อิทธิพลของปุ๋สน้ำฟอสฟอรัสที่มีผลต่อผลผลิตมะเขือเทศในระบบน้ำหยด
 Effect of Liquid Phosphorus Fertilizer on Tomato Yield under Drip Irrigation

โดย

นายบุญส่ง เอกพงษ์ นายพิทักษ์ สิงห์ทองลา นายรักเกียรติ แสนประเสริฐ

ได้รับทุนอุดหนุนการวิจัยจากสำนักงบประมาณ ประจำปีงบประมาณ 2541 รหัสโครงการวิจัย 04099311-0001

กิตติกรรมประกาศ

คณะผู้วิจัยขอขอบคุณสำนักงบประมาณ ที่ให้การสนับสนุนทุนอุดหนุนการวิจัย ประจำปี พ.ศ. 2541 และคณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี ที่ให้การสนับสนุนงานวิจัยครั้งนี้

ขอขอบคุณผู้ช่วยศาสตราจารย์ ดร. กิตติ วงส์พิเชษฐ ดร. พรพิมล สุริยจันทราทอง Dr. Michael Hare ที่กรุณาให้คำแนะน้ำต่าง ๆ อันเป็นประโยชน์ต่อการทำงานวิจัย

ขอขอบคุณเจ้าหน้าที่ของสำนักงานไร้ฝึกทดลองและห้องปฏิบัติการกลาง คณะเกษตรศาสตร์ทุก ท่านที่ให้ความร่วมมือกับคณะนักวิจัยเป็นอย่างดี

บทคัดย่อ

อิทธิพลของปุ่ยน้ำฟอสฟอรัสที่มีผลต่อผลผลิตมะเขือเทศในระบบน้ำหยด

Effect of Liquid Phosphorus Fertilizer on Tomato Yield under Drip Irrigation

> โดยบุญส่ง เอกพงษ゙/ พิทักษ์ สิงห์ทองลา ${ }^{1 /}$ รักเกียรติ แสนประเสริฐ²/

การศึกษาอิทธิพลของปุ๋ยน้ำฟอสฟอรัสที่มีผลต่อผลผลิตมะเขือเทศพันธุ์ TW-4ในระบบน้ำหยดที่ คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราซธานีระหว่างวันที่ 15 ตุลาคม $2540-20$ กุมภาพันธ์ 2541 วาง แผนการทดลองแบบ Spit-Plot ประกอบด้วย 4 ซ้ำ แต่ละช้ำประกอบด้วย 2 main plots คือ การให้น้ำ แบบหยดทุกวัน และการให้น้ำแบบหยดทุก 4 วัน แต่ละ main plot ประกอบด้วย 4 sub plots ได้แก่ การ ให้ปุ่ยุฟอสฟอรัสในรูปของกรดฟอสฟอริด 85% ในอัตรา $0 \quad 10 \quad 20$ และ 40 กก. /ไร่ ของ $P_{2} \mathrm{O}_{5}$. ทุก หน่วยการทดลองให้น้ำในปริมาตรที่เท่ากัน.

จากผลการศึกษา พบว่าผลผลิตมะเขือเทศสีแดงต่อไร่ จำนวนผลต่อต้น และจำนวนดอกต่อช่อ เนื่องจากอิทธิพลของปุ๋ยน้ำฟอสฟอรัสในอัตรา 1020 และ 40 กก./ไร่ ไม่มีความแตกต่างกันอย่างมีนัย สำคัญทางสถิติ แต่มีความแตกต่างกับปุยยน้ำฟอสฟอรัสในอัตรา 0 กก. ไไ่ ส่วนน้ำหนักต่อผล จำนวนกิ่ง ต่อต้น และความสูงต้น ที่ระดับปุ๋ยฟอสฟอรัสทุกอัตรา ไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ การให้น้ำแบบหยดทุกวัน และการให้น้ำแบบหยดทุก 4 วัน ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ เมื่อคิดถึงผลตอบแทนทางเศรษฐกิจอาจสามารถสรุปได้ว่า การให้ปุยน้ำฟอสฟอรัสในอัตรา 10 กก. ไร่ ร่วมกับการให้น้ำแบบหตดทุก 4 วัน ให้ผลตอบแทนที่คุ้มค่ากว่าการให้ปุ๋ยน้ำฟอสฟอรัสในอัตราอื่น ๆ.

คำหลัก มะเขือเทศ ปุ๋ยฟอสฟอรัส ระบบน้ำหยด

[^0]
Abstract

\section*{Effect of Liquid Phosphorus Fertilizer on Tomato Yield under Drip Irrigation} by Boonsong Ekkapong ${ }^{1 /}$ Pitak Singthongla ${ }^{1 /}$ Rugkeart Sanprasert ${ }^{2 /}$

An experiment to study the effect of liquid phosphorus fertilizer on tomato yield under drip irrigation was established at Faculty of Agriculture, Ubon Ratchathani University, between October 15 th 1997 - February 20th 1998. The experiment was arranged in spitplot design with 4 replications. Each replication had two main plots, irrigated every day and irrigated every 4 days. Each main plot had 4 sub pots with 4 levels of liquid phosphorus fertigation in the form of phoshporic acid 85% at $0,10,20$ and $40 \mathrm{~kg} / \mathrm{rai}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$. All treatments were irrigated with the same volume of water.

An experiment showed that yield of red tomatoes/rai, number of fruit/plant and number of flower/trusses at 10,20 and $40 \mathrm{~kg} /$ rai of phosphorus were not significant but were significantly higher than $0 \mathrm{~kg} / \mathrm{rai}$. All levels of phosphorus had no effect on weight/fruit, number of lateral/plant and plant height. Irrigation every day and every 4 days had no effect. However, fertigation at $10 \mathrm{~kg} / \mathrm{rai}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ with irrigation every 4 days were economically higher and more efficient than other level of $\mathrm{P}_{2} \mathrm{O}_{5}$.

KEY WORDS tomato, phosphorus fertilizer, drip irrigation
${ }^{1 /}$ Department of Horticulture, Faculty of Agriculture, Ubon Ratchathani University, Thailand
${ }^{2 \prime}$ The Office of Field Experimentation and Central laboratory, Faculty of Agriculture, Ubon Ratchathani University,Thailand

สารบัญเรื่อง

บทคัดย่อ III
ABSTRACK IV
สารบัญตาราง VI
สารบัญรูป. VII
บทนำ 1
อุปกรณ์และวิธีการ2
วิจารณ์ 3
สรุปผลการทดลอง4
เอกสารอ้างอิง 5
ภาคผนวก 10

สารบัญตาราง

ตารางที่ 1 ผลผลิตมะเขือเทศผลแดงสดเฉลี่ยต่อไร่เนื่องจากอิทธิพลของอัตราการให้ปุ่ยน้ำฟอสฟอรัส และรอบเวรของการให้น้ำแบบหยด (กิโลกรัม) ... 6
ตารางที่ 2 จำนวนผลเฉลี่ยต่อต้นเนื่องจากอิทธิพลของอัตราการใหุ้่ยน้ำฟอสฟอรัส และรอบเวรของการให้น้ำแบบหยด (ผล)
ตารางที่ 3 จำนวนตอกต่อช่อเฉลี่ยเนื่องจากอิทธิพลของอัตราการให้ปุ้ยน้ำฟอสฟอรัส และรอบเวรของการให้น้ำแบบหยด(ดอก)
ตารางที่ 4 น้ำหนักต่อผลเฉลี่ยเนื่องจากอิทธิพลของอัตราการให้ปุ๋ยน้ำฟอสฟอรัส และรอบเวรของการให้น้ำแบบหยด (กรัม)
ตารางที่ 5 จำนวนกิ่งต่อต้นเฉลี่ยเนื่องจากอิทธิพลของอัตราการให้ปุ้ยน้ำฟอสฟอรัส และรอบเวรของการให้น้ำแบบหยด (กิ่ง)
ตารางที่ 6 ความสูงของต้นเฉลี่ยเนื่องจากอิทธิพลของอัตราการให้ปุ่ยน้ำฟอสฟอรัส และรอบเวรของการให้น้ำแบบหยด (เมตร)

สารบัญรูป

รูปที่ 1 ความเครียดของน้ำที่ระดับความลีกราก 30 เซนติเมตร... 9

อิทธิพลของปุ๋ยน้ำฟอสฟอรัสที่มีผลต่อผลผลิตมะเชือเทศในระบบน้ำหยด โดย บุญส่ง เอกพงษ์/ พิทักษ์ สิงห์ทองลา ${ }^{1 /}$ และรักเกียรติ แสนประเสริฐ ${ }^{2 /}$

บทนำ

มะเขือเทศ(Lycopersicon esculentum)เป็นพืชผักตระกูลเดียวกับพริกและมะเขือ (Solanaceae) ที่นิยมปลูกพืชหนึ่งโดยใช้รับประทานผลสด ปรุงอาหาร และทำผลิตภัณฑ์ต่าง ๆในโรงงาน อุตสาหกรรม อีกทั้งยังเป็นพืชที่มีคุณค่าทางอาหารสูง โดยเฉพาะมีวิตามินเอ และวิตามินชี แหล่งปลูก มะเขือเทศที่สำคัญของประเทศไทยอยู่ที่ภาคตะวันออกเฉียงเหนือโดยในปี พ.ศ. 2534-35 ผลผลิตมะเขือ เทศสดเพื่อการแปรรูปในโรงงานอุตสาหกรรมต่าง ๆในภาคตะวันออกเฉียงเหนือ มีผลผลิตรวม 153,116 ตัน ซึ่งเป็นผลผลิตที่มากกว่าภาคอื่น ๆของประเทศไทย ทั้งนี้เนื่องจากมีพื้นที่การเพาะปลูกเป็นจำนวนมาก ถึง 32039.33 ไร่ แต่มีผลผลิตเฉลี่ยต่อไร่ต่ำ คือ 4.78 ตัน/ไร่(สุชาติ,2537) ทั้งนี้จากการเพาะปลูกกระทำ กันส่วนใหญ่ในพื้นที่ที่เป็นที่นาหลังการเก็บเกี่ยวข้าวซึ่งมีสภาพดินค่อนข้างเป็นดินทราย มีธาตุฟอสฟอรัส ในดินต่ำเฉลี่ย 0.06 ส่วนในล้านส่วน (มนัญญา,2536) ฟอสฟอรัสเป็นธาตุอาหารที่มีผลโดยตรงต่อการ เจริญเติบโตและผลผลิต จากรายงานพบว่ามะเขือเทศที่ได้รับฟอสฟอรัสในปริมาณที่พอเพียงจะำให้รากมี การเจริญเติบโตอย่างรวดเร็ว เพิ่มจำนวนดอก คุณภาพของผลเช่น สี ความแน่นเนื้อ และผลผลิตของ มะเขือเทศให้สูสขึ้น (Von Uexkull 1978)

นอกจากนี้ ระบบการจัดการการให้น้ำมีผลโดยตรงต่อการเจริญเติบโตของพืช โดยทั่วไปการให้น้ำ แก่พืชสามารถให้ได้หลายวิธี เซ่น ปล่อยให้น้ำไหลท่วม ให้แบบร่อง แบบฉีดฝอยและแบบน้ำหยด (มนตรี,2532) สำหรับการปลูกมะเขือเทศโดยทั่วๆไปนิยมการให้น้ำแบบร่องเนื่องจากเป็นวิธีที่ประหยัด ค่าใช้จ่ายและทำได้ง่าย โดยเฉพาะพื้นที่ที่ใช้สำหรับปลูกมะเขือเทศซึ่งเป็นที่นาในเขตซลประทาน ปัจจุบัน ในประเทศที่พัฒนาแล้วแสดงให้เห็นว่าการให้น้ำมะเขือเทศแบบหยดเป็นการให้น้ำที่มีประสิทธิภาพสูงและ ทำให้ผลผลิตเพิ่มขึ้น(David et al. 1985) ความได้เปรียบของการให้น้ำแบบหยดคือสามารถให้น้ำและปุ๋ย เฉพาะบริเวณราก ซึ่งพืชจะได้รับธาตุอาหารโดยตรง ได้รับน้ำสม่ำเสมอ ลดแรงตีงผิวของน้ำในดิน ลดความ เข้มข้นของเกลือ ทำให้มะเขือเทศดูดธาตุอาหาร และน้ำจากดินไปใช้ได้ง่ายขี้น ในการให้น้ำและปุ๋ยยผ่าน ระบบน้ำหยดนอกจากพืชได้รับน้ำและปุ่ยสม่ำเสมอแล้ว ยังช่วยลดการสูญเสียของน้ำจากการระเหย ลดการ ชะล้าง ลดการระบายน้ำส่วนเกินทิ้ง ทำให้การใช้น้ำมีประสิทธิภาพ ในทางตรงกันข้ามหากให้น้ำในปริมาณ มากเกินไปจะทำให้พืชขาดอัอกซิเจน นอกจากนี้ยังทำให้เกิดการชะล้างธาตุอาหารออกจากบริเวณเขตราก พืชลงสู่ดินชั้นล่าง ซึ่งมีผลทำให้ผลผลิตมะเขือเทศลดลงได้(Phene et al, 1988) Phene et $a l, 1987$ ได้ แสดงให้เห็นว่าการให้ปุ่ยฟอสฟอรัสผ่านระบบน้ำหยดทุก ๆวันเปรียบเทียบกับวิธีการให้ปุียฟอสฟอรัสรอง พื้นก่อนการปลูกมะเขือเทศโดยวิธีหยอดเมล็ด(Direct seedling) พบว่าการให้ปุยฟอสฟอรัสผ่านระบบน้ำ หยดทุก ๆวันให้ผลผลิตมะเขือเทศที่สูงกว่า

วัตถุประสงค์ของการทดลองในครั้งนี้

1.ศึกษาอัตราของปุ่ยน้ำฟอสฟอรัสที่เหมาะสมต่อการเจริญเติบโตและผลผลิตของมะเขือเทศ
2.ศึกกษารอบเคนของการให้น้ำแบบหยดที่เหมาะสมสำหรับการเพาะปลูกมะเขือเทศ

อุปกรณ์และวิธีการ
ได้ทำการศึกษอิทธิพลของปุ๋ยน้ำฟอสฟอรัสที่มีผลต่อผลผลิตมะเขือเทศในระบบน้ำหยดที่คณะ เกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี ตำบลศรีไค อำเภอวารินชำราบ จังหวัดอุบลราชธานี ระหว่างวันที่ 15 ตุลาคม $2540-20$ มีนาคม 2541 โดยวางแผนการทดลองแบบ Spit-Plot ประกอบด้วย 4 ช้ำ แต่ละ ช้ำประกอบด้วย 2 main plots คือ การให้น้ำแบบหยดทุกวัน และการให้น้ำแบบหยดทุก 4 วัน แต่ละ main plot ประกอบด้วย 4 sub plots ได้แก่ การให้ปุ๋ยฟอสฟอรัสในรูปของกรดฟอสฟอริค 85% ในอัตรา 010 20 และ 40 กก. ของ $\mathrm{P}_{2} \mathrm{O}_{5}$ /ไร่ รวมเป็น 8 treatment combinations

นำเมล็ดมเเขือเทศพันธุ์ TW-4 ซึ่งได้มาจากบริษัทเกษตรอุตสาหกรรมอีสาน จำกัด จังหวัด หนองคาย มาทำการเพาะกล้าในถาดเพาะกล้าที่มีวัสดุปลูกประกอบด้วยขุยมะพร้าว และขี้เถ้าแกลบใน อัตราส่วน $1: 1$ โดยหยอดเมล็ดจำนวน 1 เมล็ดต่อหลุม เมื่อกล้าอายุได้ 30 วันจึงนำไปย้ายปลูกลงในแปลง ทดลอง

ก่อนปลูก 2 สัปดาห์ ได้ทำการหว่านปูนขาวในแปลงปลูก อัตรา 200 กิโลกรัม/ไร่ ทำการไถและ พรวนดิน จากนั้นทำการยกแปลงให้สูง 25 เซนติเมตร หลังแปลงกว้าง 1.0 เมตร ระหว่างแปลงปลูก 50 เซนติเมตร และใส่ปุ่ยรองพื้นสูตร $15-15-15$ ในอัตรา 50 กิโลกรัม/ไร่ ทำการวางระบบน้ำหยด โดยใช้ ท่อน้ำหยดขนาด 16 มิลลิเมตร วางอยู่ตรงกลางบริเวณหลังแปลง ระยะห่างระหว่างหัวน้ำหยด 50 ชม. หัว น้ำหยดให้น้ำอัตรา 2 สิตร/ชั่วโมง แล้วให้น้ำจนแปลงปลูกมีความชี้น 100% ในวันที่ 15 พฤศจิกายน 2540 จีงทำการย้ายกล้าลงปลูกในแปลงตามแนวความยาวของท่อน้ำหยด มีระยะปลูก 25 เซนติเมตร ปลูกเป็นแบบแถวเดี่ยวต่อแปลง และหลังย้ายปลูก 21 วันเริ่มให้ปุ่ยผ่านระบบน้ำหยด โดยให้ปุ๋ยสูตร $46-0-0$ ในอัตรา 30 กิโลกรัม/ไร่ แบ่งใส่ในอัตราส่วนที่เท่ากันทุกวันติดต่อกันเป็นเวลา 30 วัน และปุ๋ย สูตร $13-0-46$ อัตรา 60 กิโลกรัม/ไร่ แบ่งใส่ในอัตราส่วนที่เท่ากันทุกวันติดต่อกันเป็นเวลา 60 วัน เช่น กัน ส่วนปุ๋ยฟอสฟอรัสใส่ตามอัตราที่กำหนดหลังย้ายปลูก 30 วัน ในอัตราส่วนที่เท่ากันทุกวันติดต่อกัน เป็นเวลา 20 วัน

บันทึกข้อมูลลักษณะต่าง ๆของมะเขือเทศ ได้แก่ ความสูงของต้น และจำนวนกิ่ง/ต้น เมื่อมะเขือ เทศมีอายุได้ 45 วัน จำนวนตอก/ช่อ เมื่อมะเขือเทศมีอายุตั้งแต่ $25-60$ วัน จำนวนผล/ต้น น้ำหนัก/ผล และผลผลิต/ ไร่ เมื่อมะเขือเทศมีอายุได้ 80 วัน 90 วัน และ100วัน นับจากวันเพาะปลูกตามลำดับ เปรียบ เทียบค่าเฉลี่ยโดยใช้ Least Significant Difference (LSD)

ผลการทดลองและวิจารณ์

จากการศึกษาการให้ปุ๋ยน้ำฟอสฟอรัสกับมะเขือเทศพบว่าปุ๋ยน้ำฟอสฟอรัสในอัตรา $10 \quad 20$ และ 40 กก. ไร่ ต่างให้ผลผลิตมะเขือเทศผลแดงสดต่อไร่ (ตารางที่1) จำนวนผลต่อต้น (ตารางที่2)และ จำนวนดอกต่อช่อ (ตารางที่ 3) ไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ แต่มีความแตกต่างกับปุ๋ย น้ำฟอสฟอรัสในอัตรา 0 กก. ไร่ อย่างมีนัยสำคัญ สาเหตุที่ทำให้ผลผลิตมะเขือเทศเพิ่มขึ้นเมื่อเพิ่มอัตรา ปุ๋ยมากขึ้นเนืองมาจากมะเขือเทศสามารถสร้างจำนวนดอกที่เพิ่มขึ้น ดังนั้นจึงมีผลทำให้จำนวนผลมะเขือ เทศเพิ่มขึ้น และส่งผลให้มีผลผลิตเพิ่มขึ้นตามมา ซึ่งสอดคล้องกับรายงานของ Von Uexkull 1987 ราย งานว่าการให้ปุ๋ยฟอสฟอรัสในอัตราที่สูงจะทำให้รากมะเขือเทศมีการเจริญเติบโตได้อย่างรวดเร็วเพิ่มประ สิทธิภาพการใช้น้ำและธาตุอาหารอื่น ๆในพืซ ฟอสฟอรัสมีผลโดยตรงต่อการพัฒนาดอกและจำนวนดอก การขาดฟอสฟอรัสเป็นเวลา 10 วันจะทำให้จำนวนดอกลดลงอย่างรวดเร็ว และในการทดลองของ Phene et al, 1988 พบว่าการใหปุ๋ยน้ำฟอสฟอรัสในระบบน้ำหยดในอัตรา 10.72 กก./ไร่ ให้ผลผลิตมะเขือเทศ สูงสุด และไม่แตกต่างกับปุ๋ยฟอสฟอรัสในอัตรา 21.44 กก.ノไร่ แต่แตกต่างกับการให้ปุ๋ยฟอสฟอรัสใน อัตรา 0 กก. ไร่. จากการทดลองการให้ปุ๋ยฟอสฟอรัสในอัตรา 40 กก./ไร่ ถึงแม้ว่าจะให้ผลผลิตมะเขือ เทศในอัตราที่ทำให้ผลผลิตสูงสุด 7221.3 กก./ไร่ แต่เมื่อเปรียบเทียบกับปุ๋ยฟอสฟอรัสที่อัตรา 10 กก./ไร่ ซึ่งให้ผลผลิตมะเขือเทศ 6732.8 กก./ไร่ และไม่แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติก็ ตาม แต่ในแง่ของเศรษฐกิจแล้ว การให้ปุ๋ยน้ำฟอสฟอรัสในอัตรา 10 กก./ไร่ ดังกล่าวน่าจะเป็นอัตราที่ เหมาะสมและคุ้มค่าในแง่ของการลงทุน ทั้งนี้เนื่องจากปุ๋ยน้ำฟอสฟอรัสมีราคาสูง $40 บ า ท / ก ก$. เมื่อเปรียบ เทียบจากส่วนต่างระหว่างผลผลิตจากอัตราปุ๋ยทั้ง 2 ระดับ ในขณะที่ราคามะเขือเทศรับประกันที่หน้าโรง งานราคา 1.40 บาท/ กก. ส่วนปุ๋ยฟอสฟอรัสในอัตรา 01020 และ 40 กก./ไร่ ไม่มีผลต่อน้ำหนักต่อผล (ตารางที่ 4) จำนวนกิ่งต่อต้น(ตารางที่5) และความสูงต้น(ตารางที่ 6) อย่างมีนัยสำคัญทางสถิติ ทั้งนี้ เนื่องมาจากปุ๋ยฟอสฟอรัสไม่มีผลต่อ ความสูง จำนวนกิ่ง และจำนวนผล/ต้น (Von Uexkull 1987)

การให้น้ำแบบหยดทุกวัน และการให้น้ำแบบหยดทุก 4 วัน ทั้งระดับผลผลิตสด/ไร่(ตา รางที่ 1) จำนวนผล/ต้น(ตารางที่2) จำนวนดอกต่อช่อ(ตารงที่3) น้ำหนักต่อผล(ตารางที่ 4) จำนวนกิ่ง ต่อต้น(ตารางที่5) และความสูงต้น(ตารางที่6) ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติตามลำดับ ทั้ง นี้เนื่องมาจากความสามารถในการอุ้มน้ำของดินจากการให้น้ำทั้ง 2 วิธีสามารถรักษาความชื้นให้อยู่ในระดับ รากพืชที่สามารถนำน้ำที่เป็นประโยชน์ไปใช้ได้ โดยดูจากค่าความเครียดของน้ำในดินที่มีการให้น้ำทั้ง 2 วิธี มีค่าใกล้เคียงกัน (รูปที่ 1) ซึ่งสอดคล้องกับรายงานของอิทธิสุนทร 2539 ที่รายงานว่าความเครียดของน้ำ ในดินที่เหมาะสมอยู่ระหว่าง $10-30$ centimeter bars. และเมื่อคำนวณความต้องการการใช้น้ำของพืชที่ ระดับความลีก 30 เซนติเมตร ในดินชุด loamy sand ที่ใซ้ในการทดลอง พบว่าการให้น้ำทั้ง 2 แบบดิน สามารถอุ้มน้ำไว้ได้เพียงพอที่พืซสามารถดึงน้ำที่เป็นประโยชน์ไปใช้ได้ตามวิธีของ วิทยา และบัญญัติ, 2538; Clark etc al. 1994 จากตารางที่ 1 การให้น้ำแบบหยดทุกวันให้ผลผลิตสูงกว่าการให้น้ำแบบ หยดทุก 4 วัน แต่ในแง่ของการจัดการการให้น้ำแบบหยดทุก 4 วันจะใช้แรงงานในปริมาณที่น้อยกว่า ดัง นั้นการให้ปุ๋ยน้ำฟอสฟอรัสในอัตรา 10 กก./ไร่ พร้อมกับการให้น้ำแบบหยดทุก 4 วันน่าจะให้ประสิทธิ ภาพสูง และให้ผลตอบแทนที่คุ้มค่าทางเศรษฐกิจ

สรุปผล

การให้ปุ๋ยฟอสฟอรัสพร้อมระบบน้ำหยด ไม่ว่าจะเป็นการให้ปุ่ยในอัตรา 1020 และ 40 กิโลกรัม/ ไร่ ต่างให้ผลผลิตมะเขือเทศแดงสด จำนวนผลต่อต้น และจำนวนดอกต่อต้น ที่สูงกว่าการให้ปุ้ยฟอสฟอรัส ในอัตรา 0 กก. ไร่ . การให้ปุ๋ยฟอสฟอรัสที่อัตรา 20 และ 40 กิโลกรัม/ไร่ แม้ว่าจะมีแนวโน้มให้ผลผลิต เฉลี่ยที่สูงกว่าปุ๋ยฟ่อสฟอรัสอัตรา 10 กก. ไไร่ก็ตาม แต่เมื่อพิจารณาถึงต้นทุนการผลิตแล้วการให้ปุ้ย ฟอสฟอรัสที่อัตรา 10 กก./ไร่ น่าจะเป็นอัตราที่เหมาะสม และคุ้มคค่าทางเศรษธกิจจมากที่สุด. ส่วนการให้ น้ำแบบหยดทุกวัน และ 4 วันต่อครั้งในการปลูกมะเขือเทศ ต่างให้ผลไม่มีความแตกต่างกันทัังในลักษณะ ของผลผลิตสด จำนวนผลต่อต้น จำนวนดอกต่อช่อ น้ำหนักต่อผล จำนวนกิ่งต่อต้น และความสูงต้น ถึง อย่างไรก็ตามในลักษณะของการจัดการ การให้น้ำแบบยยดทุก 4 วัน น่าจะเป็นทางเลือกที่ดีสีาหรับ เกษตรกรในแง่ของการประหยัดการใช้แรงงาน และลดต้นทุนการผลิต

เอกสารอ้างอิง

1. มนตรี ค้ำชู. 2532 .หลักการชลประทานแบบหยด การออกแบบ และการแก้ปัญหา.ภาควิชาวิศวกรรม ชลประตาน,คณะวิศวกรรมศาสตร์,มหาวิทยาลัยเกษตรศาสตร์.กรุงเทพฯ. 224 น.
2. มนัญญา อุ่นศิริพันธ์. 2536. การเพิ่มประสิทธิภาพของปุ๋ยฟอสฟอรัสจากปุ๋ยเคมีโดยใช้ร่วมกับปุ๋ยหมัก ในดินเนื้อหยาบ.วิทยานิพนธ์.ภาควิชาปฐพีศาสตร์,คณะเกษตรศาสตร์,มหาวิทยาลัย เกษตรศาสตร์. 150 น.
3. สุชาติ นิลวาส. 2537.มะเขือเทศกับอุตสาหกรรมน้ำมะเขือเทศเข้มข้น.เคหเกษตร.18(5):139-143
4. วิทยา ตั้งก่อสกุล และบัญญูติ เศรษฐริติ. 2538. หลักการเบื้องต้น การออกแบบระบบการให้น้ำในการ จัดสวน.เอกสารประกอบการฝีกอบรม.คณะเกษตร,มหาวิทยาลัยเกษตรศาสตร์. กรุงเทพฯ.95น.
5. อิทธิสุนทร นันทกิจ. 2539.ผลของการดวบคุมความเครียดของน้ำในดินโดยระบบการให้น้ำอัตโนมัติ. รายงานการประชุมวิชาการไม้ดอกไม้ประดับแห่งชาติ ครั้งที่ 2.คณะอนุกรรมการประสาน งานวิจัยและพัฒนาไม้ดอกไม้ประดับ.สำนักงานคณะกรรมการวิจัยแห่งชาติ.147-154.
6. Clark,G.A., C.D.Stanley, A.G. Smajstrla, and F.S.Zazueta.1994.Microirrigation Design Considerations for Vegetable Production. Plasticulture. An American Society for Horticultural Science Seminar .Lexington, Kentucky.6-11
7. David,K.R., C.J., Phene, R.L.,McCormick, R.B. Hutmacher, and D.W.Meek.1985.Trickle Frequency and Installation Depth Effect on Tomatoes.Pages.798-804in:Proc. Thirt Internatinal Drip/Trickle Irrigation Congress. Fresno. California. Vol.2.ASAE Publ.No.10-18
8. Phene, C.J., K.R. David, R.B. Hutmacher, and R.L.McCormick .1987. Advantages of Subsurface Irrigation for Processing Tomatoes. Acta Horticulturea 200:101-113
9. Phene, C.J., K.R.David, R.L. McCormick, R.B. Hutmacher and J.D.Pierrc.1988. Waterfertility Management for Subsurface Drip Irrigated Tomatoes. Asian Vegetable Research and Development Center. Tomato and Pepper Production in the Tropics. International Symposium on Integrated Management Practices. Taipei, Taiwan, Republic of China .P323-338.
10. Von Uexkull,H.R. 1978.Tomato:nutrition and fertilizer requirements in the tropic. Asian Vegetable Research and Development Center. Proceeding of the $1^{\text {st }}$ International Symposium on Tropical Tomato. Taiwan, Republic of China. P65-78.

ตารางที่ 1 ผลผลิตมะเขือเทศผลแดงสดเฉลี่ยต่อไร่เนื่องจากอิทธิพลของอัตราการให้ปุ๋ยน้ำฟอสฟอรัส และ รอบเวรของการให้น้ำแบบหยด (กิโลกรัม)

อัตราการให้ปุ่ยน้ำ ฟอสฟอรัส	รอบเวรของการให้น้ำแบบหยด		
	ให้น้ำทุกวัน	ให้น้ำทุก 4 วัน	S-mean
0 กก./ไร่	4949.3	5105.1	$5026.1 \mathrm{~b}^{1 /}$
10กก./	6822.4	6645.3	6732.8a
20กก./ไร่	6971.7	7072.0	7020.8a
40กก./ไร่	7306.6	7136.0	7221.3a
M-mean	6513.0a	6489.6a	6581.3
$\text { c.v. }=19.8 \%$ ${ }^{1 /}$ ตัวเลขที่ตามหลังด้วย ความเชื่อมั่น 95%	อักษรที่เหมือน	ตกต่างทางสถิติ	คราะห์แบบ

ตารางที่ 2 จำนวนผลเฉลี่ยต่อต้นเนื่องจากอิทธิพลของอัตราการให้ปุ๋ยน้ำฟอสฟอรัส และรอบเวรของการ ให้น้ำแบบหยด (ผล)

อัตราการให้ปุยน้า ฟอสฟอรัส	รอบเวรของการให้น้ำแบบหยด		
	ให้น้ำทุกวัน	ให้น้ำทุก 4 วัน	S-mean
0 กก./ไร่	24.9	24.1	$24.5 \mathrm{~b}^{1 /}$
10 กก./ไร่	33.4	26.6	30.0a
20กก./ไร่	33.1	34.5	33.8a
40กก./ไร่	37.5	31.6	34.5a
M-mean	32.2a	29.2a	30.7
c.v. $=18.5 \%$ ${ }^{1 /}$ ตัวเลขที่ตามหลังด้ ความเซื่อมั่น 95%	กษรที่เหมือน	เตกต่างทางสถิติ	ราะห์แบ

ตารางที่ 3 จำนวนดอกต่อช่อเฉลี่ยเนื่องจากอิทธิพลของอัตราการให้ปุ๋ยน้ำฟอสฟอรัส และรอบเวรองการ ให้น้ำแบบหยด(ดอก)

อัตราการให้ ปุ ยน้ำ ฟอสฟอรัส	รอบเวรของการให้น้ำแบบหยด		
	ให้น้ำทุกวัน	ให้น้ำทุก 4 วัน	S-mean
0 กก./ไร่	5.6	5.4	$5.5 \mathrm{~b}^{1 /}$
10 กก./ไร่	5.9	5.9	5.9 a
20 กก./ไร่	5.9	5.6	5.9 a
40 กก./ไร่	6.0	5.8	6.0 a
M-mean	5.9 a	5.8	

c.v. $=3.8 \%$

1/ ตัวเลขที่ตามหลังด้วยอักษรที่เหมือนกันไม่มีความแตกต่างทางสถิติจากการวิเคราะห์แบบ LSD ที่ระดับ ความเชื่อมั่น 95%

ตารางที่ 4 น้ำหนักต่อผลเฉลี่ยเนื่องจากอิทธิพลของอัตราการให้ปุ๋ยน้ำฟอสฟอรัส และรอบเวรของการให้ น้ำแบบหยด (กรัม)

อัตราการให้ ปุยน้้ ฟอสฟอรัส	รอบเวรของการให้น้ำแบบหยด		
	ให้น้ำทุกวัน	ให้น้ำทุก 4 วัน	S-mean
0 กก./ไร่	54.7	49.6	$52.1 \mathrm{a}^{1 /}$
10กก./ไร่	55.8	54.6	55.2a
20กก./ไร่	55.9	56.1	56.0a
40กก./ไร่	58.6	58.3	58.5a
M-mean	56.3a	54.6a	55.4
c.v. $=9.9 \%$			

1" ตัวเลขที่ตามหลังด้วยอักษรที่เหมือนกันไม่มีความแตกต่างทางสถิติจากการวิเคราะห์แบบ LSD ที่ระดับ ความเชื่อมั่น 95%

ตารางที่ 5 จำนวนกิ่งต่อต้นเฉลี่ยเนื่องจากอิทธิพลของอัตราการให้ปุ่ยน้ำพอสฟอรัส และรอบเวรของการให้ น้ำแบบหยด (กิ่ง)

อัตราการให้ ปุ ย น้ำ ฟอสฟอรัส	รอบเวรของการให้น้ำแบบหยด		
	ให้น้ำทุกวัน	ให้น้ำทุก 4 วัน	S-mean
0 กก./ไร่	7.7	6.8	$7.3 \mathrm{a}^{1 /}$
10 กก./ไร่	8.3	7.0	7.6 a
20 กก. $/ ไ ร ่ ~$	7.4	7.3	7.3 a
40 ก. $/$ ไร่	8.4	6.8	7.6 a
M-mean	7.3 a	7.0 a	7.5

c.v. $=7.3 \%$
${ }^{1 /}$ ตัวเลขที่ตามหลังด้วยอักษรที่เหมือนกันไม่มีความแตกต่างหางสลิติจากการวิเคราะห์แบบ LSD ที่รรดับ ความเชื่อมั่น 95%

ตารางที่ 6 ความสูงของต้นเฉลี่ยเนื่องจากอิทธิพลของอัตราการให้ปุ่ยน้ำฟอสฟอรัส และรอบเวรของการให้ น้ำแบบหยด (เมตร)

	รอบเวรของการให้น้ำแบบหยด		
อัตราการให้ปุ่ยน้า ฟอสฟอรัส	ให้น้ำทุกวัน	ให้น้ำทุก 4 วัน	S-mean
0 กก./ไร่	0.88	0.88	$0.88 \mathrm{a}^{1 /}$
10 กก./ไร่	0.92	0.83	0.87a
20กก./ไร่	0.85	0.78	0.82a
40กก./ไร่	0.90	0.82	0.86a
M-mean	0.89a	0.83a	0.86

c. $\mathrm{v} .=8.7 \%$
${ }^{1 /}$ ตัวเลขที่ตามหลังด้วยอักษรที่เหมือนกันไม่มีความแตกต่างทางสถิติจากการวิเคราะห์แบบ LSD ที่ระดับ ความเชื่อมั่น 95%

รปที่ 1 ความเครียดของน้ำที่ระดับความลึกราก 30 เซนติเมตร

รูปที่ 2 มะเขือเทศพันธุ์ TW-4

ภาคผนวก

ตารางภาคผนวกที่ 1 ข้อมูลวิเคราะห์ดินของสถานที่ทำการทดลอง*

ลักษณะทางกายภาพ

เนื้อดิน	loamy san
ลักษณะทางเคมี	
$\mathrm{Ph}(1: 1)$	6.10

$\mathrm{EC}\left(\mathrm{mS} \mathrm{Cm}^{-1}\right) \quad 0.032$

Total $\mathrm{N}(\%) \quad 0.153$
Organic matter (\%) 0.475
Available P (ppm) 5.876
Exchangeable K (ppm) 10.00
$\mathrm{CaCO}_{3}(\%) \quad 6.10$
*วิเคราะห์โดย สำนักงานไร้ฝึกทดลอง และห้องปฏิบัติการกลาง คณะเกษตรศาสตร์ มหาวิทยาลัย อุบลราซธานี
ตารางภาคผนวกที่ 2 ข้อมูลอุตุเกษตร สถานีทดลอง สำนักงานไร้ฝึกทดลองและห้องปฏิบัติการกลาง คณะ
เกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี

[^0]: ${ }^{1 /}$ ภาควิชาพืชสวน คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี
 ${ }^{2 /}$ สำนักงานไร่ฝีกทดลองและห้องปฏิบัติการกลางคณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี

