

รายงานการวิจัย

เรื่อง

การเพาะเลี้ยงเนื้อเยื่อมหาหงส์ (Hedychium coronarium J. Koenig)
(Tissue Culture of Hedychium coronarium J. Koenig)

ผศ. ดร. อรัญญา พิมพ์มงคล ภาควิชาวิทยาศาสตร์ชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี

งานวิจัยนี้ได้รับการสนับสนุนจากงบประมาณเงินรายได้ มหาวิทยาลัยอุบลราชธานี ประจำปี 2546

บทคัดย่อ

การศึกษาการเพาะเลี้ยงเนื้อเยื่อมหาหงส์ (Hedychium coronarium J. Koenig) โดยนำส่วน ของเมล็ดมาแช่ด้วย 95% เอทธานอล เป็นเวลา 1 นาที และฆ่าเชื้อด้วย 10% Clorox เป็นเวลา 15 นาที ล้างน้ำกลั่นปลอดเชื้ื 3 ครั้ง เล้วผ่าเมล็ดออกเป็น 2 ส่วน นำมาเลี้ยงบนอาหารสูตร MS (Murashige and Skoog, 1962) เพื่อศึกษาอิทธิพลของชอร์โมนสองคู่ ที่ระดับความเข้มข้นต่างๆ คือ NAA : $0,0.5$ และ $2.0 \mathrm{mg} / 1$ ร่วมกับ $\mathrm{BA}: 0,1.0$ และ $5.0 \mathrm{mg} / 1$ และ $2,4-\mathrm{D}: 0,0.1$, และ $2 \mathrm{mg} / 1$ ร่วมกับ kinetin : 0,1 และ $3 \mathrm{mg} / 1$ เมื่อเลี้ยงได้ 6 สัปดาห์ สูตรอาหารที่เติม NAA และ $\mathrm{BA}(\mathrm{NB})$ ความเข้มข้นต่างๆ นั้น NB 4 ($\mathrm{NAA}: \mathrm{BA}=0.0: 1.0 \mathrm{mg} /$) สามารถชักนำให้เกิดยอดมากที่สุด คือ 18.75% และเกิด multiple shoot ได้ อาหารสูตร NB8 (NAA : $\mathrm{BA}=0.5: 5.0 \mathrm{mg} / \mathrm{l}$) ชักนำให้เมล็ด เจริญเป็นแคลลัสได้ดีที่สุด คือ 29.17% ลักษณะแคลลัสเป็น compact callus สำหรับอาหารที่เติม 2,4-D และ kinetin (DK) พบว่า DK4 (2,4-D : kinetin $=0.0: 1.0 \mathrm{mg} /$) สามารถชักนำให้เกิดยอคได้ คีที่สุค คือ 8.33% อาหารสูตร DK8 (2,4-D : kinetin $=0.1: 3.0 \mathrm{mg} / \mathrm{l}$ สามารถชักนำให้เกิดแคลลัส ได้ดีที่สุด คือ 21.87% ลักษณะแคลลัสส่วนใหญ่เป็น friable callus

The effects of different concentrations of NAA:BA (NB) and 2,4-D:kinetin (DK) on seed culture of Hedychium coronarium J. Koenig were studied. Seeds were surface disinfested for one \min in 95% ethanol, followed by 15 min in 10% clorox. Seeds were washed three times in sterile distilled water. Then each seed was cut into two pieces and they were placed in MS medium containing different combinations of NB (NAA: $0,0.5$ and $2.0 \mathrm{mg} /$; BA : $0,1.0$ and $5.0 \mathrm{mg} / \mathrm{l}$) and DK (2,4-D:0,0.1, and $2 \mathrm{mg} / \mathrm{l}$; kinetin : 0,1 and $3 \mathrm{mg} / \mathrm{l}$). After 6 weeks the results showed that the highest percentage of shoots, 18.75%, was from NB4 medium (NAA : $\mathrm{BA}=0.0: 1.0$ $\mathrm{mg} / \mathrm{l})$; the highest percentage of callus, 29.17%, was from NB8 medium (NAA : $\mathrm{BA}=0.5: 5.0$ $\mathrm{mg} / \mathrm{l})$. These callus were compact callus. On the other hand, seeds cultured in DK media could be differentiated to shoot for the highest percentage, 8.33%, in DK4 medium (2,4-D : kinetin $=0.0$: $1.0 \mathrm{mg} / 2)$; the highest percentage of callus, 21.87%, was from DK8 ($2,4-\mathrm{D}:$ kinetin $=0.1: 3.0$ $\mathrm{mg} / \mathrm{l})$. Most of these callus were friable callus.

กิตติกรรมประกาศ

ดิฉันขอขอบคุณ นางสาวนภาพร กล้าเมืองกลาง และ นางสาวศิรินาจ ศรีสว่าง นัก ศึกษาภาควิชาวิทยาศาสตร์ซืวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี ที่ได้ทุ่มเทกำลังกาย กำลังใจ และความสามารถเพื่อช่วยเหลือในการทำวิจัยเป็นอย่างดี

ขอขอบคุณภาควิชาวิทยาศาสตร์ชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยอุบลราชธานี ที่ อนุญาตให้ใช้สถานที่ อุปกรณ์ และครุภัณฑ์ ในการทำวิจัย พร้อมทั้งสนับสนุนวัสดุ และสารเคมีบาง ส่วนในการทำวิจัย

สุดท้ายนี้ดิดันขอขอบคุณมหาวิทยาลัยอุบลราชธานี ที่สนับสนุนเงินวิจัย สำหรับการทำ วิจัธครั้งนี้
บทคัดย่อ ก
กิตติกรรมประกาศ ค
สารบัญตาราง จ
สารบัญภาพ ฉฉ
สารบัญแผนภาพ ช
คำอธิบายสัญลักษณ์ ซ
บทนำ 1
วัตถุประสงค์ 1
การตรวจเอกสาร 2
อุปกรณ์และวิธีการทดลอง 5
ผลการทดลองและวิจารณ์ผลการทดลอง 9
สรุปผลการทดลองและข้อเสนอแนะ 18
เอกสารอ้างอิง 20
ภาคผนวก 22
ประวัตินักวิจัย 26

สารบัญตาราง

ตารางที่

1 คู่ความเข้มข้นของ NAA และ $B A$
2 คู่ความเข้มข้นของ $2,4-\mathrm{D}$ และ kinetin
3 แสคงเปอร์เซ็นต์การเจริญเป็นแคลลัส และ ยอค ของเมล็ดมหาหงส์ที่เลี้ยงในอาหาร MS ที่เติม NAA และ BA ความเข้มข้นต่างๆ11

4 แสดงเปอร์เซ็นต์การเฉริญเป็นแคลลัส และ ยอด ของเมล็คมหาหงส์ที่เลี้ยงในอาหาร MS ที่เติม $2,4-\mathrm{D}$ และ kinetin ความเข้มข้นต่างๆ

สารบัญภาพ

ภาพที่ หน้า
1 ลักษณะของส่วนที่อยู่หนืือดินของมหาหงส์ 3
2 ลักษณะของคอกและช่อดอกมหาหงส์ 4
3 ลักษณะของผลแก่และเมล็ดมหาหงส์ 4
4 ลักษณะของเมล็ดมหาหงส์ที่เจริญใน NB1 NB2 และ NB3 11
5 ลักษณะของเมล็คมหาหงส์ที่เจริญในอาหาร NB4 NB5 และ NB6 12
6 ลักษณะของเมล็ดมหาหงส์ที่เจริญในอาหาร NB7 NB8 และ NB9 12
7 ลักษณะการเจริญของเมล็ดที่เจริญเป็น multiple shoots ในอาหาร NB4 13
8 ลักษณะการเจริญของเมล็ดที่เจริญเป็น compact callus ในอาหาร NB9 13
9 ลักษณะของเนื้อเยื่อเมล็ดมหาหงส์ที่เจริญในอาหาร DK1 DK2 และ DK3 15
10 ลักษณะของเนื้อเยื่อเมล็ดมหาหงส์ที่เจริญในอาหาร DK4 DK5 และ DK6 15
11 ลักษณะของเนื้อเยื่อเมล็คมหาหงส์ที่เจริญในอาหาร DK7 DK8 และ DK9 16
12 ลักษณะของเนื้อเยื่อเมล็คมหาหงส์ที่เจริญในอาหาร DK 1 และ DK 4 16
13 ลักษณะของเนื้อเยื่อเมล็ดมหาหงส์ที่เจริญในอาหาร DK 5 และ DK6 17
14 ลักษณะของเนื้อเยื่อเมล็ดมหาหงส์ที่เจริญในอาหาร DK7 และ DK8 17
15 ลักษณะการเกิค friable callusในอาหาร DK6 18

สารบัญแผนภาพ

หน้า1 ขั้นตอนการเพาะเลี้ยงเมล็ดมหาหงส์ 9
2 ขั้นตอนการเตรียมอาหาร 25

BA
2,4-D
DK
MS
NAA
NB

คำอธิบายสัญลักษณ์

N_{6}-benzyladenine
2,4-dichlorophenoxyacetic acid
2,4-dichlorophenoxyacetic acid and kinetin
Murashige and Skoog
naphthalenecetic acid
naphthalenecetic acid and N_{6}-benzyladenine

การตรวจเอกสาร

มหาหงส์ (Hedychium coronarium J. Koenig.) เป็นพืชที่อยู่ในวงศ์ Zingiberaceae มีชื่อภาษาอังกฤษ คือ White Giner, Butterfly lily, Garland Flower, Ginger Lily และมีชื่อเรียกที่แตกต่างกันออกไปในแต่ละ ท้องถิ่น เช่น ภาคกลางเรียกว่า กระทายเหิน หางหงส์ แม่ฮ่องสอนเรียกว่า ผาห่าน เหินแก้ว เหินคำ ภาคตะวัน ออกเฉียงเหนือ เรียกว่า สะเลเต เป็นต้น มีถิ่นกำเนิด แถบเทือกเขาหิมาลัย ชอบขึ้นในที่ชื้น ออกคอก ตลอดปี (มรกต, 2539)

ลักษณะของมหาหงส์

มหาหงส์เป็นไม้ล้มลุก ลำต้นอยู่ใต้ดิน ชูใบขึ้นเหนือพื้นดินเป็นกอ สูงได้ถึง 2 เมตร ใบเดี่ยวรูปขอบ ขนาน หรือรูปใบหอกแกมรูปขอบขนาน กว้าง $4-9$ เซนติเมตร ยาว $35-60$ เซนติเมตร ปลายเรียวแหลมโคน สอบแคบ (ภาพที่ 1)

คอก สีขาวนวล หรือสีเหลืองแซม ออกเป็นช่อ ใบประดับหนา ยาว $2-3$ เซนติเมตร ภายในมี $3-4$ ดอก กลีบเลี้ยงโคนเชื่อมกันเป็นหลอค ปลายจัก 3 ซี่ กลีบดอก 3 ดอก ยาวประมาณ 5 เซนติเมตร โคนเชื่อม กันเป็นหลอด เมื่อบานเส้นผ่าศูนย์กลางประมาณ 10 เซนติเมตรเกสรตัวผู้ที่เป็นหมัน 3 อัน ลักษณะคล้ายกลืบ ดอก รูปขอบขนานหรือรูปใบหอก ยาวเท่ากับกลีบดอก แบนและมีก้านสีเหลืองอ่อนหรือสีขาว เกสรตัวผู้ สมบูรณ์ 1 อัน อับเรณูสีแสด ดอกมีกลิ่นหอม ดอกที่ใกล้โรยเป็นสีฟางข้าว ออกดอกตลอดปี (ภาพที่ 2)

ผล รูปทรงกระบอก เมื่ออ่อนสีเขียว เมื่อแก่จะมีสีแดงอมส้ม เมล็คสีแดง (ภาพที่ 3)

โดยส่วนใหญ่เล้วจะนิยมนำมาทำเป็นสมุนไพร โดยใช้ส่วนของเหง้า ต้มน้ำ ใช้เป็นยากลั้วคอ แก้ ต่อมทอนซิลอักเสบ น้ำคั้นใช้ทาแผลบวม หรือใช้หงงาตากแห้งบดผสมน้ำผึ้งทำเป็นยาลูกกลอนกินแก้กษัย บำรุงกำลัง บำรุงไต น้ำมันจากเหง้า ใช้ม่นเมลง ชาวจีนจะใช้เป็นส่วนผสมของยาจีน รักษาอาการปวคศีรษะ รักษาแผลที่ฟกช้ำ และมีการอักเสบรักษาโรคRheumatic และใช้เป็นยาลดไข้ เหง้ามีสารสำคัญ คือ

- volatile oil ได้แก่ sesquiterpene, phenols, ketones
- Diterpene กลุ่ม Labdane ; coronarin A, coronarin B, coronarin D, (E)- labdane- 8(17), 12-diene-15, 16-dial ซึ่งมีคุณสมบัติต้านมะเร็ง (ถนอมศรี, 2533)
นอกจากนั้นยังนิยมปลูกมหาหงส์เป็นไม้ประดับ เพราะมีดอกสวยงามและมีกลิ่นหอม น้ำมันหอม ระเหยจากเหง้าใช้เป็นยาขับลมและบำรุงกำลัง น้ำมันหอมระเหยจากดอกใช้ทำหัวน้ำหอม

ภาพที่ 1 ลักษณะของส่วนที่อยู่เหนือคินของมหาหงส์

ภาพที่ 2 ลักษณะของคอกและช่อดอกของมหาหงส์

ภาพที่ 3 ลักษณะของผลแก่และเมล็คมหาหงส์

ปัจจุบันมีรายงานการเพาะเลี้ยงเนื้อเยื่อขิง (Zingiber officinale Rosc.) โดย ฐิติภาส (2530) สามารถ เพิ่มปริมาณต้นขิงได้ประมาณ 4 เท่า โดยการเลี้ยงตาบนอาหาร MS (1962) ที่เติม BA $10.0 \mathrm{mg} /$ สุเม (2537) ใช้ส่วนตายอดของเหง้า หรือหน่อที่แตกใหม่ เพาะเลี้ยงบนอาหารสูตร MS ที่เติม BA $5.0 \mathrm{mg} / 1$ เพิ่มจำนวน ยอค และ MS ที่เติม BA $1.0 \mathrm{mg} / 1$ และ NAA $1.5 \mathrm{mg} /$ ชักนำให้เกิดรากได้ดีที่สุดและมีการแตกหน่อเพิ่ม ขึ้น

สิรินทร์ (2536) ศึกษาการเพิ่มปริมาณชิง โดยเลี้ยงในอาหารเหลวสูตร MS ที่เติมสาร BA $5.0 \mathrm{mg} / 1$ ทำให้ขิงที่เลี้ยงในหลอดทดลองแตกหน่อได้มากที่สุด คือ 5.6 หน่อ ภายในเวลา 3 สัปดาห์

วัชรินทร์ (2544) นำหน่อจากเหง้าของขมิ้นชันและขมิ้นอ้อยมาฟอกม่าเชื้อด้วย โซเดียมไฮโปคลอ ไรด์ 0.6% เป็นเวลา $15-30$ นาที และโซเดียมไฮโปคลอไรด์ 0.3% เป็นเวลา 10 นาที แล้วใช้เทคนิคปลอด เชื้อตัดตาขนาด 0.5 cm . นำมาเลี้ยงในอาหารสูตร MS ที่เติม $\mathrm{BA} 3.0 \mathrm{mg} /$ เป็นเวลา 1 เดือน สามารถได้ต้น ขมิ้นชันและขมิ้นอ้อยที่ปลอคเชื้อ 100% แล้วเพิ่มปริมาณขอดให้มาก เพื่อทคสอบหาสูตรอาหารที่เหมาะสม โดยใช้ยอคเพาะเลี้ยง พบว่า จาหาร MS ที่เติม $\mathrm{BA} 3 \mathrm{mg} / 1$ ทำให้ขมิ้นชันและขมิ้นอ้อยมีจำนวนต้นและราก สูงสุด

ปาริชาต (2537) ให้ก้านช่อคอกอ่อนของว่านนางคุ้มไปเลี้ยงบนอาหาร MS ที่เติม NAA $1.0 \mathrm{mg} / 1$ ร่วมกับ Kinetin $1.25 \mathrm{mg} / \mathrm{T}$ พว่า ให้จำนวนต้นต่อชิ้นส่วนที่เลี้ยงมากที่สุด สภาพอาหารวุ้น เมื่อเทียบกับ อาหารเหลวที่ใช้เลี้ยงเนื้อเยื่อบนกระดาษกรอง และใช้อาหารกึ่งเหลวมีผลต่อจำนวนต้น น้ำหนักสด และน้ำ หนักแห้งเฉลี่ยของต้นที่เพิ่มขึ้นอย่างมีนัยสำคัญ และพบว่า NAA $1.0 \mathrm{mg} / 1$ ร่วมกับ Kinetin $1.0 \mathrm{mg} / 1$ ทำให้ มีจำนวนรากมากที่สุด และการใช้ NAA $1.0 \mathrm{mg} /$ จะให้น้ำหนักสดเฉลี่ยของแคลลัสมากที่สุค

วรนุช (2537) ศึกษาอัตราส่วนของสารเร่งการเจริญเติบโตที่เหมาะสมในการเพาะเลี้ยงเนื้อเยื่อว่านสี่ ทิศลูกผสมพันธุ์ Scarlet Leader โดยใช้ส่วนหัวตัดแบ่งเพาะเลี้ยงในความเข้มข้นของ NAA 3 ระดับ คือ $0,0.1$ และ $0.5 \mathrm{mg} /$ ปรากฎว่า สามรถเกิดต้นอ่อนได้ในทุกสูตรอาหาร แต่สูตรอาหารที่เกิดต้นอ่อนมากที่สุด คือ NAA $1.0 \mathrm{mg} /$ ร่วมกับ Kinetin $0.1 \mathrm{mg} / 1$ เมื่อเลี้ยงได้ 90 วัน

Sharma and Singh (1997) ใช้หน่อของขิงเพาะเลี้ยงในอาหารสูตร MS ที่เติม kinetin $2.0 \mathrm{mg} / 1$ และ น้ำตาล sucrose $20 \mathrm{~g} / 1$ ทำให้เกิดยอดเฉลี่ย 7.7 ยอด/หน่อ เมื่อเลี้ยงได้ 4 สัปดาห์ และสามารถพัตนาไป เป็นต้น ที่มีรากและยอดได้ เมื่อเลี้ยงในอาหารสูตร MS ที่เติม kinetin $2.0 \mathrm{mg} / 1$ และ NAA $2.0 \mathrm{mg} / 1$

Malamug et al. (1991) เพาะเลี้ยงเนื้อเยื่อเจริญปลายยอด (shoot tips) ของชิงเพื่อชักนำให้เกิคแคลลัส ในอาหารสูตร MS ที่มี 2,4-D $0.5 \mathrm{mg} / 1$ และ $\mathrm{BA} 1.0 \mathrm{mg} /$ ซึ่งสามารถชักนำให้เกิดแคลลัสได้สูงสุดและ แยกแคลลัสที่ได้มาเลี้ยงในอาหาร MS ที่เติม BA 1.0 และ $3.0 \mathrm{mg} / 1$ ชักนำให้แคลลัสเกิดยอดได้

Ricado et al. (1992) เพิ่มปริมาณตาข้างของ Zingiber spectabile โดยใช้หน่อที่เกิดจากเหง้าเพาะ เลี้งงบนอาหาร MS ที่เติม $\mathrm{BA} 10.0 \mu \mathrm{~m}$ และ $\mathrm{IAA} 5.0 \mu \mathrm{~m}$ ชักนำให้เพิ่มตาข้างเมื่อเลี้ยงงเป็นเวลา 30 วัน และนำตาข้างที่ได้มาเพาะเลี้ยงเพื่อเพิ่มจำนวนยอดโดยเลี้ยงในอาหาร MS ที่มี $5.0 \mu \mathrm{~m} \mathrm{NAA}$ หรือ IAA

อุปกรณ์และวิธีการ

อบกรรณ์และสารเคมี

อิปกรณ์เครื่องมือที่ใช้ในการเตรียมอาหาร

1. Flask
2. Spatula
3. Beaker
4. pH meter
5. Autoclave
6. Hot plate และ Magnetic stirrer
7. ปีเปต
8. ลูกยางดูด
9. เตาอบไมโครวฟ
10. ขวคเก็บ stock solution
11. ขวคเลี้ยงเนื้อเอื่อขนาคต่างๆ
12. เครื่องชั่ง (ทศนิยม 4 ตำแหน่ง)

จุปกรณ์เครื่องมือที่ใช้ในการย้ายเนื้อยื่อ

1. Forceps
2. Petri dish
3. Larminar air flow
4. มีดผ่าตัด
5. ตะเกียงแอลกอฮอล์
6. กระบอกฉีดแอลกอฮอล์

อุปกรณ์เครื่องมื่อที่ใช้ในห้องเลี้ยงเนื้อเยื่อ

1. ชั้นเลี้งงเนื้อเยื่อ
2. ห้องเลี้งงเนื้อเยื่อ
3. เครื่องควบคุบอุณหภูมิ ให้มีอุณหภูมิ 25 องศาเซลเซียส
4. เครื่องควบคุมเวลาให้แสง ใช้แสงที่ความเข้มประมาม $2,000-3,000$ ลักซ์ วันละ 16 ชั่วโมง

สารเคมี (ดูในภาคผนวก ฯ)

วิธีการทคลอง

1. การเก็บตัวอย่างเมล็คมหาหงส์

เก็บเมล็คมหาหงส์จาก จังหวัดอุบลราชธานี ในช่วงเดือน พฤคจิกายน ถึงมกราคม โคยใช้เมล็คจาก ผลแก่ ที่เปลือกภายนอกยังมีสีเขียวอยู่ แล้วกก็บไว้ในตูต็น จนกว่าจะนำมาทดลอง
2. การศึกษาผลของฮอร์โมนออกซิน และไซโตไคนินต่อการเจิจิญูองมหาหงส์

การเพาะเลี้ยงเนื้อเยื่ยมหาหงส์จากเมล็คแก่ โดยเพาะในอาหาร MS (Murashige and Skoog, 1962) pH 5.6 ที่มีน้ำตาล 30 mg / และเติมฮอร์โมนออกซิน ไค้แก่ NAA (1-Naphthaleneacetic acid) หรือ 2,4-D (2,4dichlorophenoxyactic acid) และฮอร์โมนไซโตไคนิน ได้แก่ $\mathrm{BA}\left(\mathrm{N}_{6}-\right.$ Benzyladenine) หรือ kinetin ความ เข้มข้นต่างๆ โดยมีคู่ควมมเข้มข้นของฮอร์โมนคังตารางที่ 1 และ 2

ตารางที่ 1 คู่ความเข้มข้นของ NAA และ $B A$

BA (mg/)	0.0	1.0	5.0
NAA (mg/)			
0.0	NB1	NB4	NB7
0.5	NB2	NB5	NB8
2.0	NB3	NB6	NB9

ตารางที่ 2 คู่ความเข้มข้นของ $2,4-\mathrm{D}$ และ kinetin

Kinetin (mg/l)	0.0	1.0	3.0
$2,4-\mathrm{D}(\mathrm{mg} / \mathrm{l})$			
0.0	DK1	DK4	DK 7
0.1	DK2	DK5	DK 8
2.0	DK3	DK6	DK9

3. ขั้นตอนการเพาะเลี้ยงเนื้อเยื่อมหาหงส์ ดังแสดงในแผนภาพที่ 1
3.1 ล้างผลของมหาหงส์โดขน้ำเปล่า
3.2 แกะเมล็ดมหาหงส์ออกจากฝัก ล้างด้วยน้ำผสมน้ำยาล้างจาน แล้วล้างออกค้วยน้ำเปล่าหลายๆ ครั้ง
3.3 นำมาแช่ใน 95% ethanol นาน 1 นาที
3.4 แช่เมล็คมหาหงส์ใน 10% clorox ที่เติม tween $203-4$ หยด นาน 15 นาที โคยทำการเขย่าตลอด เวลา หลังจากนั้นล้างด้วยน้ำกลั่นปลอคเชื้อ 3 ครั้ง
3.5 นำเมล็คมาผ่าครึ่งและเลี้ยงบนสูตรอาหาร MS ทั้ง 18 สูตร (ตามตารางที่ 1 และ 2) ที่ความเข้ม แสง $2,000-3,000$ ลักซ์ โดยเลี้ยง 4 ซีก/ขวด แล้วสังเกตการเจริญของเมล็คมหาหงส์เป็นเวลา 6 สัปดาห์
3.6 ทำการทคสองสูตรอาหารละ 6 ซ้ำ สุ่มเลือกชวคที่ไม่ปนเปื้อน 3 ขวดเพื่อบันทึกผล ประเมินผล การเจริญ/ศารเปลี่ยนแปลงของเมล็คมหาหงส์โดยคิดเป็นเปอร์เซนต์

ผลการทดลองและวิจารณ์ผลการทดลอง

การศึกษาอิทธิพลของ NAA และ BA ต่อการเพาะเลี้ยงเนื้อเยื่อเมล็ดมหาหงส์
การศึกษาผลของ NAA และ BA ต่อการเพาะเลี้ยงเนื้อเยื่อเมล็ดมหาหงส์ ในอาหารสูตร $\mathrm{NB} 1-\mathrm{NB} 9$ ตามตารางที่ 1 เป็นเวลา 6 สัปดาห์ แสดงคังตารางที่ 3

การเพาะเลี้ยงเนื้อเยื่อเมล็ดมหาหงส์ในอาหาร MS ที่มีความเข้มข้นของ NAA และ BA แตกต่างกัน ทั้ง 9 สูตร เป็นเวลา 6 สัปดาห์ พบการเจริญของมหาหงส์คังภาพที่ 4 โดยเมล็คสามารถเจริญได้ในทุกสูตร อาหาร ยกเว้น อาหารสูตร NB 2 (เมล็คไม่สามารถงอกได้) สำหรับสูตรอาหาร NB 4 ซึ่งมีความเข้มข้นของ $\mathrm{NAA}: \mathrm{BA}$ เท่ากับ $0.0: 1.0 \mathrm{mg} / 1$ ทำให้เมล็ดเกิด ราก ต้น และยอคได้ดีที่สุด คือ 18.75% ลักษณะของยอด เป็น multiple shoots (ภาพที่ 7) รองลงมาคือสูตรอาหาร NB8 NB9 และ NB7 ซึ่งมีอัตราส่วนของ NAA: BA เท่ากับ $0.5: 5.0 \quad 2.0: 5.0$ และ $0: 5.0 \mathrm{mg} / 1$ ตามลำดับ ต้นที่ได้มีลักษณะไม่แตกต่างกันมากนัก และ สูตรอาหาร NB 8 เหมาะสมในการชักนำให้เกิคเป็นแคลลัสได้ดีที่สุด คือ 29.17% รองลงมาคือสูตรอาหาร NB 3 (NAA : $\mathrm{BA}=2.0: 0 \mathrm{mg} /$) สูตรอาหาร NB4 NB9 NB5 NB7 และ NB1 ตามลำดับ โดยลักษณะของ แคลลัสเป็น compact callus (ภาพที่ 8) ส่วนในสูตรอาหาร $\mathrm{NB} 2(\mathrm{NAA}: \mathrm{BA}=0.5: 0 \mathrm{mg} /$) ไม่พบการเจริญ

จากผลการทดลองเมื่อเลี้ยงเนื้อเยื่อเมล็ดมหาหงส์ ในอาหารสูตร NB4 คือ MS ที่มีเพียง BA เข้มข้น $1.0 \mathrm{mg} / 1$ มีเปอร์เซ็นต์ในการชักนำให้เมล็ดเกิดยอดได้ดี เปรียบเทียบกับงานวิจัยของ สิรินทร์ (2532) มี ลักษณะที่คล้ายคลึงกัน โดยสิรินทร์จะใช้ตาชิงเพาะเลี้ยงในสูตรอาหาร MS ที่เติม BA $5.0 \mathrm{mg} / 1$ ทำให้ตาชิง เกิดยอดจำนวนมาก และสอดคล้องกับงานวิจัยของ วัชรินทร์ (2544) นำหน่อจากเหง้าของขมิ้นชันและขมิ้น อ้อย นำมาเลี้ยงในอาหารสูตร MS ที่เติม $\mathrm{BA} 3.0 \mathrm{mg} / 1$ เป็นเวลา 1 เดือน ชักนำให้เกิดต้นขมิ้นชันและชมิ้น อ้อยที่ปลอดเชื้อ 100% แล้วเพิ่มปริมาณยอคให้มาก เพื่อทคสอบหาสูตรอาหารที่เหมาะสม โคยใช้ยอดเพาะ เลี้ยง พบว่า อาหาร MS ที่เติม $\mathrm{BA} 3.0 \mathrm{mg} / 1$ ทำให้ขมิ้นชันและขมิ้นอ้อยมีจำนวนต้นและรากสูงสุด แสดงให้ เห็นว่าปริมาณของ BA มีผลต่อการชักนำให้เนื้อเยื่อเจริญเป็นยอดและราก

เมื่อเลี้ยงเนื้อเยื่อเมล็ดมหาหงส์ในอาหารสูตร NB 8 (NAA : $\mathrm{BA}=0.5: 5.0 \mathrm{mg} /$) สามารถชักนำให้ เกิคแคลลัสได้สูงสุด สอดคล้องกับงานวิจัยของ Malamug et al. (1991) ที่เพาะเลี้ยงเนื้อเยื่อเจริญปลายยอด (shoot tips) ของขิงเพื่อชักนำให้เกิดแคลลัสในอาหารสูตร MS ที่มี 2,4-D $0.5 \mathrm{mg} / 1$ และ BA $1.0 \mathrm{mg} / \mathrm{l}$

ตารางที่ 3 แสดงเปอร์เซ็นต์การเจริญเป็นแคลลัส และ ยอด ของเมล็คมหาหงส์ที่เลี้ยงในอาหาร MS ที่เติม NAA และ BA ความเข้มข้นต่างๆ

สูตรอาหาร	อัตราส่วนNAA : BA (mg/l)	\%การเปลี่ยนแปลงตอจำนวนซีกของเมล็ดมหาหงส์ในการเจริญไปเป็น แคลลัส และ ยอค	
		เคลลัส	ยอค
NB 1	$0.0: 0.0$	6.25	0
NB 2	0.5:0.0	0	0
NB 3	2.0:0.0	18.75	0
NB 4	0.0: 1.0	16.67	$18.75{ }^{2}$
NB 5	0.5: 1.0	12.50	0
NB 6	2.0 : 1.0	2.08	0
NB 7	0.0:5.0	12.50	2.08
NB 8	0.5:5.0	29.17^{1}	8.33
NB 9	$2.0: 5.0$	14.58	4.17
${ }^{1} \%$ เจริญเป็นแคลลัสสูงที่สุด ${ }^{2} \%$ เจริญเป็นยอคสูงที่สุด			

ภาพที่ 4 ลักษณะของเมล็ดมหาหงส์ที่เจริญใน NB1 NB2 และ NB3

ภาพที่ 6 ลักษณะของเมล็ดมหาหงส์ที่เริญในอาหาร NB7 NB8 และ NB9

ภาพที่ 7 ลักษณะการเงริญของเมล์คที่เงิญูเป็น multiple shoots ในอาหาร NB4

ภาพที่ 8 ลักษณะการเจิญูของเมล็คที่เงริญเป็น compact callus ในอาหาร NB9

การศึกษบาอิทธิพลของ $2,4-\mathrm{D}$ และ k kinetin ต่อการเพาะเลี้ยงเนื้อยแื่อเมล็คมหาหงส์
ภาพที่ $9-15$ แสคงการเปลี่ยนแปลงของเนื้อเยื่เมล็คมหาหงส์ ที่เี้ยงในอาหาร MS ที่คู่ความเข้ม ข้นของ 2,4 - และ kinetin ในระดับต่างๆ (สูตรอาหาร $\mathrm{DK} 1-\mathrm{DK} 9$)

จากตารางที่ 4 พบว่า ในสูตรอาหาร DK8 (ภาพที่ 11 และ 14) ที่มีอัตราส่วนของ $2,4-\mathrm{D}$: kinetin ท่ากับ $0.1: 3 \mathrm{mgl/}$ มีเปอร์เซนต์การเกิดแคลลัสได้คีที่สุค คือ 21.87% สูตรอาหาร DK 2 DK 7 และ DK 9 ที่มี อัตราส่วนของ $2,4-\mathrm{D}:$ kinetin เท่ากับ $0.1: 0,0: 3$ และ $2: 3 \mathrm{mg}$ ตามลำคับ มีเปอร์เซนต์การเจริญปป็นแคล ลัสได้ใกล้เคียงกัน ซึ่งลักษณะของแคลลัสจะเป็นแบบ friable callus (ภาพที่ 15) ส่วนเปออ์เซนต์การเจริญไป เป็นยอดพบว่าในอาหารสูตร DK 4 (ภาพที่ 12) ที่มีอัตราส่วนของ $2,4-\mathrm{D}:$ kinetin เท่ากับ $0: 1 \mathrm{mg} /$ มีเปอร์ เซนต์การเกิดได้คีที่สดด คือ 8.33% รองลงมาคือสูตรอาหาร DK1 DK5 และ DK7 ซึ่งมีอีตราส่วนของ $2,4-\mathrm{D}$: kinetin เท่ากับ $0: 0,0: 1$, และ $0: 3 \mathrm{mg} /$ ตามลำดับ

จากการทดลองพบว่าเปอร์เซนต์ของการเจิมูเป็นเคลลัสได้ดีด และเปอร์เซนต์ของการเจริญเป็นยอด ได้นั้นต้องมีสัดส่วนของ $2,4-\mathrm{D}$ ต่ำ kinetin สูง จากตารางที่ 4 พบว่าสูตรอาหารที่ให้เปอร์เซนต์การเกิดเคลลัส ได้ดีได้แก่สูตรอาหาร DK 8 รองสงมาได้แก่ สูตร DK 2 DK 7 และ DK 9 ซึ่เป็นสูตรอาหารที่มี kinetin สูง

ตารงทที่ 4 แสคงเปอร์เซ็นต์การเริญเป็นแคลลัส และ ยอด ของเมล็คมหาหงส์ที่เลี้ยงในอาหาร MS ที่เติม

${ }^{1} \%$ เจริญเป็นแคลลัสสูงที่สุด
${ }^{2} \%$ เจริญเป็นยอคสูงที่สุด

ภาพที่ 10 ลักษณะของเนื้อเขื่อเมล็ดมหาหงส์ที่เจริญในอาหาร DK4 DK5 และ DK6

ภาพที่ 12 ลักษณะของเนื้อเยื่อเมล็คมหาหงส์ที่เจริญในอาหาร DK1 และ DK4

ภาพที่ 14 ลักษณะของเนื้อเยื่อเมล็คมหาหงส์ที่เจริญในอาหาร DK7 และ DK8

ภาพที่ 15 ลักษณะการเกิด friable callusในอาหาร DK6

เมื่อเปรียบเทียบกับการเจริญของเนื้อเยื่อเมล็ดมหาหงส์ ที่เลี้ยงในอาหาร NB (NAA : BA) กับ DK (2,4-D : kinetin) โดยที่ NAA เป็นฮอร์โมนกลุ่มออกซินเช่นเดียวกันกับ $2,4-\mathrm{D}$ และ BA เป็นฮอร์โมนกลุ่มไซ โตไคนินเช่นเดียวกันกับ kinetin พบว่าอัตราส่วนของ NAA ต่ำ BA สูง สามารถชักนำให้เกิคแคลลัสและยอด ได้ดี สูตรอาหาร NB สามารถชักนำให้เกิด multiple shoot ได้ ลักษณะแคลลัสจะแตกต่างกัน โดยฮอร์โมน $2,4-\mathrm{D}$ และ kinetin จะชักนำให้เกิด friable callus ส่วนฮอร์โมน NAA และ BA ชักนำให้เกิด compack callus และจากผลการทคลองครั้งนี้ พบว่าปริมาณ kinetin สูง สามารถชักนำให้เกิดแคลลัสได้คี ซึ่งคล้ายกับผลการ ทดลองการเพาะเลี้ยงเนื้อเยื่อเข็มสามสีในสภาพปลอคเชื้อ (กีรติ, 2536)

สรุปผลและข้อเสนอแนะ

จากการศึกษาอิทธิพลของ NAA และ BA ต่อการเพาะเลี้ยงเนื้อยยื่อเมล็ดมหาหงส์ โดยเพาะเลี้ยงบน อาหาร MS ที่มียอร์โมน NAA (1- naphthaleneacetic acid) และ $\mathrm{BA}\left(\mathrm{N}_{6}\right.$ - benzyladenine) แตกต่างกันทั้ง 9 สูตร เป็นเวลา 6 สัปดาห์ พบว่า สูตรอาหารที่ 4 (NAA: $\mathrm{BA}=0: 1.0 \mathrm{mg} 1$) เหมาะสมในการชักนำให้เมล็ด เกิคเป็นยอด (multiple shoots) ได้ดีที่สุค รองลงมา คือ สูตรอาหารที่ 89 และ 7 (NAA : $\mathrm{BA}=0.5: 5.0,2.0$: 5.0 และ $0: 5.0 \mathrm{mg} /$ ตามลำคับ) และ พบว่า สูตรอาหารที่ 8 มีเปอร์เซนต์การเจิิญเป็นแคลลัสและ เปอร์เซ็นต์การงอกสูงสุด รองลงมา คือ สูตรอาหารที่ 34975 และ . 6 (NAA : $\mathrm{BA}=2.0: 0,0: 1.0,2.0$: $5.0,0: 5.0,0.5: 1.0$ และ $2.0: 1.0 \mathrm{mg} 1$ ตามลำคับ) ซึ่งเปอร์เซนต์การเจิิญเป็นแคลลลัสและการงอกของเมล็ด มีความใกล้เคียงกัน

สำหรับการศึกษบิิทธิพลของฮอร์โมน 2,4 -dichlorophenoxy acetic acid (2,4-D) และ kinetin ต่อ การเลี้ขงเนื้อยื่อเมล็คมหาหงส์บนอาหารสูตร MS ที่มีอัตราส่วนของ $2,4-\mathrm{D}$ และ kinetin แตกต่างกัน 9 สูตร เป็นเวลา 6 สัปดาห์ พบว่าสูตรอาหารที่ชักนำให้เกิดเคลลัสได้คีที่สุดคือ สูตรอาหารที่ $8(2,4-\mathrm{D}:$ kinetin $=0.1$ $: 3 \mathrm{mg} /)$ รองลงมาคือสูตรอาหารที่ 2,7 และ $9(2,4-\mathrm{D}: \mathrm{kinetin}=0.1: 0,0: 3$ และ $2: 3 \mathrm{mg} /$ ตามลำดับ) โดย อาหารทั้ง 3 สูตร มีเปอร์เซนต์การเกิคแคลลัสใกล้เคียงกัน ลักษณะของแคลลัสเป็นแบบ friable callus สูตร อาหารที่ชักนำให้เกิดยอดได้ดีคือ สูตรอาหารที่ 4 ($2,4-\mathrm{D}:$ kinetin $=0: 1 \mathrm{mg} /$)

ข้อเสนอแนะสำหรับการทคลองในครั้งต่อไป คือเพิ่มอัตราส่วนของ NAA : BA และ 2,4-D : kinetin เพื่อทคลองว่าความเข้มข้นของฮอร์โมนที่มากขึ้นจะสามารถชักนำให้เกิดแคลลัสและยอดได้คืกว่าผล การทดลองนี้หรือไม่ ทั้งนี้เนื่องจากผลการทดลองเปอร์เซนต์กรรเกิดแคลลัสัังอยู่ในระดับปานกลาง ส่วน เปอร์เซนต์การเกิดยอดต่ำ หรืออาจจะสลับคู่ของซอร์โมนดังกล่าว หรืออาจจะใช้สารควบคุมการเจริญของพืช ชนิดอื่นสำหรับการศึกษาการเจริญของเนื้อเยื่อมหาหงส์ หรืออาจจะปรับปรุงสูตรอาหารใหม่ โคยเติมสาร อาหารอื่นๆ เช่น น้ำมะพร้าว น้ำมะเขือเทศ เป็นต้น เพื่อทคลองหาสูตรอาหารเหมาะสมต่อการเจริญของ เนื้อยืื่อต่อไป

อย่างไรกีตามการศึกษาครั้งนี้สามารถใช้เป็นข้อมูลเบื้องต้นในการเพาะเลี้ยงเนื้อเยื่อของพืชวงศ์ศิงได้ อย่างดี เพราะมีรายงานน้อยมากที่นำมล็คของพืชวงศ์นี้มาเลี้ยง ทั้งนี้เนื่องจากโอกาสการติดเมล็คของพืชวงศ์ นี้ในธรรมชาติมีค่อนข้างน้อย ทำให้หาเมล์คได้ลำบาก การเพาะเลี้งงเนื้อเยื่อจากเมล็คเป็นทางออกของการแก้ ปัญหาการปนเปื้อนได้อย่างดี เพราะมีโอกาสปนเปื้อนน้อยเมื่อเทียบกับหัวหรือหน่อที่เกิดจากหัว และยัง สามารถใช้สารฟอกม่าเชื้อความเม้มข้นสูงได้ เพราะเมล์คมีเปลือกทุ้มเมล็คคอยป้องกันอันตรายอีกัั้นหนึ่ง

การทคลองเพาะเลี้ยงเนื้อเยื่อเมล็คมหาหงส์ครั้งนี้ พบการเปลี่ยนแปลงทั้งการเกิดหน่อ แบบ multiple shoot และมีแคลลัสทั้งแบบ friable callus และ compact callus จึงเป็นโอกาสอย่างดียี่งที่จะนำผลการศึกษา

ครั้งนี้ไปพัฒนาต่อ เพื่อการขยายพันธุ์และปรับปรุงพันธุ์ของมหาหงส์ และพืชวงศศ์ขิงชนิคอื่น อีกทั้งน่าจะทำ การศึกษาสารสำคัญทางยา (secondary metabolites) ในหน่อใหม่และแคลลัสทั้งสองแบบ เปรียบเทียบกับพืช ในสภาพธรรมชาติ หากมีสารสมุนไพรมากกว่าธรรมชาติกิทำให้มีโอกาสในการพัฒนาหรือผลิตสารในระดับ ห้องทคลองได้

เอกสารอ้างอิง

กีรติ กะระณา. 2536. การเพาะเลี้ยงเนื้อยื่อเข็มสามสี. บทคัดย่องานวิจัยของนักกึกษาปริญญาตรี ปีการศึกษา 2536 . สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาคกระบัง. กรุงเทพฯ.

จิติภาส ชิดโชติ. 2530. การผลิตพันธุ์จิงปลอคโรคโดยวิธีการเพาะเลี้ยงเนื้อเยื่อพืช. ปัญหาพิเศษ ปริญญาตรี ภาควิชาพืชสวน คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์. กรุงเทพฯ.

วัชรินทร์ รัตนพันธ์. 2544. การเพิ่มจำนวนโครโมโซมของขมิ้นชันและขมิ้นอ้อยด้วยโคลซิซินในสภาพ ปลอคเชื้อ. ปริญญาวิทยาศาสตรมหาบัณฑิต คณะเกษตร สาขาพืชสวน มหาวิทยาลัยเกษตรศาสตร์.

สุเม อรัญนารถ. 2537. การเพาะเลี้ยงเนื้อเยื่อจิงแดง. คณะเทคโนโลยีการเกษตร สถาบันเทคโนโลยี พระจอมเกล้าเจ้าคุณทหาร ลาดกระบัง กรุงเทพฯ.

สิรินทร์ ไทยธวัช. 2531. ปังจัยต่างๆ ที่มีผลต่อการเพิ่มปริมาณขิงในหลอคทคลอง. ปริญญาวิทยาศาสตรมหาบัณฑิต คณะเกษตร สาขาพืชสวน มหาวิทยาลัยกษตรศาสตร์.

Malamug,O.J.F ;H. Inden and T.Asahira. 1991. Plantlet regeneration and propagation from ginger callus. Scientia Horticulturae. 48 : 89-97.

Sharma,T.R. and B.M. Singh. 1997. High-frequency in vitro multiplication of disease-free Zingiber officinale Rosc. Plant Cell Reports. 17: 68-72.

Wannakrairoj, S. 1997. Clonal micropropagation of patumma (Curcuma alismatifalia Gagnep). J. Natur. Sci. $31: 353-356$.

ภาคผนวก ก

อาหารเพาะเลี้ยงเนื้อเยื่อ สารเคมี และการเตรียม

อาหารเพาะเลี้ยงเนื้อเยื่อ

Murashige and Skoog (1962) (MS)
สารเคมี
$\mathrm{NH}_{4} \mathrm{NO}_{3}$
KNO_{3}
$\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\begin{array}{ll}\mathrm{MgSO}_{4} & 7 \mathrm{H}_{2} \mathrm{O} \\ 370\end{array}$
$\begin{array}{ll}\mathrm{KH}_{2} \mathrm{PO}_{4} & 170 \\ \mathrm{H}_{3} \mathrm{BO}_{3} & 6.2\end{array}$
$\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \quad \square \quad 6.9$
$\begin{array}{ll}\mathrm{ZnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} & 6.14 \\ & 0.83\end{array}$
$\begin{array}{ll}\mathrm{KI} & 0.83 \\ \mathrm{Na}_{2} \mathrm{MoO}_{2}, 2 \mathrm{H}_{2} \mathrm{O} & 0.25\end{array}$

$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	0.025
$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	0.025

Na_{2} EDTA $\quad 37.25$
$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
27.85

Glycine
2.0

Nicotinic acid 0.5
Pyridoxine-HCL 0.5
Thiamine- HCL 0.1
Sucrose $\quad 3,000$
pH
5.6

ก่อนที่จะนำสารเคมีเหล่านี้มาเตรียมอาหาร จะเตรียมสารเคมีในรูปสารละลายเข้มข้นโดยแบ่งออก
เป็น 6 stock

Stock I ความเข้มข้น 50 เท่า 2000 ml
ประกอบด้วย
$\mathrm{NH}_{4} \mathrm{NO}_{3}$
KNO_{3}
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{KH}_{2} \mathrm{PO}_{4}$
Stock II ความเข้มข้น 100 เท่า $1,000 \mathrm{ml}$ $\mathrm{CaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$

Stock III ความเข้มข้น 1,000 เท่า 500 ml $\mathrm{H}_{3} \mathrm{BO}_{3}$
KI
$\mathrm{Na}_{2} \mathrm{MoO}_{2} .2 \mathrm{H}_{2} \mathrm{O}$
0.415
$\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$
0.0125

Stock IV ความเข้มข้น 100 เท่า $1,000 \mathrm{ml}$

$\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	0.69
$\mathrm{ZnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	0.614
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	0.0025

Stock V ความเข้มข้น 100 เท่า $1,000 \mathrm{ml}$
Na_{2} EDTA3.73
$\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$

Stock VI ความเข้มข้น 100 เท่า 500 ml

Inosital	5
Nicotinic acid	0.025
Pyridoxine - HCL	0.025
Thiamine- HCL	0.005
Glycine	0.1

การเตรียมฮอร์โมน

เตรียม stock ฮอร์โมนที่ความเข้มข้น $1 \mathrm{mg} / \mathrm{ml}$

การเตรียมอาหารเพาะเลี้ยงเนื้อเยื่อพืช ดังแสดงในแผนภาพที่ 2

ประวัตินักวิจัย

$$
\begin{array}{ll}
\text { ชื่อ (ภาษาไทย) } & \text { นางอรัญญา พิมพ์มงคล } \\
\text { (ภาษาอังกฤษ) } & \text { Mrs. ARANYA PIMMONGKOL }
\end{array}
$$

ดุณวุฒิ ปริญญาอก

ตำแหน่งปัจจุบัน ผู้ช่วยศาสตราจารย์ ระดับ 8

หน่วยงานที่อยู่ที่ติดต่อได้พร้อมโทรศัพท์และโทรสาร
ภาควิชาวิทยศาสตร์ชีวภาพ คณะวิทยาศาสตร์
มหาวิทยาลัยอุบลราชธานี จังหวัดอุบลราชธานี
โทร. $045-288380$ โทรสาร $045-288380$ โทรภายใน 4202
E-mail : atantip@sci.ubu.ac.th

ประวัติการศึกษา

| ปีที่สำเร็จการศึกษา | ระดับปริญญา
 (ตรี โท เอก) | | ชื่อย่อปริญญา | สาขาวิชา | ชื่อสถาบันการศึกษา |
| :---: | ---: | :--- | :--- | :--- | :--- | ประเทศ

ประสบการณ์ในงานวิจัย หรือสาขาวิชาที่มีความชำนาญพิเศษ
Plant Physiology
Plant Tissue Culture
Electron Microscopy

งนวิจัยที่สนใจ

1. Plant tissue culture of medicinal plants and ornamental plants
2. Plant stress physiology

ผลงานทางวิชาการที่พิมพ์ออกเผยแพร่

Tantipanjaporn, A., T. Vajrabhaya and M. Vajrabhaya. 1988. "Shoot Formation from Rice Callus" Proceeding of the $4^{\text {th }}$ Asia-Pacific Conference and Workshop on Electron Microscopy. Bangkok, Thailand.

Tantipanjaporn, A., R. Thavarorite, T. Va Vajrabhaya and M. Vajrabhaya. 1988. "Studies on Callus and Shoot Formation from Rice Tussue Culture." 1 Annual Seminar on Research and Development on Plant Tissue Culture. Bangkok, Thailand.

Tantipanjaporn, A. Anatomy and Morphology of Rice (Oryza sativa L.) Tissue Culture. Thesis, Chulongkorn University, Thailand. 1989.

Pimmongkol, A., and N.D. Camper. 1999. MSMA Resistance and Mode of Action in Common Cocklebur (Xanthium strumarium L.) Annual Meeting: South Carolina Academy of Science (SCAS), Lander University Greenwood, SC, USA.

Pimmongkol, A., and N.D. Camper. 2000. Photosynthetic Activity of Common Cocklebur and MSMA Resistant Mechanism. Annual Meeting South Carolina Academy of Science (SCAS), Presbyterian College, Clinton, SC, USA.

Pimmongkol, A. MSMA-Mode of Action and Resistant Mechanism in Cocklebur (Xanthiu strumarium L.). Dissertation, Clemson University, USA. 2000.

Pimmongkol, A., S. Terapongtanakhon and K. Udomsirichakhon. 2002. Anatomy of Salt- and Non-salt-Tolerant Rice Treated with $\mathrm{NaCl} .28^{\text {th }}$ Congress on Science and Technology of Thailand. Bangkok, Thailand

Pimmongkol, A., S. Terapongtanakhon and K. Udomsirichakhon. 2002. Leaf Anatomy of Saltand Non-salt-Tolerant Rice Treated with NaCl . Journal of Electron Microscopy Society of Thailand 2003, 17(1):65.

Pimmongkol, A.T. and N. D. Camper. 2002. MSMA resistance studies with common cocklebur. Weed Science Society of America, Abstracts. 42:27.

Camper, N. D. and A. T. Pimmongkol. 2003. Interaction between glutathione and MSMA in MSMA-susceptible cocklebur. Weed Science Society of America, Abstracts. 43:30.

Pimmongkol, A.T. and N. D. Camper. 2003. Photosynthetic activity of MSMA-resistant and susceptible common cocklebur. Pesticide Biochemistry and Physiology. 76:46-54.

Swasdipan N., Palasarn W., Pimmongkol A. 2003. Expression and immunohistochemical localization of a pheromone binding protein (ASP1) of Apis mellifera. $29^{\text {th }}$ Congress on Science and Technology of Thailand. Khonkhan, Thailand.

Daungchan, K. and Pimmongkol A. 2003. Tissue Culture of Bitter Melon (Momordica charantia Linn.). $29^{\text {th }}$ Congress on Science and Technology of Thailand. Khonkhan, Thailand.

Lathulee N., Swasdipan N., Pimmongkol A., Wongsena P., Boothramat D., Wisuwan S., Singhanuwat W., Sutthiphongpracha N. 2003. Human cytomegalovirus of cervical lesion : A first case experience and review literature. The $2^{\text {nd }}$ meeting of Cytological society on CA cervix and CA breast in the era of National cancer prevention policy. Bangkok, Thailand

Lathulee N., Swasdipan N., Pimmongkol A., Wongsena P., Chouwsrikul W., Phongthipphon A. 2003. Embryonal rhabdomyosarcoma of the nasal cavity. The $2^{\text {nd }}$ meeting of Cytological society on CA cervix and CA breast in the era of National cancer prevention policy. Bangkok, Thailand.

Khamparat S., Swasdipan N. and Pimmongkok A. 2004. Light and Scanning Electron Microscopy Studies of Stomata, Guard Cells and Trichomes in Mokjong (Scaphium macropodum). Journal of Electron Microscopy Society of Thailand 2004, 18(1):89-90.

Pukahuta C., Chaipakdee W., Luemlum N., Punyauppa-path P. Pimmongkol A. and Suwanarit P., Spore Micrographs of Some Mushrooms in Ubon Ratchathani. Journal of Electron Microscopy Society of Thailand 2004, 18(1):68-69.

