การศึกษาลักษณะการทนเกลือของข้าวที่ได้รับซิลิกอน และผลต่อลักษณะทางกายวิภาคและสรีรวิทยา

(Study on salt tolerance of rice by silicon additions and the effect on their physiological and anatomical characters)

ทุนอุดหนุนประเภท ทั่วไป ประจำปีงบประมาณ 2538
 คณะเกษตรศาตร์ มหาวิทยาลัยอุบลราชธานี

การศึกษาลักษณะการทนเกลือของข้าวที่ไดรับชิลิกอนและ ผลต่อลักษณะทางกายวิภาคและสรีริทยา

บุญเทียม เลิศศุภวิทย์นภา $)^{1}$ แก้ว ยุดมศศริชาคร ${ }^{2}$ และ นพมาศ นามแดง ${ }^{1}$

บทคัดย่อ

การศึกษาลักษณะการทนเกลือของต้นกล้าข้าว โดยทำการทดลองในสารฉะลาย เพื่อศึกษาลักษณะทางสรีรววทยา และการดูดธาตุอาหารบองข้าว หสังได้รับชิลิกอนและเกลื่อโซเดียมคลอไรด์ ใช้พันธุ์ข้ขว 3 พันธุ์ คือพันโุ์ทนเค็ม ได้แก่ พันธุ์ พอคคาลี และพันโุ์ไม่ทนเค็มได้แก่ ข้าวขาวมะลิ 105 และ ข้าวดอ การศึกษามี 2 การทดลอง คือ การศึกษษชิลิกอนทีมีนล ต่อสรีรวิทยาและการดูดธาตุอาหารของข้าว เป็นการทดลองแบบ Split plot design โดยพันธุ์เป็น main plot และ ระดับซิลิ กอน 5 ระดับเป็น sub-pねt และการทดลองที่ 2 เป็นการศึกษาการทนเค็มของข้าวเมื่อได้รับชิลิกอน โดย main plot เป็น พันธุ์ข้าว sub-plot เป็น ระดับชิลิกิอน 3 ระดับ คือ 00.5 และ 1 มิลลิโมล และ sub-subplot เป็น ระดับของเกลือโซเดียม คละไรด์ 3 ระดับคือ 060 และ 120 มิลลิโมล ผลการศึกษาพบว่า ชิลิกอนมีผลทำให้ต้นกล้ามีการเพิ่มจำนวนใบ พื้นที่ใบ เพิ่มราก มีค่า SLA สูขึ้น และมีอัตราการสังเคราะห์แสง สสงผลให้มีการเจิญเดิบโตเมื่อมีปริมาณชิลิกอนสูงขึ้น สำหรับการ เพิ่มขึ้นของเกลือโจเดียมคลอไรด์ มีผลทำให้ในทางตรงข้ามนั้นคือทำให้รากของต้นกล้าข้าวถูกทำฉาย มีผลให้จำนวนใบลด ลง และพื้นที่ใบลดลง แล้วสงผลให้อัตราการสังเคราะห์แสงและการดูดธาตุอาหารลดลง และเมื่อเป็นเวลานานออกไปอาจ มีผลทำให้ต้นข้าวตายได้ ซึ่งพอจะบอกได้ว่าพื้นที่ที่มีปริมาณเกลือโชเดียมคลอไรต์มาก คงมีผลทำให้การปลูกข้าวได้ผลไม่ดี หรือไม่ได้ผล แต่สามารถปรับปรุงการจัดการปลูกข้าวพอได้ โดยการเพิ่มปริมาณจิลิกอนลงไปในดินในบริเวณดังกล่าว

[^0]
Study on salt tolerance of rice by silicon additicns and the effect on their physilogogical and anatomical characters)

Lersusupavithnapa B^{1}., Udomchakon, K^{2}. and Namdeang, N^{1}.

Abstract

The experiment was conducted in solutions in greenhouse. To study the physilogical and absomed element in rice seedling after addition silicon. Sait tolerance, Pokkali and non-salt tolerance, KDML 105 and Khoa Dor. There had 2 experiments, which (1) study the effect of silicon on rice seedling. Five levels of silicon were used in experiment, which were $0,0.25,0.5,0.75$ and 1 mM of SiO_{2}. The second experiment was study the salt tolerance of rice by silicon. Which the main plot were rice varieties, subplot were three silicon levels, $0,0.05$ and 1 mM of SiO_{2} and sub-subplot were three levels of $\mathrm{NaCl}, 0,60$ and 120 mM NaCl . in the first expteriment, we found that silicon affected to rice seedling when silicon increase, rice seedling increase leaf area, root, SLA and photosynthesis rate. The result that silicon improved root and leaf of rice which rice was benefical effect on the the growth and development. In the second, NaCl was negative effedted to rice seedling. It meaned that when NaCl increase, rice seedling root, leaf and SLA were decrease. The result was effect to low photosysnthesis and finally rice was death. But when added silicon, we found that silicon at $1 \mathrm{mM} \mathrm{SiO}_{2}$ was maintained the growht of rice in saline solution.

To have more improve rice production in saline soil, silicon should be selected, protect and alleviated rice plant from NaCl and maintain root and leaf for long live of rice.

Key word : silicon, salt tolerance, NaCl , seedling, physiological characters.

```
1
    Agronomy Department, Faculty of Agriculture.
    .Biology Department, Faculty of Science.
```

คำนำ

ข้าว เป็นพึชค่อนข้างตอบสนองต่อเกลือ (Hayward and Bernstein, 1958; Mass and Hoffman, 1977)ถึงอย่าง ไรก็ตามพันธุ์ข้าวมีการตอบสนองแตกต่างกัน เมื่อมีการได้รับเกลือ(Brarakat, et al,1971; Akbar, et al, 1972; De Datta, 1972) มีปัจจัยหลายตัวที่ชักนำให้เกิดการทนต่อเกลือของข้าว เมื่อได้รับเกลือ ในช่วงแรกจะตอบสนองแตกต่างกัน นอก จากนั้นการดูดเกลือเพิ่มในเนื้อเยื่อของช้าวแล้วมีการสร้างไอออนในใบข้าว นำไปสูสวนต่าง ๆ ของต้นข้าว (Greenway and Munnus, 1980) เกลีอในดินทำหิอัตราการงอกของเมล็ดและเป็นตัวการทำให้ความแข็งแรงของต้นกล้าลดลง ทละทำให้ชงัก การเจริญเติบโต(Sheoran and Grag, 1978; Dubey, 1982) ในช่วงต้นกล้าเป็นระยะสำคัญต่อการถูกเกลือที่จะมีผลทำให้ เกิดการพัฒนาไปเป็นดอกและเมล็ด

มีการศึกษาถึงกลไกของการทนเกลือของษ้าว ซึ่งยังไม่เพียงพอ มีการศึกษา ถึงการทนเกลือของข้าวที่นำไปช่วย แนะนำให้นักปรับปรุงพันธุ์ เพื่อนำไปใช้ในการปรับปรุงพันธุ์ให้มีผลลผลิตสูงและมีความทนเค็ม ในการศืกษาเกี่ยวกับ ถักษณะทางสรีรวิทยาของข้าวภายใต้สภาพมีเกลือเพื่อให้เพ้าใจถึงกลไกของข้าวทนเกลือ ในการเพิ่มความสามารถทน เกลือของข้าวโดยการเพิ่มชิลิกอนจะเป็นแนวทางอย่างหนึ่งที่จะช่วยข้าวลดการชึมของโซเดียมเข้าสู้ข้าว และยังเป็นการช่วย ลดความรุนแรงฆองความเป็นพิษฯองธาตุเหล็ก และแมงกานีส (Horst and Marchner, 1978)ระยะต้นกล้าจะเป็นระยะ วิกฤุติของข้าวที่มีผลต่อเกลือ ที่ทำให้ข้าวอาจไม่ได้ผลผลิตหรือตายได้ การศึกษาชิลิกอนที่มีผลต่อต้นกล้า เบ็นการหา โอกาสปรับบรุงต้นกล้าและผลผลิต โดยศึกษาถึงการสะสมไอออน ลักษณะทางกายภาค ป่ละสรีรวิทยาของข้ำว ระหว่าง พันธุ์ทนเค็มและไม่ทนเค็ม

วิธีการทดลอง

การทดลองที่1. ผลของซิลิกอนที่มีต่อลักษณะทางสรีรวิทยาและการดูดธาตุอาหารในช้าว

การวิจัยนี้ทำในเรือนทดลอง โดยปลูกในสารละลายอาหาร เพื่อศึกษาลักษณะทางสรีรวิทยาและการดูดธาตุ อาหารฆองข้าวหลังได้รับชิลิกอน การทดลองทำการศึกษาแบบ Split plot design จำนวน 3 ช้ำ โดย Main plot ใช้พันรุ์ข้าว 3 พันธุ์ คือ พันธุ์ ขาวมะถิ 105 ข้าวดอ และ พันธุ์พอคคาลี Sub-plot ใช้ระดับของความเข้มข้นของซิสิกอน 5 ระดับคือ 0 0.250 .500 .75 และ 1.0 มิลถิโมลของชิลิกอน $\left(\mathrm{nM} \mathrm{SiO}_{2}\right)$ การทดลองใช้ต้นกล้าช้ำวอายุ 14 วันปลูกลงในสารฉะสาย (Limpinuntana, 1970) จำนวน 4 ต้นต่อกระถาง หลังย้ายปลูก 7 วัน ให้ซิลิกอนตามตำรับทดลอง ทำการเก็บตัวอย่างข้าว 2 ครั้ง คือ เมื่อต้นกล้า 7 และ 14 วันหลังได้รับซิลิกอน ในแต่ละตัวอย่าง ได้ทำการศึกษาอัตรากรสังเคราะห์แสง และอัตรา การหายใจ โดยใช้เครื่อง Photosysthesis LG4 พื้นที่ใบ โดยเครื่องวัดพื้นที่ใบ ยี่ห้อ LI-COR Model 3000A หลังวัดพึ้นที่ ใบ สุ่มใบพืชเพื่อย่อยใบ เพื่อหาปริมาณคลอโรฟิล์์ (Yoshida et al, 1976) โดยเครื่อง Specto meter ในแต่ละตัวอย่างทำ

การแยกสววนประกอบของต้นข้าว(กาบใบ ราก ตัวใบ) ถูกนำไปอบแเห้ง ที่ 70° ซ. เป็นเวลา 3 วัน หสังจากนั้น นำตัวอย่าง มาบดให้ละเอียด เพื่อนำไปวิเคราะห์หาเปอร์เซ็นของไนโตรเจน พ่อสฟอรัส เปแตสเซี่ยมและ ซิลิกอน

ในการเปรียบเทียบผลของชิถิกอนต่อการเจริญเติบโตของข้าว นำไปคำนวณหา specific ieaf area และอัตราส่วน ของรากและลำต้น

การทดลองที่ 2. การศึกษาลักษณะการทนเกลือของข้าวที่ได้รับริจิกอน

การวิจัยนี้ทำในเรือนทดลอง โดยปลูกในสารละถายอาหาร เพื่อคึกษาถักษโนะทางสรีรวทิยาและการดูดธิาตุอาหารของข้าว หลังได้รับจิลิกอน การทดลองทำการศึกษาแบบ Split plot design จำนวน 3 ช้ำ โดย Main plot ใช้พันธุ์ข้าว 3 พันธุ์ คือ พันรุ์ ขาวมะสิ 105 ข้าวดอ และ พันธุ์พอคคาลี Sub-plot ใช้ระดับของความเข้มข้นของศิลิกอน 5 ระดับคืย 00.250 .50 0.75 และ 1.0 มิลลิโมลขของพิลิกอน $\left(\mathrm{nM} \mathrm{SiO}_{2}\right.$) และ Sub -subplot เป็นระดับความเข้มข้นของเกลือโซเดี่ยมคลจไรด์ 3 ระดับ คือ 060 และ 120 มิถลิโมลของโซเดี่ยมคลอไรด์ (nM NaCl) การทดลองใช้ต้นกล้าข้าวอายุ 14 วันปลูกลงในสารสะลาย (Limpinuntana, 1970) จำนวน 4 ต้นต่อกระถาง หลังย้ายปลูก 7 วัน ให้ชิลิกอนตามตำรับทดลอง ทำการเก็บตัวอย่างข้าว 2 ครั้ง คือ เมื่อต้นกล้า 7 และ 14 วันหลังได้รับชิลิกอน ในแต่ละตัวอย่าง ได้ทำการศืกษบอัตรากรสังเคราะห์แสง และอัตราการ หายใจ โดยใช้เครื่อง Photosysthesis LG4 พื้นที่ใบ โดยเครื่องวัดพื้นที่ใบ ยี่ห้อ Li -COR Model 3000A หสังวัดพื้นที่ใบ สุมใบพืชเพื่อย่อยใบ เพื่อหาปริมาณคลอโฟพิลร์(Yoshida et al, 1976) โดยเครื่อง Specto meter ในแต่ละตัวอย่างทำการ แยกส่วนประกอบของต้นข้าว(กาบใบ ราก ตัวใบ) ถูกนำไปอบแห้ง ที่ 70° ฯ. เป็นเวลา 3 วัน หลังจากนั้น นำตัวอย่างมาบด ให้ละเอียด เพื่อนำไปวิเคราะห์หาเปอร์เช็นของไนโตรเจน ฟอสฟ่อรัส โปแตสเชี่ยมและ ซิสิกิอน

ในการเปรียบเทียบผลของชิลิกอนต่อการเจริญเติบโตของข้าง นำไปคำนวณหาค่า specific leaf area และอัตร่า ส่วน ของรากและลำต้น

ผลการศึกษาและวิจารณ์ผล

การทดลองที่ 1
ผลของชิลิกอนต่อลักษณะกายวิภาคของช้าว

ผลของซิลิกอนต่อต้นกล้าข้าว หลังได้วับ 7 วัน พบว่า ต้นกล้า มีการตอบสนองโดยการดูดชับซิลิกอน แล้วทำให้พื้ะ ที่ใบขยายมากชึ้น เมี่เพิ่มปริมาณซิลิกอน อย่างมีนัยสำคัญทางสถิติ($\mathrm{P}<0.05$) พันธุ์ข้าวขาวมะลิ มีพื้นที่ใบอย่างมาก เมื่อไดิ รับพิลิกอนมากกว่า 0.05 มิลิโมลของชิลิกอน โดยเพิ่มจาก 106.3 ตร.ซม. เป็น 186.9 ตรใซม. และเป็น 212.0 ตร. ซม. เมื่อได้ รับ ซิถิกอน 1.0 มิลลิโมล เช่นเดียวกับ พันรุ์พอคคาลี เมื่อได้รับชิลิกอนที่ระดับ 1.0 มิลลิโมล จะมีพื้นที่ไบถึง 313.4 ตร.ชช่:

ส่วนพันธุข้าวดอ พบว่า มีการเพิ่มนระดับต่ำกว่าทั้งสองพันธุ์ และเมื่อต้นกล้าได้ว้บชิลิกอน เป็นเวถา 14 วัน ยังสามารณเพิ่ม พื้นที่ใบ โดยพันธุ์ข้าวขาวมะลิยังมีแนวใน้มให้พื้นที่ใบสูงกว่าพันกุคด่ค่น ๆ (ดังตารางที่ 1 และตารางที่ 2)

ตารางที่ 1 พื้นที่ใบของต้นกล้าข้าวหลังได้รับชิสิกอน เป็นเวลา 7 วัน

พันธุ์ข้าว	ปริมาณ ซิถิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
	ตร.ซม./ต้น					
ข้าวชาวมะลิ105	106.3	181.7	161.3	186.9	212.3	169.7
ข้าวดอ	127.4	173.2	111.9	148.2	136.7	139.5
ข้าวพอคคาลี	202.0	222.5	241.6	203.7	313.4	236.6
	145.2	192.4	171.6	179.6	226.8	

$\operatorname{LSDP}<0.05=43.7$

ตารางที่ 2 พื้นที่ใบของข้าวหลังได้รับชิลิกอน เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณ ซิถิกอน (มิลลิโมล					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
	ตร.ซม./ต้น					
ข้าวขาวมะลิ 105	143.2	256.2	159.2	156.1	225.9	188.1
ข้าวดอ	111.4	93.3	137.6	115.2	114.1	114.4
ข้าวพอคคาลี	123.1	147.0	133.4	110.3	129.5	128.6
	125.9	165.5	143.4	127.2	156.5	

$\operatorname{LSDP}<0.05=48.7$

ลักษณะของ Specfic leaf area ของช้าวทั้ง 3 พันธุ์ เมื่อได้รับชิลิกอนเพิ่มขึ้น พบว่า มีความแตกต่างกัน อย่างมีนัยสำคัญ ทางสถิติ ทังนนี้พันธุ์พอคคาลี มีสักษณะของใบที่บางกว่าพันธุ์ขาวมะลิ 105 และข้าวดอ นั้นคือ มีค่าspecfic leaf area น้อย กว่าทั้ง 2 พันธุ์ แต่เมื่อได้รับชิลิกอนเป็นเวถา 14 วัน ทำให้ใบของพันธุ์พอคคาลีมีความหนาปื้น มีการเพิ่มน้ำหนักใบมาก มี ค่าของ Specific leaf area มากกว่า พันธุ์อี่ยๆุ ซึ่งเป็นลักษณะของพันรุ์พอคคาลีที่สามารถดูดซับชิจิกอนได้มาก โดย สามารถดูดชับได้ เฉลี่ย 4.19 มก./ตร.ซม ในขณะที่พันธุ์ขาวมะลิ ได้ 3.89 มก./ตร.ซม และ พันธุ์ข้าวดอ 3.54 มก./ตร.ซม (ดัง ตาราง ที่ 4)

ตารางที่ 3 Specific leaf area เมื่อได้รับชิลิกอน เป็นเวลา 7 วัน

พันธุช้าว	ปริมาณ ชิลิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
	มก./ตร.ซม.					
ช้าวขาวมะลิ 105	2.11	4.6	4.0	4.0	4.09	3.76
ข้าวดอ	2.76	3.4	5.2	2.67	2.89	3.39
ข้าวพอคคาลี	3.17	2.99	2.67	3.35	2.45	2.29
	2.68	2.67	4.0	3.4	3.04	

$\operatorname{LSDP}<0.05=1.30$

ตารางที่ 4 Specific leaf area ได้รับชิลิกอน เบ็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณ ชิลิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
	มก./ตร.ชม.					
ข้าวขาวมะลิ105	5.97	2.16	5.42	3.94	1.99	3.89
ข้าวดอ	3.33	3.99	3.77	3.82	3.76	3.54
ข้าวพอคคาลี	4.68	4.61	3.8	4.0	3.85	4.19
	4.66	4.25	4.33	3.92	3.20	

$1 S D P<0.05=1.45$

อัตราสวนรากต่อต้น มีความแตกต่างกันทางสถิติ($\mathrm{P}<0.05$) เมื่อได้รับซิลิกยนเพิ่มข้น ซิลิกอนทำให้รากมีน้ำหนักเพิ่มบิ้น ช่วย เสริมเซลล์รากของข้าวทำให้รากแข็งแรงและทนทาน โดยพันธุ์ขาวมะลิ มีความสามารถในการเพิ่มอัตราสวนของรากต่อต้น ได้มากที่สุด เมื่อเทียบกับพันธฺุึ่นๆ โดยเพิ่มจาก 0.35 เท่าเป็น 0.52 เท่า เมื่อได้รับจิลิกอนที่ระดับ 1 มิลลิโมล พันธุ์พอคคาลี 0.46 เท่าที่ระดับซิลิกอน 1 มิลลิโมล สวนพันธุ์ข้าวดอ ได้เพียง 0.35 เท่า (ดังตาราง 5) หลังต้นกล้าได้รับชิลิกอน 14 วัน ข้าว พันธุ์ขาวมะลิและะ้าวดอ จะมีอัตราสวนรรากต่อลำต้นสูงขึ้นชึ่งข้าวดอมีการเพิ่มน้ำหนักรากหลังจากได้รับศิธิกอน (ดังตาราง ที่ 6)

ตารางที่ 5 อัตราส่วนรากต่อต้นเมื่อได้รับซิลิกอน เป็นเวลา 7 วัน

พันธุ์ช้าว						
	บริมาณ ซิลิกอน (มิลลิโมล)	เฉลี่ย				
ข้าวขาวมะลิ105	0	0.25	0.5	0.75	1.0	
ข้าวดอ	0.47	0.35	0.36	0.47	0.52	0.43
ข้ำวพอคคาลี	0.41	0.38	0.35	0.44	0.40	0.39
	0.50	0.56	0.45	0.41	0.46	0.48
LSD $_{\text {P<0.05 }}=0.01$	0.46	0.43	0.38	0.44	0.46	

ตารางที่ 6 อัตราสวนรากต่อต้นเมื่อได้รับชิลิกอน เป็นเวลา 14 วัน

พันธุ์ข้าว			ปริมาณ ซิลิกอน (มิลลิโมล)			เนลี่ย
	0	0.25	0.5	0.75	1.0	
ข้าวขาวมะลิ105	0.45	0.54	0.46	0.37	0.49	0.45
ข้าวดอ	0.48	0.41	0.42	0.43	0.44	0.47
ข้าวพอคคาลี	0.51	0.52	0.51	0.46	0.40	0.46
	0.48	0.49	0.47	0.42	0.45	

$L_{S D}^{P<0.05}=0.73$

ผลของชิลิกอนต่อลักษณะหางสรีริทยาของข้าว

การสังเคราาะห์แสงของข้าวทั้ง 3 พันคุ์ไม่แตกต่างกันทางสถิติ เมือได้รับชิลิกอนเพิ่มขึ้น หลังได้รับ 7 วัน และ 14 วัน โดยพ บ่าวพันธุ์พอคคาถีมีอัตราการสังเคราะห์แสงได้สูงกว่าพันธุีื่นๆ ซึ่งอัตราการสังเคราะห์แสงมีแนวใน้มลดลง เมื่อได้รับชิลิ กอนมากวันขึ้น ทั้งนี้เมื่อได้รับซิลิกอนเป็นเวลา 7 วัน มีอัตราการสังเคราะห์แสงเฉลี่ย 7.1 umole $\mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ และลดลง เหลือ 6.42 umole $\mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ เมื่อได้รับจิลิกอนเป็นเวลา 14 วัน สวนพันธุ์ขาวมะลิ และ ข้าวดอมีอัตราการสังเคราะห์ แสงลดลงเช่นเดียวกัน (ดังตาราง 7 และ ตาราง 8)

ตารางที่ 7 อัตราการสังเคราะห์เมื่อได้รับชิลิกอน เป็นเวลา 7 วัน

พันธุ์ข้าว	ปริมาณ ซิลิกอน (มิลลิโมล					เฉลี่ย
	0	025	05	0.75	1.0	
	umole $\mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$					
ข้าวขาวมะลิ105	6.53	6.89	7.18	7.29	5.06	6.75
ข้าวดอ	6.23	5.88	6.28	7.61	5.79	6.36
ข้าวพอคคาลี	7.28	6.55	7.4	6.74	7.55	7.10
	6.68	6.44	6.92	7.21	6.43	

$1 . S D P<0.05=1.22$

ตารางที่ 8 อัตราการสังเคราะห์แสงเมื่อได้รับซิลิกอน เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณ ซิถิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
	umole $\mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$					
ข้าวขาวมะลิ 105	5.96	5.29	6.83	6.86	7.22	6.43
ช้าวดอ	6.52	6.25	6.39	6.23	5.62	6.20
ข้าวพอคคาลี	6.96	5.65	6.34	7.72	5.46	6.42
	6.48	5.73	6.52	6.93	6.10	

$\operatorname{LSDP}<0.05=1.20$

การคายน้ำของข้าวทั้ง 3 พันโุ์มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ $(\mathrm{P}<0.05)$ การเพิ่มจิจิกอนไม่ทำให้ข้าวมีการ หายใจ่่างกัน ข้าวพอคคาลีมีการหายใจเพิ่มข้นเมื่อเพิ่มประมาณชิลิกอน จาก 2.85 เมื่อไม่ได้รับซิลิกอน และ 3.36 เมื่อได้ รับชิลิกอนที่ 1.0 มิลลิโมล (ตารางที่ 9) แต่เมื่อข้าวได้รับชิลิกอนเป็นเวถา 14 วัน ทำให้ข้าวมีการหายใจลดลงทั้ง 3 พันโุ์โดย ที่พันธุ์พอคคาลีมีอัตราการหายจลดลงมากกว่า 2 พันตุ์เฉะเมื่อเพิ่มปริมาณชิลิกอนจะทำให้การหายใจลดลงตามปริมาณที่ เพิ่มขึ้น สวนนพันธุ์ข้าวมีแนวใน้มเพิ่มการหายใจเมื่อเพิ่มปริมาณชิลิกอน (ดังตารางที่ 10)

ตารางที่ 9 อัตราการการคายน้ำ เมื่อได้รับชิลิกอน เป็นเวลา 7 วัน

พันธุ์ข้าว	ปริมาณ ซิลิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
ข้าวขาวมะลิ105	2.35	2.64	3.02	2.74	2.67	2.68
ข้าวดอ	2.50	1.91	2.25	2.45	2.59	2.27
ข้าวพอคคาลี	2.85	3.31	2.98	3.03	3.36	3.10
	2.45	2.62	2.75	2.74	2.87	

$\operatorname{LSDP}<0.05=0.46$

ตารางที่ 10 อัตราการคายน้ำ เมื่อได้รับชิลิกอน เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณ ซิลิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
ข้าวขาวมะลิ105	1.49	1.94	1.85	2.11	1.83	1.84
ข้าวดอ	1.76	1.98	2.01	1.96	2.26	1.99
ข้าวพอคคาลี	1.58	1.42	1.87	1.46	1.46	1.56
	1.61	1.78	1.91	1.84	1.85	

$\operatorname{LSDP}<0.05=0.26$

ผลของชิลิกอนที่มีต่อการดูดซับธาตุอาหาร

ไนโตรเจนมีการดูดซับของต้นกล้าเมื่อได้รับชิลิกอน เป็นเวถา จ วัน พบว่าไม่มีความแตกต่างกันระหว่างพันธุ์ข้าว ทั้ง 3 พันธุ์ โดยพันธุ์ข้าวขาวมะลิการดูดซับไนโตรเจนมากกว่าพันธุ่อื่น ๆ นอกจากนั้นการเพิ่มขึ้นของซิลิกอนไม่มีความแตก ต่างกันเมื่อได้รับ เป็นเวลา 14 วัน พันธุ์ข้าวดอมีการดุดซับได้มากว่าพันธุ์อื่นๆ พันธุ์ข้าวขาวมะลิ มีแนวใน้มดูดซับไนโตรเจน ถดลง ส่วนพันธุ์พอคคาลีมีการดูดซับ ไนโตรเคนคงที่ไม่แตกต่างกัน (ดังตาราง ที่ 11 และ ตารางที่ 12)

ตารางที่ 11 เปอร์เซ็นต์ไนโตรเจนที่ต้นกล้าดูดเมื่อได้รับติลิกอน เป็นเวถา 7 วัน

พันธุ์ข้าว	ปริมาณ ซิสิกอน (มิลลิโมล					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
ข้าวขาวมะลิ105	0.45	0.54	0.46	0.37	0.49	0.45
ข้าวดอ	0.48	0.41	0.42	0.43	0.44	0.47
ข้าวพอคคาลี	0.51	0.52	0.51	0.46	0.40	0.46
	0.48	0.490	0.47	0.42	0.45	

LSDP $<0.05=0.73$

ตารางที่ 12 เปอร์เซ็นต์ไนโตรเจนที่ต้นกล้าดูดเมื่อได้รับซลิกอน เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณ ซิลิกอน (มิลสิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
ช้าวขาวมะลิ 105	0.45	0.54	0.46	0.37	0.49	0.45
ข้าวดอ	0.48	0.41	0.42	0.43	0.44	0.47
ข้าวพอคคาลี	0.51	0.52	0.51	0.46	0.40	0.46
	0.48	0.490	0.47	0.42	0.45	

LSDP $<0.05=0.73$

ปริมาณฟอสฟอรัสที่ต้นข้าวดูดชับไว้ ทั้ง 3 พันกุ์ไม่มีความแตกต่างกันทางสถิติ และเมื่อเพิ่มบริมาณชิลิลกอนไม่ทำให้ ปริมาณฟอสฟอรัสเพิ่มขึ้น ที่ 7 วันหฐังได้รับศิลิกอน แต่เมื่อได้รับ 14 วันพบว่าปริมาณฟอสฟ่อรัสในเซลล์มีปริมาณลดลง อย่างเห็นได้ชัด ซึ่งทำให้ไบข้าวมีสีชีดลล ปริมาณคลอโรฟิลล์น้อยลง (ดังตารางที่ 13 และ ตารางที่ 14)

ตารางที่ 13 เปอร์เซ็นต์ฟอสฟอรัส ที่ต้นกล้าดูดเมื่อได้รับชิลิกอน เป็นเวลา 7 วัน

พันธุ์ข้าว	ปริมาณ ซิสิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
ข้าวชาวมะลิ105	0.30	0.24	0.24	0.27	0.40	0.29
ข้าวดอ	0.28	0.29	0.30	0.32	0.29	0.29
ข้าวพอคคาลี	0.25	0.22	0.22	0.23	0.22	0.23
	0.27	0.24	0.25	0.27	0.30	

LSDP $<0.05=0.1$

ตารางที่ 14 เปอร์เซ็นต์ฟอสฟอรัส ที่ต้นกล้าดูดเมื่อได้รับชิลิกอน เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณ สิลิกอน (มิลลิโมล)				เฉลี่ย	
	0	0.25	0.5	0.75	1.0	
ข้าวขาวมมะลิ105	0.11	0.09	0.09	0.09	0.10	0.11
ข้าวดอ	0.13	0.10	0.12	0.13	0.12	0.12
ข้าวพอคคาลี	0.09	0.10	0.09	0.09	0.08	0.09
	0.11	0.10	0.10	0.10	0.10	

$\operatorname{LSDP}<0.05=0.10$

ต้นข้าวมีการดูดชับธาตุโซเดี่ยมจากสารละลาย พบว่ามีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ข้าวดอมีการดูดชับ โซเดียมไว้ได้น้อยที่สุด และมีแนวใน้มมีการดูดซับลดลงเมื่อเพิ่มปริมาณสิลิกอน จากตารางที่ 16 พบว่าเมื่อเพิ่มปริมาณชิลิ กอนทำให้การดูดชับโซเดียมในข้าวมีปริมาณลดลง เมื่อข้าวดูดชับโซเดียมเป็นเลา 14 วัน พบว่า ปริมาณเซเดียมมีปริมาณ เพิ่มขึ้น แต่ปริมาณการดูดธาตุโชเดียมของข้างทั้ง 3 พันโุ์ไม่มีความแตกต่างกันทางสถิติติ และเมื่อเพิ่มบริมาณจิลิกอน จะทำ ให้กางตูดธาตุโซเดียมเพิ่มข้นด้วย

ตารางที่ 15 ปริมาณโซเดี่ยม ที่ต้นกล้าดูดเมื่อได้รับชิลิกอน เป็นเวลา 7 วัน

พันธุ์ข้าว	ปริมาณ พิลิกอน (มิลลิโมล)						เฉลี่ย
	0	0.25	0.5	0.75	1.0		
ข้าวขาวมะลิ105	19.44	41.08	41.53	38.47	26.87	33.45	
ข้าวดอ	23.37	14.95	21.30	16.41	18.19	18.88	
ข้าวพยคคาลี	21.21	50.35	19.37	29.63	31.74	30.46	
	21.34	35.46	27.40	28.20	25.60		

$\operatorname{LSDP}<0.05=13.7$

ตารางที่ 16 ปริมาณโซเดี่ยม ที่ต้นกล้าดูดเมื่อได้รับจิลิกอน เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณ ซิถิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
ช้าวขาวมะลิ 105	40.9	40.8	51.4	40.2	27.1	40.1
ข้าวดอ	42.7	31.3	50.6	31.3	56.2	42.4
ข้าวพอคคาลี	27.3	44.8	38.2	58.5	42.8	42.3
	37.0	39.0	46.7	43.3	42.0	

$\operatorname{LSD}_{\text {P<0.05 }}=18.5$

ผลของซิลิกอนต่อปริมาณคลอโรฟิลส์ในใบข้าว

คลอโรฟิลล์เอ เนข้าวพบว่าไม่มีความแตกต่างกัน ทั้ง 3 พันธุ์ ซึ่งข้าวยังมีชนาดเส็กมีการสร้างปริมาณคลอโรฟิล์เป็น ปริมาณน้อยมาก แต่เมื่อต้นข้าวมีอายุเพิ่มขึ้น จะมีปริมาณคลอโรฟิลส์สูงขึ้น ดังตารางที่ 18 พบว่าข้าวพันธุ์ขาวมะลิและ ข้าวดอ มีปริมาณคลอโรพิลล์เพิ่มขึ้นเมื่อได้รับซิลิกอนเพิ่มขึ้น

ตารางที่ 17 บริมาณคลอโรฟิลล์เอ ที่ใบของต้นข้าว เมื่อได้รับชิลิกออน เป็นเวลา 14 วัน

พันธุ์ข้ขว	ปริมาณ ชิลิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
	มก.คลอโริิลล์/กรัม นน.พืช					
ข้าวชาวมะลิ105	0.02	0.01	0.01	0.01	0.01	0.01
ช้าวดอ	0.01	0.01	0.01	0.02	0.01	0.01
ข้าวพอคคาลี	0.01	0.01	0.01	0.02	0.02	0.01
	0.01	0.01	0.01	0.02	0.01	

ตารางที่ 18 ปริมาณคลอโรฟิลล์เอ ที่ใบของต้นข้าว เมื่อได้รับชิลิกิอน เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณ ซิสิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
	มก.คลอโริิลล์/กัม นน.พืช					
ข้าวขาวมะลิ105	0.28	0.44	0.34	0.30	0.46	0.36
ข้าวดอ	0.16	0.11	0.20	0.22	0.20	0.19
ข้าวพอคคาสี	0.31	0.26	0.21	0.15	0.21	0.23
	0.25	0.27	0.25	0.22	0.29	

$\operatorname{LSD}_{\text {p<0.0s }}=0.83$

เช่นเดียวกันกับคลอโรฟิลล์เอ คลอโรฟิลล์บี มีลักษณะเพิ่มขึ้นเมื่อข้าวมีอายุเพิ่มพื้น ข้าวพันธุ์าวมะสิและข้าวดอ มีปริมาณ คลยโรฟิลล์บีสูขึ้นเมื่อเพิ่มปริมาณชิลิกอน (ดังตารางที่ 19 และตารางที่ 20)

ตารางที่ 19 บริมาณคคอโรฟิลลบี ที่ไบของต้นข้าว เมื่อได้รับชิธิกอน เบ็นเวถา 14 วัน

$\operatorname{LSD}_{\text {p<0.05 }}=0.01$

ตารางที่ 20 ปริมาณคลอโริิลลบี ที่ใบของต้นข้าว เมื่อได้รับชิลิกอน เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณ ซิลิกอน (มิลลิโมล)					เฉลี่ย
	0	0.25	0.5	0.75	1.0	
	มก.คลอโรฟิล์/กรัม นน.พืช					
ข้าวขาวมะลิ	0.12	0.18	0.14	0.13	0.21	0.15
ข้าวดอ	0.07	0.07	0.1	0.09	0.09	0.09
ข้าวพอคคาลี	0.14	0.11	0.09	0.06	0.09	0.10
	0.11	0.12	0.11	0.10	0.13	

$\operatorname{LSD}_{\text {P<0.05 }}=0.04$

สรุปผลและคำแนะนำ

ผลของซิลิกอนต่อลักษณะทางกายภาคและการเจริญเติบโต มีการึึกษาถึงการเพิ่มของซิลิกอนหจังจาก 7 และ 214 วัน มีการศึกษาถึงลักษณะทางการเจริญเติบโตของต้นกล้า

มีผลการศึกษาถึงใบข้าวที่เป็นตัวการหลักสำหรับการสังเคราะห์แสง Takahashi et a! (1966) ได้พบว่าชิลิลกอน ช่วยสนับสนุนการดูด CO 2 ในใบข้าว และการเคลื่อนย้ายคาร์โบไฮเดรต เช่นเดียวกันกับ Kaufman, (1979) เสนอว้า เซลล์ ของชิลิกอนช่วยเป็นตัวเปิดของระบบ epidermis ของอ้อย และยอมให้แสงผ่านเข้าไปไนขบบวนการสังเคราะห์แสงในชั้น mesophyil ได้

ชิลิกอนมีผลต่อกาวเพิ่มจำนวนใบและพื้นที่ใบ ซึ่งคล้ายกับ Lee et at (1985) ที่บอกว่าจิลิกอนช่วยเพิ่มจำนวนใบ และน้ำหนักใบ พันธุ์พอคคาจีมีการเพิ่มพื้นที่ใบมาก และน้ำหนักใบมากข้นเมื่อได้รับชิลิกอนเพิ่มจิ้น มีผลทำให้ค่า SLA ของ พันธุ์พอคคาลีสูงกว่า 2 พันธุ์ แต่พอระยะยาว พันธุ์ขาวมะลิ 105 มีการปรับตัวและเพิ่มได้สูงกว่า และมีผลทำให้ ค่า SLA สูง ตามด้วย เป็นการช่วยทำให้การเจริญเติบโตมาก เนื่องจากการสังเคราะห์แสงสูง โดยพันธุ์ขาวมะลิ 105 มีค่า SLA เพิ่มจึน จาก 2.1 มก/ตร.ซม. ไปเป็น 4.09 มก/ตร.ซม. เมื่อได้รับชิลิกอนทีะะดับ 1 มิลลิโมล ในขณะทีพันธุ่พอคคาลีมีค่า SLA ลดลง ซึงทำให้ไบข้าวมีขนาดหนาขึ้น การเพิ่มขึนตองราก ทำให้อัตราสวนของรากต่อลำต้นของข้าวขาวมะลิ 105 สูงขึ้นเมื่อมี ปริมาณของชิลิกอนสูขึ้น เช่นเดียวกับข้าวดอ หลังได้รับชิสิกิกนเป็นเวฝา 14 วัน มีค่าของอัตราสวนของรากต่อลำต้นเพิ่ม จึ้นเป็น 0.47 เป็นข้อได้เปรียบของข้าวดอ ทีทำให้สามารถเจริญเติบโตได้เร็ว มีการดูดธาตุอาหารจากดินได้มาก ซึ่งเป็น ลักษณะสำคัญของข้าวพันธุ์พื้นเมือง ที่สามารถปรับตัวได้ในสภาพแวดล้อมดังกล่าว

ลักษณะทางสรีรวิทยาของช้าว เมื่อได้วับซิลิกอน จะทำให้มีอัตราการสังเคราะห์แสงได้สูงขึ้น เพราะสิถิกอนช่วยทำ ให้ปริมาณคาร์บอนไดออกไซด์สามารถเข้าทางปากใบได้มากขึ้น ทั้งนี้เนื่องจากการเพิ่มขึ้นของจำนวนใบและพื้นที่ไบข้าว พันธุ์พอคคาลีมีอัตราการสังเคราะห์แสงได้สูงสุดถึง 7.55 umole $\mathrm{CO}_{2} / \mathrm{cm}^{2} \mathrm{~S}$ เมื่อได้รับชิลิกอน 1 มิลสิโมล ส่วนการคายน้ำ มีอัตราสูงจึ้นด้วย เนื่องจากการเพิ่มพื้นที่ใบ และอัตราการสังเคราะห์แสงสูง ทำให้มีการเปิดป่ากใบสูงด้วย

สำหรับการดูดธาตุอาหาร ไม่มีผลต่อการดูดธาตุไนโตรเจน ทั้งนี้เนื่องจากมีการใช้ธาตุไนโตรเจนในระยะแรกค่อน ข้างน้อย เพื่อการเจริกเติบโต จึงพบว่าหลังจากเพิ่มจิลิกอนในช่วง 7 และ 14 วัน จึงไม่แตกต่างกัน สววนฟอสฟอรัส มีการดูด ซับในเซลล์ค่อนช้างมากในช่วง 7 วันแรกสำหรับข้าวขาวมะลิ 105 แต่หลังจาก 7 วัน ข้าวมีพื้นที่ใบมากขึ้นและมีการใช้ใน การสังเคราะห์แสง ทำให้ปริมาณฟอสฟอรัสลดลงอย่างมาก โดยเฉลี่ยมากกว่า 70 เปอร์เซ็นต์ ที่ลดลง ส่วนเปอร์เซ์นต์ของ โซเดียม มีการดูดชับไว้ในเซลล์ โดยพันธาวมะลิ 105 มีการดูดชับสูงกว่า 2 พันธุ์ แต่เมื่อเวลาผ่านไป 14 วัน แล้ว จะมี บริมาณเท่าๆกัน โดยเฉลี่ย $40-42$ เปอร์เซ็นต์ สำหรับปริมาณคลอโรฟิลล์ ในใบข้าว ปริมาณคลอโโพิลล์เอ และ บี มีความ สัมพันธ์ในทางบวก กับพื้นที่ใบและปริมาณชิลิกอนที่เพิ่มขึ้น โดยข้าวขาวมะลิมีกาวเพิ่มข้นของคลอโรฟิลล์เอ จาก 0.01 มก/ กรัมไปเป็นที่ระดับ 0.36 มก/กรัม เมื่อได้รับชิลิกอนเบ็น 14 วัน สวนข้าวดอ มีคลอโรฟิลล์ไนระดับต่ำสุดเพียง 0.13 มก/กรัม จากการทดลองจึงสรุปได้ว่า ซิลิกอนมีผลต่อต้นข้าว โดยการเพิ่มชิลิกอนมีผลทำให้เพิ่มขึ้นของราก เพิ่มค่า SLA อ่ตราส่วนรากต่อลำต้นสูงขึ้น แล้วมีผลให้เพิ่มจำนวนใบและพื้นที่ไบ มีการสังเคราะห์แสงสูงขึ้น และสุดท้ายช่วยทำให้การ เจริญเติบโตมีแนวใน้มสูงขึ้นด้วย

การทดลองที่ 2 การศึกษาการทนเกลือของช้าวที่ได้รับซิลิกอน

ผลการทดลอง

ผลของเกลือโซเดียมคลอไรด์ต่อลักษณะสรีรวิทยาของช้าว
ลักษณะทางกายวิภาค การให้พื้นที่ใบของข้าวหถังได้รับเกลือโซเดียม พบว่าข้าวทั้ง 3 พันธุ์ มีพื้นที่ใบแตกต่างกัน $(\mathrm{P}<0.05)$ หลังจากได้รับเกลือโซเดี่ยม เมื่อเพิ่มปริมาณเกลือโซเดียมทำให้พื้นที่ใบลดลงอย่างมีนัยสำคัญทางสถิติ และกาง เพิ่มบริมาณซิลิกอนจะช่วยลดการสูญเสียพื้นที่ไบได้ โดยพันธุ์ขาวมะลิ 105 มีการตอบสนองต่อปริมาณซิลิกอนได้ดี ปริมาณซิลิกอนที่ระดับ 1 มิลลิโมล จะช่วยทำให้ช้าวรักษาใบได้มาก ส่วนพันธุ์ข้าวดอและพอคคาลีการตอบสนองได้พอสม ควร และเช่นเดียวกันที่ 14 วันหลังได้รับเกลือโซเดียม ทำให้พื้นที่ใบลดลงอย่างมาก พันธุ์พอคคาลีการปรับตัวในการทนต่อ เกลือโซเดียมได้ดี พันธุ์ขาวมะลิ พื้นที่ใบถูกทำลายมากเมื่อเพิ่มปริมาณเกลีดโซเดียม (ดังตาราง ที่ 21 และ ตารางที่ 22)

ตารางที่ 21 พื้นที่ใบข้าว หลังได้รับเกลือโซเดียมคลอไรด์ เป็นเวลา 7 วัน

พันธุ์ข้าว	ปริมาณชิลิกอน(มิลลิโมล)	ปริมาณเกลือโชเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
	\cdot		ตร.ชม./ต้น		
ขาวมะลิ	0	205.7	198.5	161.5	188.6
105	0.5	181.2	111.2	102.0	131.5
	1.0	212.0	179.3	169.9	187.1
ข้าวดอ	0	164.8	133.3	99.5	132.6
	0.5	175.2	180.2	167.4	174.3
	1.0	205.6	156.6	145.5	169.2
พอคคาลี	0	128.6	106.0	97.8	110.8
	0.5	178.3	151.8	103.2	144.4
	1.0	306.5	107.5	132.0	182.0
		195.4	147.2	131.0	

ตารางที่ 22 พื้นที่ไบข้าว หสังได้รับเกลือโซเดียมคลอไรด์ เป็นเวลา 14 วัน

พันโุ์ข้าว	ปริมาณซิลิกอน(มิลลิโมล)	ปริมาณเกลือโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
	ตร.ซม./ต้น				
ชาวมะสิ	0	208.6	131.5	175.8	171.3
105	0.5	196.7	188.0	66.2	150.3
	1.0	209.9	115.4	69.6	131.6
ข้าวดอ	0	162.2	136.0	97.2	131.8
	0.5	121.9	145.4	97.9	121.7
	1.0	146.0	157.0	154.2	152.4
พอคคาลี	0	163.7	108.3	91.2	121.1
	0.5	196.1	169.5	68.7	144.8
	1.0	182.2	164.9	88.7	145.3
		176.4	146.2	101.0	

$L S D_{p<0.05}=26.0$

Specific leaf area ของข้าวทั้ง 3 พันธุ์ มีความแตกต่างกันทางสถิติ $(P<0.05)$ โดยพันธุ์ขาวมะลิมีค่า SLA สูงกว่าพันธุ์อื่น ๆ และ พันธุ์ช้าวมีค่า SLA ต่ำสุด 2.39 ข้าวเมื่อได้รับซิลิกอนมีแนวใน้มทำให้เพิ่มค่า SLA และเช่นเดียวกันเมือได้รับเกลือ โซเดียมคลอไรด์ เป็นเวณา 14 วัน พันธุ์พอคคาลีมีการตอบสนองต่อการได้รับชิลิกอน โดยทำให้มีค่า SLA เพิ่มข้น จาก 3.47 เมื่อไม่ได้รับชิลิกอน เป็น 3.83 เมื่อมีชิลิกอน 1 มิลลิโมล ส่วนพันโุ์ชาวมะลิและข้าวดอมีการเพิ่มขึ้นเช่นกัน ดังจะเห็นได้ว่า การเพิ่มชิลิกอนทำให้ ใบข้าวมีน้ำหนักมากขึ้นหรือมีขนาดหนาขึ้น(ดังตาราง ที 23 และ ตารางที่ 24)

ตารางที่ 23 specific leaf area ข้าวหลังได้รับเกลือโซเตียมคเลอไรด์ เป็นเวลา 7 วัน

พันธุ์ข้วว	ปริมาณซิลิกอน(มิลสิเมล)	ปริมาณเกลื่อใซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
	มก./ ตร.ซม.				
ขาวมะลิ	0	3.60	4.06	3.41	3.49
105	0.5	3.59	3.24	3.27	3.36
	1.0	3.90	3.30	4.75	3.98
ข้าวดอ	0	2.16	2.70	2.32	2.39
	0.5	2.52	2.80	2.52	2.61
	1.0	2.55	2.46	2.40	2.47
พอคคาลี	0	3.15	4.12	3.23	3.52
	0.5	3.09	3.56	3.37	3.33
	1.0	2.60	3.18	3.89	3.22
		3.02	3.27	3.24	

$\operatorname{LSD}_{\text {p<0.05 }}=0.41$
ตารางที่ 24 specific leaf area ข้าวหลังได้รับเกลือใซเดียมคลอไได์ เป็นเวลา 14 วัน

$L_{S D_{P<0.05}}=0.52$

ผลชองเกลือโศเดีศมคลอไรต์ต่อการเจริญเติบโต

การสังเคราะห์แสงของข้าว 3 พันธุ์ไม่แตกต่างกันทางสถิติ เมื่อเพิ่มปริมาณของเกลือโซเดียมคลยไรด์ ทำให้การสังเคราะห์ แสงของข้าวลดลงอย่างมีนัยสำคัญพางสถิติ ($\mathrm{P}<0.05$) พันธุ์พอคคาลีมีผลทำให้การสังเคราะห์แสงลดลงจาก 9.10 umole $\mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ เป็น 6.38 umole $\mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$ เมื่อได้ร้บเกลือโซเดียม 120 nM NaCl ข้าวดอ ปริมาณชิลิกอนที่ระดับ 0.5 มิลลิโมลทำให้มีการสังเคราะห์แสงเพิ่มขึ้น (ดังตารางที่ 25) และเมื่อบ้าวได้รับเกลือโชเดียม เป็นเวถา 14 วัน พบว่า มีการ สังเคราะห์แสงลดลงทุกพันรุ์ แม้ว่าเพิ่มปริมาณของซิลิกอน โดยพันธุ์ขาวมะลิ มีการลดการสังเคราะห์ จาก 6.92 umoie $\mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ เป็น 3.56 umole $\mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ เมื่อได้รับเกลือโศเดียม ที่ ระดับ 120 มิลลิโมล ซึ่งจะเห็นได้ว่า ข้าวขาวมะลิ การตอบสนองต่อปริมาณเกลือโธเดียมค่อนข้างมาก ส่วนพันธุ์พอคคาลีมีการตอบสนองน้อยกว่าข้าวข้าวมะลิ (ดังตารางที่ 26)

ตารางที่ 25 การสังเคราะห์แสงของ ข้าวหลังได้รับเกลือโซเดียมคลอไรด์ เป็นเวลา 7 วัเร

พันธุ์ข้าว	ปริมาณชิลิกอน(มิลลิโมล)	ปริมาณเกลือโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
		$\text { umole } \mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$			
ๆาวมะลิ	0	6.01	7.38	7.62	7.00
105	0.5	6.73	6.82	7.22	6.92
	1.0	6.16	6.38	6.22	6.25
ข้าวดอ	0	2.63	5.27	7.66	5.18
	0.5	5.16	6.53	7.27	5.98
	1.0	5.92	6.67	4.62	5.73
พอคคาลี	0	9.10	8.22	6.38	7.90
	0.5	6.78	6.02	5.39	6.06
	1.0	4.95	5.55	6.28	3.50
		6.72	5.73	6.52	

ตารางที่ 26 การสสงเคราะห์แสงของ ข้าวหลังได้รับเกลือโชเดียมคลอไรด์ เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณซิลิกอน(มิลลิโมล)	ปริมาณเกลือโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
	$\text { umoie } \mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$				
ขาวมะลิ	0	4.48	6.63	6.92	6.01
105	0.5	7.31	4.97	4.06	5.45
	1.0	6.42	3.68	3.56	4.55
ข้าวดศ	0	3.87	4.02	4.29	4.06
	0.5	8.10	5.30	6.29	6.56
	1.0	5.14	5.61	5.09	5.28
พอคคาลี	0	5.05	6.55	4.92	5.50
	0.5	5.12	6.23	4.74	5.36
	1.0	6.44	4.90	4.02	5.12
		5.33	5.30	5.33	

$\operatorname{LSD}_{\mathrm{P}<0.05}=1.65$

การคายน้ำ เมื่อได้รับเกลือโซเดียมคลอไรด์
ข้าวทั้ง 3 พันธุ์เมื่อได้รับเกลือโซเดียมคลอไรด์ เป็นเวลา 7 วัน มีการคายน้ำลดลง เมื่อได้รับปริมาณเกลืยโซเดียมคลอไรด์ เพิ่มขึ้น(ตารางที่ 27) และเชนเดียวกัน ที่ 14 วันหลังได้รับเกลือโฐเดียมคลอไรด์ แต่พบว่าข้าวพันธุ์ขาวมะลิ 105 และข้าวดอ มีการคายน้ำสูงขึ้น เกีอบเท่าตัว ของการได้รับเกลืคโษเดียมคลอไรต์ เมื่อ 7 วัน (ดังตารางที่ 28)

ตารางที่ 27 การคายน้ำของ ข้าวหลังได้รับเกลือโซเดียมคลอไรด์ เป็นเวลา 7 วัน

พันธุ์ข้ำว	ปริมาณซิลิกอน(มิลลิโมฉ)	ปริมาณเกลืยโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
		umoie $\mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$			
ขาวมะลิ	0	1.37	1.45	1.13	1.31
105	0.5	1.60	1.12	1.35	1.35
	1.0	1.31	1.20	1.19	1.23
ข้าวดอ	0	0.78	1.08	1.37	1.07
	0.5	1.12	1.11	1.11	1.11
	1.0	1.07	1.06	1.03	1.05
พอคคาลี	0	2.37	2.10	2.03	2.16
	0.5	1.67	1.48	1.62	1.59
	1.0	1.30	1.40	1.72	1.47
		1.30	1.08	1.74	

$L S D_{P<0.05}=0.2$

ตารางที่ 28 การคายน้ำของ ข้าวหลังได้รับเกลืยโซเดียมคลอไรด์ เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณชิลิกอน(มิลลิโมล)	บริมาณเกลือโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
	umole $\mathrm{CO}_{2} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}$				
ขาวมะถิ	0	1.21	2.76	2.39	2.12
105	0.5	2.91	2.31	2.05	2.42
	1.0	2.50	1.42	1.46	1.79
ช้าวดอ	0	1.12	1.89	1.55	1.52
	0.5	1.74	1.31	1.84	1.63
	1.0	1.60	1.19	1.35	1.38
พอคคาลี	0	1.07	2.54	2.52	2.04
	0.5	2.21	1.76	1.26	1.74
	1.0	1.89	1.32	1.02	1.41
		2.11	1.51	1.73	

ผลของเกลือโซเดียมคลอไรด์ ต่อปริมาณคลอโรฟิลส์ในใบข้าว

ปริมาณคลอโรฟิลล์เอ พบว่ามีความแตกต่างกันทั้ง 3 พันธุ์ และมีความแตกต่างกันเมื่อเพิ่มปริมาณเกลือไนโตรเจน จะพบ ว่าการเพิ่มปริมาณชิลิกอน ทำให้ข้าวดอ เพิ่มปริมาณคลอโรพิลล์เย ส่วนพันธุ์อืน ๆ เพิ่มขึ้นไม่แตกต่างกัน (ดังตาราง ที่ 29) แต่หลังจากได้รับเกลือโซเดียม 14 วัน พบว่าปริมาณคลอโรฟิลร์ลดลงทั้ง 3 พันธุ์ แต่ไม่แตกต่างกันทางสถิติ การเพิ่ม ปริมาณซิลิกอนช่วยทำให้เพิ่มปริมาณคลอโรฟิลธ์เอ (ตารางที่30)

ตารางที่ 29 ปริมาณคลอโริิลล์เอ ของข้าวเมื่อได้รับเกลือโชเดียมคลอไรด์ เป็นเวลา 7 วัน

พันธุ์ข้าว	ปริมาณซิลิกคน(มิลลิโมล)	ปริมาณเกลือโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
	มก.คลถโริฟิลล์/ กรัม.น้ำหนักสด				
ขาวมะลิ	0	0.24	0.46	0.36	0.35
105	0.5	0.22	0.20	0.15	0.19
	1.0	0.24	0.31	0.14	0.23
ข้าวดอ	0	0.20	0.10	0.71	0.33
	0.5	0.14	0.56	0.55	0.42
	1.0	0.88	0.95	0.63	0.82
พอคคาลี	0	0.58	0.41	0.78	0.59
	0.5	0.81	0.16	0.90	0.62
	1.0	0.10	0.91	0.70	0.57
		0.26	0.97	0.87	

$\operatorname{LSD}_{\text {P<0.05 }}=0.41$

ตารางที่ 30 ปริมาณคลอโรฟิลล์เอ ของข้าวเมื่อได้รับเกลือโซเดียมคลอไรด์ เป็นเวลา 14 วัน

พันกุ์ข้าว	ปริมาณศิลิกอน(มิลลิโมล)	ปริมาณเกลือโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
		มก.คลอโรฟิลล์/ กรัม.น้ำหนักสด			
ขาวมะลิ	0	0.28	0.32	0.19	0.22
105	0.5	0.35	0.21	0.16	0.24
	1.0	0.35	0.26	0.17	0.26
ข้าวดอ	0	0.17	0.29	0.19	0.22
	0.5	0.20	0.27	0.15	0.21
	1.0	0.36	0.25	0.18	0.27
พอคคาลี	0	0.43	0.23	0.43	0.36
	0.5	0.24	0.29	0.15	0.23
	1.0	0.36	0.39	0.31	0.36
		0.31	0.28	0.22	

สำหรับคลอโรฟิสล์บี ช้ำวแต่ละพันโุ์มมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ โดยที่พันุุ์ขาวมะลิ 105 มีปริมาณต่ำ กว่าพันธุ๋อื่น $ๆ$ การเพิ่มขึ้นของเกลือโซเดียมคลอไรด์ ใน 7 วัน แรกไม่ทำให้ปริมาณคลอดรฟิลธ์ปีเปลี่ยนแปลง (ตารางที่ 31) หลังจาก 7 วันพบว่าปริมาณคลอโรฟิลล์บีมีปริมาณลดลง เมื่อได้รับเกลือโซเดียมคลอไรด์เป็นเวลา 14 วัน พันธุ์ข้าวดอ และ พันธุ์พอคคาลี มีปริมาณคลอโรฟิลล์บี ลดลงมาก เหลือเพียง $0.10-0.16$ มก./กรัม น้ำหนักแห้ง จากปริมาณคลอโริิล์์ปี 0.77 มก / กรัม น้ำหนักสด เมื่อได้รับเกลือโซเดียม เพียง 7 วัน ซึ่งมีผลทำให้ไบข้าวมีลักษณะซีดเหลือง เนื่องจากขาด คละโรฟิลล์ในใบข้าวนั่นเอง (ตารางที่ 32)

ตารางที่ 31 บริมาณคลอโรฟิะล์บี ของข้าวเมื่อได้รับเกลือโชเดียมคลอไรด์ เป็นเรลา 7 วัน

พันธุ์ข้าว	ปริมาณซิสิกอน(มิลลิไมล)	ปริมาณเกลือโซเดียมคลอไรด์(ผิลลิโมล)			เฉลี่ย
		0	60	120	
		มก.คลอโรฟิลฐ์/ กรัม.น้ำหนักสด			
ขาวมะสิ	0	0.24	0.27	0.20	0.24
105	0.5	0.12	0.15	0.90	0.39
	1.0	0.24	0.13	0.18	0.18
ข้าวดอ	0	0.75	0.11	0.70	0.52
	0.5	0.76	0.73	0.83	0.77
	1.0	0.95	0.67	0.11	0.58
พอคคาลี	0	0.51	0.14	0.61	0.42
	0.5	0.68	0.15	0.93	0.58
	1.0	0.73	0.71	0.57	0.67
		0.12	0.13	0.13	

$\operatorname{LSD}_{\text {P<0.05 }}=0.30$
ตารางที่ 32 ปริมาณคลอโรฟิลธ์บี ของบ้าวเมื่อได้รับเกลือโซเดียมคลอไวด์ เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณซิลิกอน(มิลลิโมล)	ปริมาณเกลือโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
		มก.คลอโรฟิลล์/ กรัม.น้ำหนักสด			
ขาวมะลิ	0	0.12	0.14	0.09	0.12
105	0.5	0.16	0.09	0.07	0.11
	1.0	0.15	0.14	0.07	0.12
ข้าวดอ	0	0.07	0.12	0.08	0.10
	0.5	0.09	0.13	0.07	0.10
	1.0	0.14	0.12	0.09	0.12
พอคคาลี	0	0.19	0.11	0.19	0.16
	0.5	0.11	0.13	0.07	0.10
	1.0	0.10	0.18	0.14	0.14
		0.13	0.13	0.10	

$\operatorname{LSD}_{\mathrm{P}<0.05}=0.25$

ผลของเกลือโชเดียมคลอไรด์ต่อปริมาณธาตุอาหารในต้นข้าว
ปริมาณไนโตรเจนในเซลล์ต้นข้ำวทั้ง 3 พันธุ์ ไม่มีความแตกต่างกัน แต่พบว่าการเพิ่มขึ้นของโซเดียมและซิลิกอน มีความ สัมพันธ์กัน คือเมื่อเพิ่มเกลือโฐเดียมและซิธิกอน ทำให้ปริมาณไนโตรเจนในเซลล์ข้าวเพิ่มมากขึ้นด้วยทั้ง 3 พันธุ์ โดยพันธุ์ ข้าวขาวมะลิ 105 มีปริมาณไนโตรเจนสุงกว่าอีก 2 พันธุ์ เมื่อเพิ่มซิลิกอนเพียง 0.5 มิลลิไมล ทำให้มีปริมาณไนโตรเจนเพิ่ม จาก 1.25 มก.เป็น 1.45 มก เมื่อเพิ่มปริมาณเกลือโซเดียม จาก 0 มิลลิโมลเป็น 120 มิลลิโมล (ตารางที่ 33) การเพิ่มขึ้นของ ไนโตรเจนจะเป็นแหล่งของโปรตีน ที่จะก่อให้เกิดการสร้างกลิ่นหอมของข้าวขาวมะลิ แต่หลังจากได้ร้บเกลืคโซเดียมเป็น เวลา 14 วัน จะพบว่า ปริมาณไนโตรเจนมีการลดลง ทั้งพันธุ์พอคคาลีและชาวมะลิ มีปริมาณไนโตรเจนสะสมลดลง แสดง ว่าการสร้างโปรตีนในเนื้อเยื่อมีปริมาณลดลง หรือ การเรริญเติบโตลดลง (ดังตารางที่ 34)

ตารางที่ 33 ปริมาณไนโตรเจน ของข้าวเมื่อได้รับเกลือโซเดียมคลอไรด์ เป็นเวลา 7 วัน

พันธุ์ข้าว	ปริมาณซิลิกอน(มิฉลิโมล)	ปริมาณเกลือโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
		มก.คลอโรฟิลล์/ กรัม.น้ำหนักสด			
ขาวมะฐิ	0	1.17	1.25	1.22	1.21
105	0.5	1.18	1.31	1.45	1.31
	1.0	1.25	1.38	1.39	1.34
ข้าวดอ	0	1.09	1.19	1.29	1.19
	0.5	1.30	1.21	1.14	1.21
	1.0	1.13	0.86	0.99	1.23
พอคคาลี	0	1.11	1.03	1.18	1.17
	0.5	1.11	1.07	1.09	1.12
	1.0	1.13	1.12	1.19	1.19
		1.16	1.16	1.21	

$\operatorname{LSD}_{p<0.05}=0.82$

ตารางที่ 34 ปริมาณไนโตรเจน ของข้าวเมื่อได้รับเกลือโชเดียมคลอไรด์ เป็นเวลา 14 วัน

พันธุ์ข้าว	บริมาณชิลิกอน(มิลลิโมล)	ปริมาณเกลื่อโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
		มก.คลอโรฟิลล์/ กรัม.น้ำหนักสด			
ษาวมะลิ	0	1.20	1.10	1.32	1.21
105	0.5	1.28	1.38	1.10	1.24
	1.0	1.08	1.11	0.94	1.04
ข้าวดอ	0	1.28	1.28	1.07	1.21
	0.5	1.45	1.23	1.10	1.26
	1.0	1.33	1.05	1.38	1.25
พอคคาลี	0	1.13	1.44	1.32	1.30
	0.5	1.04	1.46	0.95	1.15
	1.0	1.11	1.11	1.13	1.11
		1.24	1.22	1.24	

$\operatorname{LSD}_{\text {P<0.05 }}=0.18$

ข้าวทั้ง 3 พันธุ์มีปริมาณฟอสฟอรัสไม่แตกต่างกัน เมื่อได้รับเกลือโซเดียมเป็นเวถา 7 วัน นอกจากนั้นพบว่าเมื่อเพิ่มปริมาณ ชิลิกอนจะทำให้ข้าวชาวมะลิมีบริมาณพอสฟอรัสสูงขึ้น โดยเพิ่มจาก 0.26 มก/นน.สด เป็น 0.30 มก /นน.สด เมื่อได้รับชิลิ กอนบริมาณ 1 มิลลิโมล (ตารางที่ 35) และหลังจากได้รับเกลือโซเดียม เป็นเวลา 14 วัน พบว่าทั้ง 3 พันรุ์ุีปริมาณ ฟอสฟ่รัสในเซลส์แตกต่างกัน และทุกพันธ์มีปริมาณฟอสฟอรสลดลง โดยเฉพาะพันธุ์พอคคาลี มีปริมาณฟอสฟ่อรัสลดลง มากกว่า 2 พันธุ์ ซึ่งลดจาก 0.26 มก/นน.สด เหลือเพียง 0.06 มก/นน.สด ส่วนพันธุ๋อ่นๆ มีปริมาณลดลงโดยเฉลี่ย 50 เปอร์เช็นซ์ (ตารางที่ 36)

ตารางที่ 35 ปริมาณฟอสฟอรัส ของข้าวเมื่อได้รับเกลือโษเดียมคลอไรด์ เป็นเวลา 14 วัน

พันธุ์ข้าว	ปริมาณซิลิกอน(มิลลิโมล)	ปริมาณเกลือโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
		มก.คลอโรฟิลล์/ กรัม.น้ำหนักสด			
ขาวมะลิ	0	0.24	0.27	0.28	0.26
105	0.5	0.25	0.31	0.31	0.29
	1.0	0.29	0.32	0.30	0.30
ข้าวดอ	0	0.33	0.28	0.30	0.30
	0.5	0.31	0.31	0.30	0.30
	1.0	0.30	0.23	0.30	0.28
พอคคาลี	0	0.26	0.26	0.25	0.26
	0.5	0.26	0.27	0.24	0.26
	1.0	0.26	0.26	0.27	0.26
		0.28	0.28	0.28	

$\operatorname{LSD}_{\mathrm{P}<0.05}=0.24$

ตารางที่ 36 ปริมาณฟอสฟอรัส ของข้าวเมื่อได้รับเกลือโศเดียมคลอไรด์ เป็นเวลา 14 วัน

พันธุ์้ำว	ปริมาณซิถิกอน(มิลลิโมล)	ปริมาณเกลือโซเดียมคลอไรด์(มิลลิโมล)			เฉลี่ย
		0	60	120	
		มก.คลอโรฟิลล์/ กรัม.น้ำหนักสด			
ขาวมะลิ	0	0.45	0.43	0.52	0.47
105	0.5	0.12	0.14	0.14	0.13
	1.0	0.14	0.16	0.14	0.14
ข้าวดอ	0	0.14	0.13	0.14	0.14
	0.5	0.14	0.16	0.13	0.14
	1.0	0.11	0.12	0.13	0.12
พอคคาสี	0	0.08	0.06	0.07	0.06
	0.5	0.06	0.07	0.06	0.06
	1.0	0.06	0.07	0.07	0.06
		0.14	0.15	0.16	

สรุปผลและวิจารณ์ผล

การศึกษาผลของเกลือโซเดียมคลอไรด์ระดับต่าง 7 ต่อการเจิริญเติบโตยองต้นกล้าข้าวร่วมกับการ่ได้รับชิลิกอน ผลการศึกษาทำให้พื้นที่ไบข้าวมีผลในทางลบ คือ เมื่อเพิ่มบริมาณเกลือโชเดียมทำให้พื้นที่ใบลดลงอย่างชัดเจน แต่เมื่อเพิ่ม ปริมาณจิลิกอนจะทำให้ช่วยลดการสูธสียพื้นที่ไบลง พันธุ์พอคคาลีและพันธุ์ขาวมะลิ 105 มีการตอบสนอง คือทำให้พื้นที่ใบ ลดลงเพียงเล็กน้อย เมื่อได้รับชิลิกอน ในระดับ 1 มิลลิโมล มีผลทำให้ค่า SLA ของข้าวขาวมะลิ 105 สูง โดยเฉลี่ย 3.98 มก /ตร.ซม เช่นเดียวกับพันธุ์พอคคาลี มีเฉลี่ย 3.22 มก/ ตร.ชม. และเมี่อได้รับเกลีอโซเดียมเป็นเวลา 14 วัน พันธุพอคคาลีึึ่ง เป็นพันธุ์ทนเกลือ จะการเพิ่มน้ำหนักใบสูขึ้น ส่วนพันโุ์ขาวมะลิ 105 ไม่มีการเปลี่ยนแปลง สำหรับข้าวดอ มีการปรับตัวทำ ให้เพิ่มน้ำหนักใบมากขึ้น จึงมีผลทำให้มีค่า SLA สูงขึ้น โดยเฉลี่ย 3.05 มก /ตร.ซม.

การสังเคราะห์แสงและการคายน้ำ มีผลจากการลดพื้นที่ใบ เมื่อมีเกตือใชเดียมสูงขึ้น ทำให้มีการสังเคราะห์แสงลด ลงอย่างมาก ในพันนุ์พอคคาลี โดยลดลงจาก 7.9 umole $\mathrm{CO}_{2} / \mathrm{cm}^{2} S$ เป็น 3.50 umole $\mathrm{CO}_{2} / \mathrm{cm}^{2} \mathrm{~S}$ ซึ่งเหมือนกันกับพันธุ์ ขาวมะลิ 105 แต่ลดลงน้อยกว่า สำหรับข้าวดอ ที่เป็นพันธุุ์พื้นเมือง มีการปรับตัวในสภาพมีเกลือได้ดี จะมีอัตราการ สังเคราะห์แสงที่ลดลงน้อยกว่า 2 พันธุ์ เนื่องจากการฉดลงของพื้นที่ใบน้อยกว่า

ปริมาณคลอโริฟลส์ทั้ง เอ และ บี มีผลทำให้ลดลงด้วย เมื่อเพิ่มปริมาณเกลือโซเดียม แต่เมื่อเพิ่มปริมาณศิสิกอน พอจะช่วยรักษาปริมาณคลอโริิลส์ได้บ้าง ส่วนปริมาณธาตุอาหารใในต้นข้าว ไนโตรเจนมีปริมาณเพิ่มมื้นเมื่อเพิ่มบริมาณ เกลือโซเดียมและซิลิกอนในช่วง 7 วันแรก แต่หลังจาก 7 วันแส้ว จะพบว่า ปริมาณไนโตรเจนลดลงในพันธุ์ขาวมะลิ 105 และ พันธุพอคคาลี ทั้งนีอาจมีผลจากการลดการคายน้ำและการสังเคราะห์แสง ทำให้รากดูดไนตตรเจนและธาตุอื่นๆ ได้น้อยลง เช่นเดียวกับปริมาณฟอสฟอรัส ก็มีปริมาณลดลงเช่นเดียวกัน เมื่อมีการเพิ่มปริมาณเกลือโชเดียมคลอไดด์สูงขึ้น

จึงพอสรุปได้ว่า การเพิ่มขึ้นของเกลือโชเดียมคลอไรด์ มีผลในเชิงลบกับต้นกล้าค่อนข้างมาก ยิ่งมีปริมาณแกลือ โซเดียมคลอไรด์มากก์ยิ่งสงผลมากขึ้น โดยมีผลต่อกาสสร้างราก อัตราสวนรากต่อลำต้น การลดลงของจำนวนใบเละพื้นที่ ใบ มีค่า SLA ลดลง จึงมีผลไปถึงการลดลงของการสังเคราะห์แสง การคายน้ำ และการดูดธาตุอาหารพืชลดลงตามไปด้วย ทั้งนี้ การเพิ่มปริมาณซิสิกอน จะช่วยบรรเทาผลกระทบจากเกลือโซเดียมคลอไรด์ โดยการช่วยทำให้ใบและรากชะลอการดูก ทำลายจากเกลือใชเดียมคลอไรด์ได้บ้าง

เอกสารอ้งอิง

กรมพัฒนาที่ดิน 2529 . วิธีเพิ่มผลผลิตข้ำวในพื้นที่ดินเค็ม วารสารพัฒนาที่ดิน 23 (254): 15-22

เกริก ปั้นเหน่งเพ็ชร่ 2531 ผลของเกลือที่มีต่อการเจิญเติบโตปละปริมาณคาร์ไบไฮเดรทในข้าว รายงานผลการวิจัย ศูนย์ ศึกษาค้นคว้าและพัฒนาเกษตรกรรมภาคตะวันออกเฉียงหนือ หน้า $72-75$

Charles-Edwards, D.A. 1982. Physiological determination of crop growth. Academic Presss. Sydney 161 P

Duby, R.S. 1985. Biochemicai change in germinating rice seeds under saline stress. Biochemica,physil, 77, 523-535.

Gomez, K.A., and Gomez, A.A. 1984. Statisical procedures for agricultural research. John Wiley sons. Inc. 680 P.

International Rice Research Institute. 1996. IRRISTATE for windows Ver. 4.

Kaufman ,P.B., Takeoka,Y., Carlson, T.J., et al 1979. Studies on silica deposition insugarcan using scanning electron microscopy, energy dispersive X - tay analysis, neutron actibation analysis and light microscopy. Phytomorphlogy, 29,185-193.

Lee, K.S., ahn,S.B. Rhee, G. B. , and Park, J.K. 1985. Studies of silica application to nursary beds on rice seeding growth. Res, Rep Rural Dev. Admin. Plant Environment, Mycol, Farm Product Utilization., 27(1), 23-27.

Limpinuntana,V. 1978. Physiological aspectis of adapatatun of rice (Oryza sativa. L.) and barley (Hordeum vulgare L.) to low O2 concentations in the ryot environment . Ph.D. Thesis. University of Western Australia.

Sheoran,I.S., and O.P.Garg . 1978. Effect of salinity on the activities of Rnase, Dnase and protease during germination and early seeding growth of mtng bean. Physiol. Plant. 44,171-174.

Takashashi, E. Arai, K., and Kasida, Y. 1966. Studies on the physiogical role of silicon in crop plant(Part 14). Effect of silicon on CO2 assimilation and translocationof assimilate to panicle. J.Sci. Soil Manure, Jpn, 37,594-598.
$\therefore \quad$ Yoshida, S., forno, D. A., Cock, J. H. and Gomez, K. A. 1976. Laboratory manual for physiological studies of rice . The international Rice Research Institute. LosBaños, Laguna, Philipines. 266 P .

[^0]: 1. ภาควิชิาพืลไร่ คณะเกษตรศาตร์ มหาวิทยาจัยฺุบรงาชุานี
 2. ตาคิิาาีวภาพ คณะวิทยาศาตร์ มหาวิทยาลัยคุบคราสภานี
