น ๆ ($\mathrm{P}<0.05$) ส่วนกบที่ได้รับอาหารที่มีระดับโปรตีนร้อยกะ $25,30,35$ และ 40 มี น้ำหนักเฉลี่ยเพิ่มขึ้นไม่แตกต่างกัน ($\mathrm{P}>0.05$)

สัปดาห์ที่ 12 กบทดลองมีน้ำหนักเฉลี่ยเพิ่มขึ้น $47.88,49.89,47.87,53.81$ และ 35.89 กรัม ตามลำคับ กบที่ไต้รับอาหารที่มีระดับโปรตีนร้อยละ $25,30,35$ และ 40 มีน้ำหนัก เฉลี่ยเพิ่มขึ้นไม่แตกต่างกัน($\mathrm{P}>0.05$) ส่วนกบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ 45 มีน้ำ หนักเฉลี่ยเพิ่มขึ้นน้อยกว่าทุกกลุ่มแต่ไม่มีความแตกต่างกัน $(\mathrm{P}>0.05)$ กับกบที่ได้รับอาหารที่มี ระดับโปรตีนร้อยละ 25 และ 35

ตารางที่ 4 แสดงน้ำหนักเพิ่ม(กรัมต่อตัว)ของกบทดลองที่ไค้รับอาหารทคลองที่มีระดับ โปรตีนต่าง ๆ กัน

อาหารทดลอง	สัปดาห์ที่ 2	สัปคาห์ที่ 4	สัปดาห์ที่ 6	สัปดาห์ที่ 8	สัปดาห์ที่ 10	สัปดาห์ที่ 12
โปรตีน 25%	7.47 ± 1.62^{2}	$14.28 \pm 0.97^{\text {ab }}$	22.79 ± 3.82^{2}	28.79 ± 4.04^{2}	$38.26 \pm 5.17^{\circ}$	47.88 ± 5.07^{26}
โปรตีน 30%	6.22 ± 1.03^{3}	13.26 ± 3.20^{26}	23.34 ± 4.40^{2}	$31.76 \pm 4.93^{\text {8 }}$	40.65 ± 6.35^{2}	49.89 ± 5.20^{2}
โปรตีน 35%	$4.78 \pm 2.07{ }^{\text {ab }}$	$9.11 \pm 1.99^{\text {bc }}$	$21.28 \pm 4.40^{\text {a }}$	$30.17 \pm 4.78^{\circ}$	39.21 ± 6.72^{2}	$47.88 \pm 8.71^{\text {ab }}$
โปรตีน 40%	7.03 ± 0.98^{2}	14.86 ± 3.68^{2}	$23.43 \pm 5.47^{\text {a }}$	31.30 ± 5.74^{1}	$43.93 \pm 6.51{ }^{2}$	53.81 ± 7.66^{2}
โปรตีน 45%	2.27 ± 1.99^{6}	$7.60 \pm 3.62^{\text {c }}$	$12.13 \pm 4.59^{\text {b }}$	$17.01 \pm 5.58^{\text {b }}$	$25.50 \pm 5.14^{\text {b }}$	35.89 ± 6.06^{6}
	รอด อัตรารอ	องกบทดลอ	ได้รับอาหารต	ง ๆ กันทั้ง	สูตร เมื่อสิ้น	ชุดการ
ทคลองพบ ในกบทดลอ	อัตรารอดคิค ทุกกลุ่มไม่มี แลกเนื้อ อัตราเ	ป็นร้อยละ 98 วามแตกต่างกั เนื้อของกบท	$\begin{aligned} & 7,100,96,1 \\ & (P>0.05) \end{aligned}$ องพบว่ากบ	และ 100 ได้รับอาหาร	มลำดับ ซึ่งอั แต่ละกลุ่มมีค่	รารอด เท่ากับ
3.23, 2.81 , อัตราแลกเ 35 และ 40 ต่างกันเช่น	.93, 2.16 แล ตีที่สุด เต่ และกบที่ได้รั น $(P>0.05)$	2.74 ตามลำ แตกต่าง $(\mathrm{P}>0$ อาหารที่มีระคั	ซึ่งกบที่ได้ร้ 5) จากกบที่ โปรตีนร้อย	อาหารที่มีระ รับอาหารที่มี $25,30,35$	โปรตีนร้อย ปรตีนร้อยละ ะ 45 ก็ไม่มีค	45 มี 25,30 มแตก

รูปที่ 1 แสดงการเพิ่มขึ้นของน้ำหนักเฉลี่ย(กรัม/ตัว)ของกบทดลอง

ประสิทธิภาพการใช้โปรตีนในอาหาร

ประสิทธิกาพโปรตีนในอาหารทดลองแต่ละระดับโปรตีนมีค่าเท่ากับ 31.22 ,
$36.38,34.72,46.45$ และ 36.82 ตามลำคับ ซึ่งอาหารที่มีระดับโปรตีนร้อยละ 40 มีประสิทธิ กาพการใช้โปรตีนสูงที่สุค และมีค่าไม่แตกต่าง ($\mathrm{P}>0.05$) จากกบที่ไไต้รับอาหารที่มีโปรตีน ร้อยละ 30 และ 45 สำหรับกบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ $25,30,35$ และ 45 นั้น ประสิทธิกาพการใพ้โปรตีนกีไม่มีความแตกต่างกันเช่นกัน ($\mathrm{P}>0.05$)

ตารางที่ 5 แศดงประสิทธิกาพการใช้โปรตีน (PER) อัตราแลกเนื้อ (FCR) และอัตรารอด ของกบทดลอง

อาหารทดลอง	PER	FCR	อัตรารอค
โปรตีน 25%	$31.22 \pm 2.93^{\mathrm{b}}$	$3.20 \pm 0.26^{\mathrm{a}}$	$96.67 \pm 2.31^{\mathrm{a}}$
โปรตีน 30%	$36.38 \pm 6.78^{\mathrm{ab}}$	$2.81 \pm 0.49^{\text {ab }}$	$100 \pm 0.00^{\mathrm{a}}$
โปรตีน 35%	$34.72 \pm 5.20^{\mathrm{b}}$	$2.93 \pm 0.47^{\mathrm{ab}}$	$96 \pm 6.96^{\mathrm{a}}$
โปรศีน 40%	$46.45 \pm 2.14^{\mathrm{a}}$	$2.15 \pm 0.10^{\mathrm{b}}$	$100 \pm 0.00^{\mathrm{a}}$
โปรตีน 45%	$36.82 \pm 4.03^{\text {ab }}$	$2.74 \pm 0.32^{\text {ab }}$	$100 \pm 0.00^{\mathrm{a}}$

องค์ประกอบทางคคีของกบที่ได้รับอาหารทดลองแต่ละระดับโปรตีน เมื่อ สิ้นสุดการทดลอง ผลการวิเคราะห์จากน้ำหนักแห้ง(dry matter) ดังแสดงในตารางที่ 5 โปรตีน

ระดับโปรตีนในกบทดลองมีค่านลี่ยคิดเป็นร้อยละ $59.93,59.94,56.83$, 58.39 และ 62.88 ตามลำดับ ซึ่งกบที่ได้รับอาหารที่มีระดับโปรตีนร้อยละ 45 มีค่ามากที่ดุด และแตกต่างจากทุกกลุ่ม ($\mathrm{P}<0.05$) ส่วนกบที่ได้ร้บอาหารที่มีระดับโปรตีนร้อยละ 25,30 และ 40 มีระดับโปรตีนในตัวไม่แตกต่างกัน ($\mathrm{P}>0.05$) และกบที่ได้รับอาหารที่มีระคับโปรตีนร้อย ละ 35 และ 40 ก็ไม่แตกต่างหช่นกัน ($\mathrm{P}>0.05$)

ไขมัน
ระดับไขมันในกบทดลองมีค่าเฉลี่ยคิดเป็นร้อยละ $23.56,24.10,23.99,21.19$ และ 16.54 ตามถำดับ ซึ่งงมีความแตกต่างกันทุกลุ่ม ($\mathrm{P}<0.05$) ยกเว้นกบที่ได้รับอาหารที่มี ระดับโปรตีนร้อยละ 30 กับ 35 ไม่มีความแตกต่างระหว่าง ($\mathrm{P}>0.05$)

ระคับเถ้าในกบทคลองมีค่าเฉลี่งคิคเป็นร้อยละ $10.00,10.16,10.46,10.09$ และ 12.43 ตามสาาดับ ซึ่งในกบที่ได้รับอาหารที่มีโปรตีนร้อยละ $25,30,35$ และ 40 มีค่าไม่ แตกต่างกัน $(\mathrm{P}>0.05)$ แต่ค่างจากกบที่ได้รับอาหารที่มีโปรตีน 45 ร้อยละ ($\mathrm{P}<0.05$) ตารางที่ 6 องค์ประกอบทางคคมีของกบทดลอง

อาหารทดลอง	โปรตีน	ไขมัน	เถ้า
ก่อนการทดลอง	63.52 ± 0.98	17.53 ± 0.07	11.40 ± 0.02
โปรตีน 25%	$59.93 \pm 0.13^{\mathrm{b}}$	$23.56 \pm 0.02^{\mathrm{b}}$	$10.00 \pm 0.03^{\mathrm{b}}$
โปรตีน 30%	$59.94 \pm 0.68^{\mathrm{b}}$	$24.10 \pm 0.08^{\mathrm{a}}$	$10.16 \pm 0.20^{\mathrm{b}}$
โปรตีน 35%	$56.83 \pm 1.83^{\mathrm{C}}$	$23.99 \pm 0.14^{\mathrm{a}}$	$10.46 \pm 0.10^{\mathrm{b}}$
โปรตีน 40%	$58.39 \pm 1.22^{\mathrm{bc}}$	$21.19 \pm 0.03^{\mathrm{c}}$	$10.09 \pm 0.17^{\mathrm{b}}$
โปรตีน 45%	$62.88 \pm 1.03^{\mathrm{a}}$	$16.54 \pm 0.08^{\mathrm{d}}$	$12.43 \pm 0.05^{\mathrm{a}}$

สรุปและวิจารณ์ผลการทดลอง
การศึกษาทดลองเพื่อหาระดับโปรตีนที่เหมาะสมในอาหารกบบูลฟรอก ซึ่งวัดจาก อิทธิพลของอาหารต่อการเจริญเติบโต อัตรารอด อัตราแลกเนื้อ ประสิทธิกาพการใช้โปรตีน ระดับโปรตีนและไขมันในกบทดลอง ผลการทดลองแสดงให้เห็นว่าอาหารที่มีระดับโปรตีน ร้อยละ 40 ทำให้กบทตลองมีน้ำหนักเฉลี่ยเพิ่มขึ้นดีที่สุด แม้ว่าจะไม่แตกต่างกัน($\mathrm{P}>0.05$) กับ กบทคลองที่ได้รับอาหารที่มีระดับโปรตึนร้อยละ 25,30 และ 35 ซึ่งคล้าขกับการเลี้ยงกบที่พบ ทั่วไปที่เกษตรกรใช้อาหารปลาดุกเล็กเป็นอาหาร (อังพน, 2540) โดยที่ระดับโปรตีนที่เหมาะ สมสำหรับการศึกษาในปลาดุกลูกผสมท่ากับร้อยละ 40 (วิมล, 2536) ส่วนระดับโปรตีนที่ ต้องการและเหมาะสมในอาหารปลาดุกต้านคือร้อยละ 30 (Chuapohuk, 1987) และอาจเป็นไป ได้ว่าอาหารที่มีระต้บโปรดีนร้อยละ $30-40$ สามารถทำให้กบมีการเจริญเติบโตได้ดีในระดับที่ ไม่แตกต่างกัน สำหรับอัตราแลกเนื้อ ประสิทธิกาพการใช้โปรตีนในอาหาร พบว่ากบที่ได้รับ อาหารที่มีระดับโปรตีนร้อยละ 40 มีอัตราแลกเนื้อต่าที่สุด และประสิทธิกาพการใช้โปรตีนดีที่ สุด ทั้งนี้อาขเนื่องจากว่าอาหารที่มีระดับโปรตึนดังกล่าวมีความเหมาะสมต่อการเงริญ|ติบโต ของกบทดลอง ทำ ห้การใช้ประโิยชน์ได้จากโปรตึนเป็นไปอย่างเหมาะสมและมีประสิทธิกาพ ก่าอาหารสูตรอื่น ๆ ส่วนผลขององค์ประกอบทางเมีที่สำคัญไดด้แก่ ปปรตืน ไขมัน และเก้า

นั้น แสดงให้เห็นว่ากบที่ได้รับอาหารที่มีระดับโปรตีนที่สูงที่สุดในการทดลองครั้งนี้คือที่ระดับ โปรตีนร้อยละ 45 นั้นมีระดับโปรตีนในตัวกบมากที่สุด และเป็นระดับที่พบว่ามีระดับไขมันที่ สะสมในตัวกบน้อยที่สุดและแหกต่างจากกลุ่มอื่น $(\mathrm{P}<0.050)$ นั่นอาจเนื่องมาจากอัตราส่วนของ โปรตีนต่อพลังงานในอาหารไม่เหมาะสมที่จะทำให้การใช้ประโยชน์ของโภชนะในอาหารได้ เต็มที่ ซึ่งโปรตีนและพลังงานมีสหสัมพันธ์กันอย่างมีนัยสำคัญต่อปริมาณไขมันที่สะสมใน ซากทั้งในอาหารที่มีระดับโปรตีนต่ำและสูง (Jauhari, 1989) เหตุผลประการหนึ่งที่ทำให้การ สะสมไขมันในตัวกบลดลงเนื่องจากการใช้โปรตีนเป็นแหล่งพลังงานทำให้กบใช้พลังงานบาง ส่วนในการขับถ่ายไนโตรเจนออกจากร่างกาย (Kern และRoelofs, 1977)

ผลการศึกษาในครั้งนี้สามารถสรุปได้ว่าระดับโปรตีนที่เหมาะสมสำหรับกบบูลฟรอก อยู่ที่ระดับร้อยละ 40 ซึ่งเป็นระดับที่ทำให้กบมีน้ำหนักเฉลี่ยเพิ่มขึ้นสูงที่สุค มีอัตราเลกเนื้อดีที่ สุด ประสิทธิกาพการใช้โปรตีนสูง และไม่มีผลกระทบต่ออัตรารอดของกบทดลอง ซึ่งผลของ การศึกษาในครั้งนี้จะเป็นข้อมูลพื้นฐานที่เป็นประโยชน์ในการศึกษาค้นคว้าเพิ่มเติมเกี่ยวกับ ความต้องการโภชนะในอาหารกบต่อไปในอนาคต

เอกสารอ้างอิง
จรัญ จันทลักขณา. 2534. การวางแผนการวิจัย. ไทยวัฒนาพานิช. กรุงเทพ ๆ. 468 หน้า เมฆ บุญพาหมณ์ キททย์ ธารชลานุกิจ และประวิทย์ สุรนีรนาก. 2520 . การศึกษาการเจริญ เจริญเติบโตของกบพื้นเมือง. รายงานการวิจัย. โรเนียว. 21 หน้า
วิมล จันทรโรทัย. 2536. การศึกษาความต้องการโปรตีนในอาหารปลาดุกลูกผสม. เอกสาร วิชาการ. สถามันประมงน้ำจืด, กรมประมง.
อัมพน ห่อนาค. 4540 . การศึกษารูปเบบการเลี้ยยงกบเพื่อเพิ่มรายได้ไห้กับเกษตรกรในกาค ตะวันออกเฉียงเหนือ. แก่นเกษตร. 25(2): 86-92
A.O.A.C. 1990. Official Methods of Analysys of the Association of official Analytical Chemists. Arliton, VA. 368 p.
Chuapohak, W. 19\$7. Protein requirement of walking catfish, Clarias batrachus (Linnaeus) fry. Aquaculture 63:215-219.

Juahari, R.Z. 1989. The effect of dietary of dietary and protein levels of practical diet on growth response of the hybrid catfish (Clariac macrocepharus x.C. gariepenus). Master thesis. Asian Institue of technology, Bangkok, Thailand.
Kern, C. and E. Roelofs. 1977. Poutry waste in diet of isarael carp. Bamidgeh 29:125-135.

ประวัตินักวิจัย

1. นายเฉลียว บุญมั่น

คุณวุติ วท.ม (วิทยาศาสตร์การประมง)
คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี อ.วารินชำราบ จ.อุบลราชธานี
2. นายซำนาญ แก้วมณี

คุณวุติ ท.ษบ. (ประมงน้ำจืด)
คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี อ.วารินชำราบ จ.อุบลราชธานี
3. นายวิชาญ แก้วเลื่อน

คุณวุติ วท.บ (เคมี)
คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี อ.วารินชำราบ จ.อุบลราชธานี
4. นายเข็มชาติ จิวประสาท

คุณวุติ วท.ม. (วิทยาศาสตร์การประมง)
สถานีประมงจังหวัด อ.เมือง จ. แม่ฮ่องสอน

